1
|
Sandhu A, Lyu X, Wan X, Meng X, Tang NH, Gonzalez G, Syed IN, Chen L, Jin Y, Chisholm AD. The microtubule regulator EFA-6 forms cortical foci dependent on its intrinsically disordered region and interactions with tubulins. Cell Rep 2024; 43:114776. [PMID: 39305484 DOI: 10.1016/j.celrep.2024.114776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
The EFA6 protein family, originally identified as Sec7 guanine nucleotide exchange factors, has also been found to regulate cortical microtubule (MT) dynamics. Here, we find that in the mature C. elegans epidermal epithelium, EFA-6 forms punctate foci in specific regions of the apical cortex, dependent on its intrinsically disordered region (IDR). The EFA-6 IDR can form biomolecular condensates in vitro. In genetic screens for mutants with altered GFP::EFA-6 localization, we identified a gain-of-function (gf) mutation in α-tubulin tba-1 that induces ectopic EFA-6 foci in multiple cell types. Lethality of tba-1(gf) is partially suppressed by loss of function in efa-6. The ability of TBA-1(gf) to trigger ectopic EFA-6 foci requires β-tubulin TBB-2 and the chaperon EVL-20/Arl2. tba-1(gf)-induced EFA-6 foci display slower turnover, contain the MT-associated protein TAC-1/TACC, and require the EFA-6 MT elimination domain (MTED). Our results reveal functionally important crosstalk between cellular tubulins and cortical MT regulators in vivo.
Collapse
Affiliation(s)
- Anjali Sandhu
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Xiaohui Lyu
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Xinghaoyun Wan
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Xuefeng Meng
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Ngang Heok Tang
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Gilberto Gonzalez
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ishana N Syed
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lizhen Chen
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Andrew D Chisholm
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
2
|
Czajkowski ER, Zou Y, Divekar NS, Wignall SM. The doublecortin-family kinase ZYG-8DCLK1 regulates microtubule dynamics and motor-driven forces to promote the stability of C. elegans acentrosomal spindles. PLoS Genet 2024; 20:e1011373. [PMID: 39226307 PMCID: PMC11398696 DOI: 10.1371/journal.pgen.1011373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/13/2024] [Accepted: 07/23/2024] [Indexed: 09/05/2024] Open
Abstract
Although centrosomes help organize spindles in most cell types, oocytes of most species lack these structures. During acentrosomal spindle assembly in C. elegans oocytes, microtubule minus ends are sorted outwards away from the chromosomes where they form poles, but then these outward forces must be balanced to form a stable bipolar structure. Simultaneously, microtubule dynamics must be precisely controlled to maintain spindle length and organization. How forces and dynamics are tuned to create a stable bipolar structure is poorly understood. Here, we have gained insight into this question through studies of ZYG-8, a conserved doublecortin-family kinase; the mammalian homolog of this microtubule-associated protein is upregulated in many cancers and has been implicated in cell division, but the mechanisms by which it functions are poorly understood. We found that ZYG-8 depletion from oocytes resulted in overelongated spindles with pole and midspindle defects. Importantly, experiments with monopolar spindles revealed that ZYG-8 depletion led to excess outward forces within the spindle and suggested a potential role for this protein in regulating the force-generating motor BMK-1/kinesin-5. Further, we found that ZYG-8 is also required for proper microtubule dynamics within the oocyte spindle and that kinase activity is required for its function during both meiosis and mitosis. Altogether, our findings reveal new roles for ZYG-8 in oocytes and provide insights into how acentrosomal spindles are stabilized to promote faithful meiosis.
Collapse
Affiliation(s)
- Emily R. Czajkowski
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Yuntong Zou
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Nikita S. Divekar
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Sarah M. Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
3
|
Sandhu A, Lyu X, Wan X, Meng X, Tang NH, Gonzalez G, Syed IN, Chen L, Jin Y, Chisholm AD. The microtubule regulator EFA-6 forms spatially restricted cortical foci dependent on its intrinsically disordered region and interactions with tubulins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.14.588158. [PMID: 38645057 PMCID: PMC11030407 DOI: 10.1101/2024.04.14.588158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Microtubules (MTs) are dynamic components of the cytoskeleton and play essential roles in morphogenesis and maintenance of tissue and cell integrity. Despite recent advances in understanding MT ultrastructure, organization, and growth control, how cells regulate MT organization at the cell cortex remains poorly understood. The EFA-6/EFA6 proteins are recently identified membrane-associated proteins that inhibit cortical MT dynamics. Here, combining visualization of endogenously tagged C. elegans EFA-6 with genetic screening, we uncovered tubulin-dependent regulation of EFA-6 patterning. In the mature epidermal epithelium, EFA-6 forms punctate foci in specific regions of the apical cortex, dependent on its intrinsically disordered region (IDR). We further show the EFA-6 IDR is sufficient to form biomolecular condensates in vitro. In screens for mutants with altered GFP::EFA-6 localization, we identified a novel gain-of-function (gf) mutation in an α-tubulin tba-1 that induces ectopic EFA-6 foci in multiple cell types. tba-1(gf) animals exhibit temperature-sensitive embryonic lethality, which is partially suppressed by efa-6(lf), indicating the interaction between tubulins and EFA-6 is important for normal development. TBA-1(gf) shows reduced incorporation into filamentous MTs but has otherwise mild effects on cellular MT organization. The ability of TBA-1(gf) to trigger ectopic EFA-6 foci formation requires β-tubulin TBB-2 and the chaperon EVL-20/Arl2. The tba-1(gf)-induced EFA-6 foci display slower turnover, contain the MT-associated protein TAC-1/TACC, and require the EFA-6 MTED. Our results reveal a novel crosstalk between cellular tubulins and cortical MT regulators in vivo.
Collapse
Affiliation(s)
- Anjali Sandhu
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| | - Xiaohui Lyu
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| | - Xinghaoyun Wan
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| | - Xuefeng Meng
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| | - Ngang Heok Tang
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| | - Gilberto Gonzalez
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ishana N. Syed
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lizhen Chen
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| | - Andrew D. Chisholm
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093 USA
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, CA 92093 USA
| |
Collapse
|
4
|
Li W, Crellin HA, Cheerambathur D, McNally FJ. Redundant microtubule crosslinkers prevent meiotic spindle bending to ensure diploid offspring in C. elegans. PLoS Genet 2023; 19:e1011090. [PMID: 38150489 PMCID: PMC10775986 DOI: 10.1371/journal.pgen.1011090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/09/2024] [Accepted: 12/05/2023] [Indexed: 12/29/2023] Open
Abstract
Oocyte meiotic spindles mediate the expulsion of ¾ of the genome into polar bodies to generate diploid zygotes in nearly all animal species. Failures in this process result in aneuploid or polyploid offspring that are typically inviable. Accurate meiotic chromosome segregation and polar body extrusion require the spindle to elongate while maintaining its structural integrity. Previous studies have implicated three hypothetical activities during this process, including microtubule crosslinking, microtubule sliding and microtubule polymerization. However, how these activities regulate spindle rigidity and elongation as well as the exact proteins involved in the activities remain unclear. We discovered that C. elegans meiotic anaphase spindle integrity is maintained through redundant microtubule crosslinking activities of the Kinesin-5 family motor BMK-1, the microtubule bundling protein SPD-1/PRC1, and the Kinesin-4 family motor, KLP-19. Using time-lapse imaging, we found that single depletion of KLP-19KIF4A, SPD-1PRC1 or BMK-1Eg5 had minimal effects on anaphase B spindle elongation velocity. In contrast, double depletion of SPD-1PRC1 and BMK-1Eg5 or double depletion of KLP-19KIF4A and BMK-1Eg5 resulted in spindles that elongated faster, bent in a myosin-dependent manner, and had a high rate of polar body extrusion errors. Bending spindles frequently extruded both sets of segregating chromosomes into two separate polar bodies. Normal anaphase B velocity was observed after double depletion of KLP-19KIF4A and SPD-1PRC1. These results suggest that KLP-19KIF4A and SPD-1PRC1 act in different pathways, each redundant with a separate BMK-1Eg5 pathway in regulating meiotic spindle elongation. Depletion of ZYG-8, a doublecortin-related microtubule binding protein, led to slower anaphase B spindle elongation. We found that ZYG-8DCLK1 acts by excluding SPD-1PRC1 from the spindle. Thus, three mechanistically distinct microtubule regulation modules, two based on crosslinking, and one based on exclusion of crosslinkers, power the mechanism that drives spindle elongation and structural integrity during anaphase B of C.elegans female meiosis.
Collapse
Affiliation(s)
- Wenzhe Li
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Helena A. Crellin
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Dhanya Cheerambathur
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Francis J. McNally
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| |
Collapse
|
5
|
Czajkowski ER, Divekar NS, Wignall SM. The doublecortin-family kinase ZYG-8 DCLK1 regulates motor activity to achieve proper force balance in C. elegans acentrosomal spindles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568242. [PMID: 38045228 PMCID: PMC10690225 DOI: 10.1101/2023.11.22.568242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Although centrosomes help organize spindles in most cell types, oocytes of most species lack these structures. During acentrosomal spindle assembly in C. elegans oocytes, microtubule minus ends are sorted outwards away from the chromosomes where they form poles, but then these outward forces must be balanced to form a stable bipolar structure. How proper force balance is achieved in these spindles is not known. Here, we have gained insight into this question through studies of ZYG-8, a conserved doublecortin-family kinase; the mammalian homolog of this microtubule-associated protein is upregulated in many cancers and has been implicated in cell division, but the mechanisms by which it functions are poorly understood. Interestingly, we found that ZYG-8 depletion from oocytes resulted in spindles that were over-elongated, suggesting that there was excess outward force following ZYG-8 removal. Experiments with monopolar spindles confirmed this hypothesis and revealed a role for ZYG-8 in regulating the force-generating motor BMK-1/kinesin-5. Importantly, further investigation revealed that kinase activity is required for the function of ZYG-8 in both meiosis and mitosis. Altogether, our results support a model in which ZYG-8 regulates motor-driven forces within the oocyte spindle, thus identifying a new function for a doublecortin-family protein in cell division.
Collapse
Affiliation(s)
- Emily R Czajkowski
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Nikita S Divekar
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Sarah M Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
6
|
Reed R, Park K, Waddell B, Timbers TA, Li C, Baxi K, Giacomin RM, Leroux MR, Carvalho CE. The Caenorhabditis elegans Shugoshin regulates TAC-1 in cilia. Sci Rep 2023; 13:9410. [PMID: 37296204 PMCID: PMC10256747 DOI: 10.1038/s41598-023-36430-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
The conserved Shugoshin (SGO) protein family is essential for mediating proper chromosome segregation from yeast to humans but has also been implicated in diverse roles outside of the nucleus. SGO's roles include inhibiting incorrect spindle attachment in the kinetochore, regulating the spindle assembly checkpoint (SAC), and ensuring centriole cohesion in the centrosome, all functions that involve different microtubule scaffolding structures in the cell. In Caenorhabditis elegans, a species with holocentric chromosomes, SGO-1 is not required for cohesin protection or spindle attachment but appears important for licensing meiotic recombination. Here we provide the first functional evidence that in C. elegans, Shugoshin functions in another extranuclear, microtubule-based structure, the primary cilium. We identify the centrosomal and microtubule-regulating transforming acidic coiled-coil protein, TACC/TAC-1, which also localizes to the basal body, as an SGO-1 binding protein. Genetic analyses indicate that TAC-1 activity must be maintained below a threshold at the ciliary base for correct cilia function, and that SGO-1 likely participates in constraining TAC-1 to the basal body by influencing the function of the transition zone 'ciliary gate'. This research expands our understanding of cellular functions of Shugoshin proteins and contributes to the growing examples of overlap between kinetochore, centrosome and cilia proteomes.
Collapse
Affiliation(s)
- R Reed
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - K Park
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - B Waddell
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - T A Timbers
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - C Li
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - K Baxi
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - R M Giacomin
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - M R Leroux
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| | - C E Carvalho
- Department of Biology, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
7
|
Harvey AM, Chuang CH, Sumiyoshi E, Bowerman B. C. elegans XMAP215/ZYG-9 and TACC/TAC-1 act at multiple times during oocyte meiotic spindle assembly and promote both spindle pole coalescence and stability. PLoS Genet 2023; 19:e1010363. [PMID: 36608115 PMCID: PMC9851561 DOI: 10.1371/journal.pgen.1010363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/19/2023] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
The conserved two-component XMAP215/TACC modulator of microtubule stability is required in multiple animal phyla for acentrosomal spindle assembly during oocyte meiotic cell division. In C. elegans, XMAP215/zyg-9 and TACC/tac-1 mutant oocytes exhibit multiple and indistinguishable oocyte spindle assembly defects beginning early in meiosis I. To determine if these defects represent one or more early requirements with additional later and indirect consequences, or multiple temporally distinct and more direct requirements, we have used live cell imaging and fast-acting temperature-sensitive zyg-9 and tac-1 alleles to dissect their requirements at high temporal resolution. Temperature upshift and downshift experiments indicate that the ZYG-9/TAC-1 complex has multiple temporally distinct and separable requirements throughout oocyte meiotic cell division. First, we show that during prometaphase ZYG-9 and TAC-1 promote the coalescence of early pole foci into a bipolar structure, stabilizing pole foci as they grow and limiting their growth rate, with these requirements being independent of an earlier defect in microtubule organization that occurs upon nuclear envelope breakdown. Second, during metaphase, ZYG-9 and TAC-1 maintain spindle bipolarity by suppressing ectopic pole formation. Third, we show that ZYG-9 and TAC-1 also are required for spindle assembly during meiosis II, independently of their meiosis I requirements. The metaphase pole stability requirement appears to be important for maintaining chromosome congression, and we discuss how negative regulation of microtubule stability by ZYG-9/TAC-1 during oocyte meiotic cell division might account for the observed defects in spindle pole coalescence and stability.
Collapse
Affiliation(s)
- Austin M. Harvey
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Chien-Hui Chuang
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Eisuke Sumiyoshi
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
8
|
Cavin-Meza G, Mullen TJ, Czajkowski ER, Wolff ID, Divekar NS, Finkle JD, Wignall SM. ZYG-9ch-TOG promotes the stability of acentrosomal poles via regulation of spindle microtubules in C. elegans oocyte meiosis. PLoS Genet 2022; 18:e1010489. [PMID: 36449516 PMCID: PMC9757581 DOI: 10.1371/journal.pgen.1010489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/16/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
During mitosis, centrosomes serve as microtubule organizing centers that guide the formation of a bipolar spindle. However, oocytes of many species lack centrosomes; how meiotic spindles establish and maintain these acentrosomal poles remains poorly understood. Here, we show that the microtubule polymerase ZYG-9ch-TOG is required to maintain acentrosomal pole integrity in C. elegans oocyte meiosis. We exploited the auxin inducible degradation system to remove ZYG-9 from pre-formed spindles within minutes; this caused the poles to split apart and an unstable multipolar structure to form. Depletion of TAC-1, a protein known to interact with ZYG-9 in mitosis, caused loss of proper ZYG-9 localization and similar spindle phenotypes, further demonstrating that ZYG-9 is required for pole integrity. However, depletion of ZYG-9 or TAC-1 surprisingly did not affect the assembly or stability of monopolar spindles, suggesting that these proteins are not required for acentrosomal pole structure per se. Moreover, fluorescence recovery after photobleaching (FRAP) revealed that ZYG-9 turns over rapidly at acentrosomal poles, displaying similar turnover dynamics to tubulin itself, suggesting that ZYG-9 does not play a static structural role at poles. Together, these data support a global role for ZYG-9 in regulating the stability of bipolar spindles and demonstrate that the maintenance of acentrosomal poles requires factors beyond those acting to organize the pole structure itself.
Collapse
Affiliation(s)
- Gabriel Cavin-Meza
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Timothy J. Mullen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Emily R. Czajkowski
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Ian D. Wolff
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Nikita S. Divekar
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Justin D. Finkle
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Sarah M. Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
9
|
Vazquez-Pianzola P, Beuchle D, Saro G, Hernández G, Maldonado G, Brunßen D, Meister P, Suter B. Female meiosis II and pronuclear fusion require the microtubule transport factor Bicaudal D. Development 2022; 149:275749. [DOI: 10.1242/dev.199944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/25/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Bicaudal D (BicD) is a dynein adaptor that transports different cargoes along microtubules. Reducing the activity of BicD specifically in freshly laid Drosophila eggs by acute protein degradation revealed that BicD is needed to produce normal female meiosis II products, to prevent female meiotic products from re-entering the cell cycle, and for pronuclear fusion. Given that BicD is required to localize the spindle assembly checkpoint (SAC) components Mad2 and BubR1 to the female meiotic products, it appears that BicD functions to localize these components to control metaphase arrest of polar bodies. BicD interacts with Clathrin heavy chain (Chc), and both proteins localize to centrosomes, mitotic spindles and the tandem spindles during female meiosis II. Furthermore, BicD is required to localize clathrin and the microtubule-stabilizing factors transforming acidic coiled-coil protein (D-TACC/Tacc) and Mini spindles (Msps) correctly to the meiosis II spindles, suggesting that failure to localize these proteins may perturb SAC function. Furthermore, immediately after the establishment of the female pronucleus, D-TACC and Caenorhabditis elegans BicD, tacc and Chc are also needed for pronuclear fusion, suggesting that the underlying mechanism might be more widely used across species.
Collapse
Affiliation(s)
| | - Dirk Beuchle
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Gabriella Saro
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Greco Hernández
- Instituto Nacional de Cancerología (INCan) 2 Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer , , 14080-Tlalpan, Mexico City , Mexico
| | - Giovanna Maldonado
- Instituto Nacional de Cancerología (INCan) 2 Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer , , 14080-Tlalpan, Mexico City , Mexico
| | - Dominique Brunßen
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Peter Meister
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Beat Suter
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| |
Collapse
|
10
|
Aoki I, Jurado P, Nawa K, Kondo R, Yamashiro R, Matsuyama HJ, Ferrer I, Nakano S, Mori I. OLA-1, an Obg-like ATPase, integrates hunger with temperature information in sensory neurons in C. elegans. PLoS Genet 2022; 18:e1010219. [PMID: 35675262 PMCID: PMC9176836 DOI: 10.1371/journal.pgen.1010219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Animals detect changes in both their environment and their internal state and modify their behavior accordingly. Yet, it remains largely to be clarified how information of environment and internal state is integrated and how such integrated information modifies behavior. Well-fed C. elegans migrates to past cultivation temperature on a thermal gradient, which is disrupted when animals are starved. We recently reported that the neuronal activities synchronize between a thermosensory neuron AFD and an interneuron AIY, which is directly downstream of AFD, in well-fed animals, while this synchrony is disrupted in starved animals. However, it remained to be determined whether the disruption of the synchrony is derived from modulation of the transmitter release from AFD or from the modification of reception or signal transduction in AIY. By performing forward genetics on a transition of thermotaxis behavior along starvation, we revealed that OLA-1, an Obg-like ATPase, functions in AFD to promote disruption of AFD-AIY synchrony and behavioral transition. Our results suggest that the information of hunger is delivered to the AFD thermosensory neuron and gates transmitter release from AFD to disrupt thermotaxis, thereby shedding light onto a mechanism for the integration of environmental and internal state to modulate behavior.
Collapse
Affiliation(s)
- Ichiro Aoki
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Paola Jurado
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Cancer Area, Institut d’Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Kanji Nawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Rumi Kondo
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Riku Yamashiro
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Hironori J. Matsuyama
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Isidre Ferrer
- Neuroscience Area, Institut d’Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Shunji Nakano
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Ikue Mori
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
11
|
Chuang CH, Schlientz AJ, Yang J, Bowerman B. Microtubule assembly and pole coalescence: early steps in Caenorhabditiselegans oocyte meiosis I spindle assembly. Biol Open 2020; 9:bio052308. [PMID: 32493729 PMCID: PMC7328010 DOI: 10.1242/bio.052308] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022] Open
Abstract
How oocytes assemble bipolar meiotic spindles in the absence of centrosomes as microtubule organizing centers remains poorly understood. We have used live cell imaging in Caenorhabditis elegans to investigate requirements for the nuclear lamina and for conserved regulators of microtubule dynamics during oocyte meiosis I spindle assembly, assessing these requirements with respect to recently identified spindle assembly steps. We show that the nuclear lamina is required for microtubule bundles to form a peripheral cage-like structure that appears shortly after oocyte nuclear envelope breakdown and surrounds the oocyte chromosomes, although bipolar spindles still assembled in its absence. Although two conserved regulators of microtubule nucleation, RAN-1 and γ-tubulin, are not required for bipolar spindle assembly, both contribute to normal levels of spindle-associated microtubules and spindle assembly dynamics. Finally, the XMAP215 ortholog ZYG-9 and the nearly identical minus-end directed kinesins KLP-15/16 are required for proper assembly of the early cage-like structure of microtubule bundles, and for early spindle pole foci to coalesce into a bipolar structure. Our results provide a framework for assigning molecular mechanisms to recently described steps in C. elegans oocyte meiosis I spindle assembly.
Collapse
Affiliation(s)
- Chien-Hui Chuang
- Institute of Molecular Biology and Department of Biology, 1229 University of Oregon, Eugene, Oregon 97403, USA
| | - Aleesa J Schlientz
- Institute of Molecular Biology and Department of Biology, 1229 University of Oregon, Eugene, Oregon 97403, USA
| | - Jie Yang
- Institute of Molecular Biology and Department of Biology, 1229 University of Oregon, Eugene, Oregon 97403, USA
| | - Bruce Bowerman
- Institute of Molecular Biology and Department of Biology, 1229 University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
12
|
Magescas J, Zonka JC, Feldman JL. A two-step mechanism for the inactivation of microtubule organizing center function at the centrosome. eLife 2019; 8:47867. [PMID: 31246171 PMCID: PMC6684319 DOI: 10.7554/elife.47867] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/26/2019] [Indexed: 01/18/2023] Open
Abstract
The centrosome acts as a microtubule organizing center (MTOC), orchestrating microtubules into the mitotic spindle through its pericentriolar material (PCM). This activity is biphasic, cycling through assembly and disassembly during the cell cycle. Although hyperactive centrosomal MTOC activity is a hallmark of some cancers, little is known about how the centrosome is inactivated as an MTOC. Analysis of endogenous PCM proteins in C. elegans revealed that the PCM is composed of partially overlapping territories organized into an inner and outer sphere that are removed from the centrosome at different rates and using different behaviors. We found that phosphatases oppose the addition of PCM by mitotic kinases, ultimately catalyzing the dissolution of inner sphere PCM proteins at the end of mitosis. The nature of the PCM appears to change such that the remaining aging PCM outer sphere is mechanically ruptured by cortical pulling forces, ultimately inactivating MTOC function at the centrosome. New cells are created when existing cells divide, a process that is critical for life. A structure called the spindle is an important part of cell division, helping to orient the division and separate parts of the old cell into the newly generated ones. The spindle is built using filamentous protein structures called microtubules which are arranged by microtubule organizing centers (or MTOCs for short). In animals, an MTOC forms at each end of the spindle around two structures called centrosomes. A network of proteins called the pericentriolar material (PCM) form around centrosomes, converting them into MTOCs. The PCM grows around centrosomes as a cell prepares to divide and is removed again afterward. Enzymes called kinases are important in controlling cell division and PCM assembly; they are opposed by other enzymes known as phosphatases. The processes involved in organization and removal of the PCM are not well understood. The microscopic worm Caenorhabditis elegans provides an opportunity to study details of cell division in a living animal. Magescas et al. used fluorescent labels to view proteins from the PCM under a microscope. The images showed two partially overlapping spherical parts to the PCM – inner and outer. Further examination revealed that the inner PCM is maintained by a careful balance of kinase and phosphatase activity. When kinases shut down at the end of cell division, the phosphatases break down the inner PCM. By contrast, the outer PCM is physically torn apart by forces acting through the attached microtubules. Future work will seek to examine which proteins are specifically affected by phosphatases to identify the key regulators of PCM persistence in the cell and to reveal the proteins needed for MTOC activity at the centrosome. Since poor MTOC regulation can play a part in the growth and spread of cancer, this could lead to targets for new treatments.
Collapse
Affiliation(s)
- Jérémy Magescas
- Department of Biology, Stanford University, Stanford, United States
| | - Jenny C Zonka
- Department of Biology, Stanford University, Stanford, United States
| | | |
Collapse
|
13
|
Pintard L, Bowerman B. Mitotic Cell Division in Caenorhabditis elegans. Genetics 2019; 211:35-73. [PMID: 30626640 PMCID: PMC6325691 DOI: 10.1534/genetics.118.301367] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022] Open
Abstract
Mitotic cell divisions increase cell number while faithfully distributing the replicated genome at each division. The Caenorhabditis elegans embryo is a powerful model for eukaryotic cell division. Nearly all of the genes that regulate cell division in C. elegans are conserved across metazoan species, including humans. The C. elegans pathways tend to be streamlined, facilitating dissection of the more redundant human pathways. Here, we summarize the virtues of C. elegans as a model system and review our current understanding of centriole duplication, the acquisition of pericentriolar material by centrioles to form centrosomes, the assembly of kinetochores and the mitotic spindle, chromosome segregation, and cytokinesis.
Collapse
Affiliation(s)
- Lionel Pintard
- Equipe labellisée Ligue contre le Cancer, Institut Jacques Monod, Team Cell Cycle and Development UMR7592, Centre National de la Recherche Scientifique - Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| |
Collapse
|
14
|
Lu A, Zhou CJ, Wang DH, Han Z, Kong XW, Ma YZ, Yun ZZ, Liang CG. Cytoskeleton-associated protein 5 and clathrin heavy chain binding regulates spindle assembly in mouse oocytes. Oncotarget 2017; 8:17491-17503. [PMID: 28177917 PMCID: PMC5392264 DOI: 10.18632/oncotarget.15097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/24/2017] [Indexed: 11/25/2022] Open
Abstract
Mammalian oocyte meiotic maturation is the precondition of early embryo development. Lots of microtubules (MT)-associated proteins participate in oocyte maturation process. Cytoskeleton-associated protein 5 (CKAP5) is a member of the XMAP215 family that regulates microtubule dynamics during mitosis. However, its role in meiosis has not been fully studied. Here, we investigated the function of CKAP5 in mouse oocyte meiotic maturation and early embryo development. Western blot showed that CKAP5 expression increased from GVBD, maintaining at high level at metaphase, and decreased after late 1-cell stage. Confocal microscopy showed there is no specific accumulation of CKAP5 at interphase (GV, PN or 2-cell stage). However, once cells enter into meiotic or mitotic division, CKAP5 was localized at the whole spindle apparatus. Treatment of oocytes with the tubulin-disturbing reagents nocodazole (induces MTs depolymerization) or taxol (prevents MTs depolymerization) did not affect CKAP5 expression but led to a rearrangement of CKAP5. Further, knock-down of CKAP5 resulted in a failure of first polar body extrusion, serious defects in spindle assembly, and failure of chromosome alignment. Loss of CKAP5 also decreased early embryo development potential. Furthermore, co-immunoprecipitation showed that CKAP5 bound to clathrin heavy chain 1 (CLTC). Taken together, our results demonstrate that CKAP5 is important in oocyte maturation and early embryo development, and CKAP5 might work together with CLTC in mouse oocyte maturation.
Collapse
Affiliation(s)
- Angeleem Lu
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Cheng-Jie Zhou
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Dong-Hui Wang
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Zhe Han
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Xiang-Wei Kong
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Yu-Zhen Ma
- Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, People's Republic of China
| | - Zhi-Zhong Yun
- Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, People's Republic of China
| | - Cheng-Guang Liang
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| |
Collapse
|
15
|
MIP-MAP: High-Throughput Mapping of Caenorhabditis elegans Temperature-Sensitive Mutants via Molecular Inversion Probes. Genetics 2017; 207:447-463. [PMID: 28827289 PMCID: PMC5629315 DOI: 10.1534/genetics.117.300179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/30/2017] [Indexed: 11/18/2022] Open
Abstract
Mutants remain a powerful means for dissecting gene function in model organisms such as Caenorhabditis elegans. Massively parallel sequencing has simplified the detection of variants after mutagenesis but determining precisely which change is responsible for phenotypic perturbation remains a key step. Genetic mapping paradigms in C. elegans rely on bulk segregant populations produced by crosses with the problematic Hawaiian wild isolate and an excess of redundant information from whole-genome sequencing (WGS). To increase the repertoire of available mutants and to simplify identification of the causal change, we performed WGS on 173 temperature-sensitive (TS) lethal mutants and devised a novel mapping method. The mapping method uses molecular inversion probes (MIP-MAP) in a targeted sequencing approach to genetic mapping, and replaces the Hawaiian strain with a Million Mutation Project strain with high genomic and phenotypic similarity to the laboratory wild-type strain N2. We validated MIP-MAP on a subset of the TS mutants using a competitive selection approach to produce TS candidate mapping intervals with a mean size < 3 Mb. MIP-MAP successfully uses a non-Hawaiian mapping strain and multiplexed libraries are sequenced at a fraction of the cost of WGS mapping approaches. Our mapping results suggest that the collection of TS mutants contains a diverse library of TS alleles for genes essential to development and reproduction. MIP-MAP is a robust method to genetically map mutations in both viable and essential genes and should be adaptable to other organisms. It may also simplify tracking of individual genotypes within population mixtures.
Collapse
|
16
|
Wu HY, Nazockdast E, Shelley MJ, Needleman DJ. Forces positioning the mitotic spindle: Theories, and now experiments. Bioessays 2016; 39. [PMID: 28026040 DOI: 10.1002/bies.201600212] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The position of the spindle determines the position of the cleavage plane, and is thus crucial for cell division. Although spindle positioning has been extensively studied, the underlying forces ultimately responsible for moving the spindle remain poorly understood. A recent pioneering study by Garzon-Coral et al. uses magnetic tweezers to perform the first direct measurements of the forces involved in positioning the mitotic spindle. Combining this with molecular perturbations and geometrical effects, they use their data to argue that the forces that keep the spindle in its proper position for cell division arise from astral microtubules growing and pushing against the cell's cortex. Here, we review these ground-breaking experiments, the various biomechanical models for spindle positioning that they seek to differentiate, and discuss new questions raised by these measurements.
Collapse
Affiliation(s)
- Hai-Yin Wu
- Department of Physics, Harvard University, Cambridge, MA, USA
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - Ehssan Nazockdast
- Center for Computational Biology, Simons Foundation, New York, NY, USA
| | - Michael J Shelley
- Center for Computational Biology, Simons Foundation, New York, NY, USA
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Daniel J Needleman
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
17
|
Ballesteros C, Tritten L, O’Neill M, Burkman E, Zaky WI, Xia J, Moorhead A, Williams SA, Geary TG. The Effects of Ivermectin on Brugia malayi Females In Vitro: A Transcriptomic Approach. PLoS Negl Trop Dis 2016; 10:e0004929. [PMID: 27529747 PMCID: PMC4986938 DOI: 10.1371/journal.pntd.0004929] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/26/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Lymphatic filariasis and onchocerciasis are disabling and disfiguring neglected tropical diseases of major importance in developing countries. Ivermectin is the drug of choice for mass drug administration programs for the control of onchocerciasis and lymphatic filariasis in areas where the diseases are co-endemic. Although ivermectin paralyzes somatic and pharyngeal muscles in many nematodes, these actions are poorly characterized in adult filariae. We hypothesize that paralysis of pharyngeal pumping by ivermectin in filariae could result in deprivation of essential nutrients, especially iron, inducing a wide range of responses evidenced by altered gene expression, changes in metabolic pathways, and altered developmental states in embryos. Previous studies have shown that ivermectin treatment significantly reduces microfilariae release from females within four days of exposure in vivo, while not markedly affecting adult worms. However, the mechanisms responsible for reduced production of microfilariae are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS We analyzed transcriptomic profiles from Brugia malayi adult females, an important model for other filariae, using RNAseq technology after exposure in culture to ivermectin at various concentrations (100 nM, 300 nM and 1 μM) and time points (24, 48, 72 h, and 5 days). Our analysis revealed drug-related changes in expression of genes involved in meiosis, as well as oxidative phosphorylation, which were significantly down-regulated as early as 24 h post-exposure. RNA interference phenotypes of the orthologs of these down-regulated genes in C. elegans include "maternal sterile", "embryonic lethal", "larval arrest", "larval lethal" and "sick". CONCLUSION/SIGNIFICANCE These changes provide insight into the mechanisms involved in ivermectin-induced reduction in microfilaria output and impaired fertility, embryogenesis, and larval development.
Collapse
Affiliation(s)
- Cristina Ballesteros
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Lucienne Tritten
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Maeghan O’Neill
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Erica Burkman
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Filariasis Research Reagent Resource Center, Smith College, Northampton, Massachusetts, United States of America
| | - Weam I. Zaky
- Filariasis Research Reagent Resource Center, Smith College, Northampton, Massachusetts, United States of America
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Jianguo Xia
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Andrew Moorhead
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Filariasis Research Reagent Resource Center, Smith College, Northampton, Massachusetts, United States of America
| | - Steven A. Williams
- Filariasis Research Reagent Resource Center, Smith College, Northampton, Massachusetts, United States of America
| | - Timothy G. Geary
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
18
|
Chen L, Chuang M, Koorman T, Boxem M, Jin Y, Chisholm AD. Axon injury triggers EFA-6 mediated destabilization of axonal microtubules via TACC and doublecortin like kinase. eLife 2015; 4. [PMID: 26339988 PMCID: PMC4596636 DOI: 10.7554/elife.08695] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/03/2015] [Indexed: 01/09/2023] Open
Abstract
Axon injury triggers a series of changes in the axonal cytoskeleton that are prerequisites for effective axon regeneration. In Caenorhabditis elegans the signaling protein Exchange Factor for ARF-6 (EFA-6) is a potent intrinsic inhibitor of axon regrowth. Here we show that axon injury triggers rapid EFA-6-dependent inhibition of axonal microtubule (MT) dynamics, concomitant with relocalization of EFA-6. EFA-6 relocalization and axon regrowth inhibition require a conserved 18-aa motif in its otherwise intrinsically disordered N-terminal domain. The EFA-6 N-terminus binds the MT-associated proteins TAC-1/Transforming-Acidic-Coiled-Coil, and ZYG-8/Doublecortin-Like-Kinase, both of which are required for regenerative growth cone formation, and which act downstream of EFA-6. After injury TAC-1 and EFA-6 transiently relocalize to sites marked by the MT minus end binding protein PTRN-1/Patronin. We propose that EFA-6 acts as a bifunctional injury-responsive regulator of axonal MT dynamics, acting at the cell cortex in the steady state and at MT minus ends after injury. DOI:http://dx.doi.org/10.7554/eLife.08695.001 In the nervous system, cells called neurons carry information around the body. These cells have long thin projections called axons that allow the information to pass very quickly along the cell to junctions with other neurons. Neurons in adult mammals are limited in their ability to regenerate, so any damage to axons, for example, due to a stroke or a brain injury, tends to be permanent. Therefore, an important goal in neuroscience research is to discover the genes and proteins that are involved in regenerating axons as this may make it possible to develop new therapies. An internal scaffold called the cytoskeleton supports the three-dimensional shape of the axons. Changes in the cytoskeleton are required to allow neurons to regenerate axons after injury, and drugs that stabilize filaments called microtubules in the cytoskeleton can promote these changes. Chen et al. used a technique called laser microsurgery to sever individual axons in a roundworm known as C. elegans and then observed whether these axons could regenerate. The experiments reveal that a protein called EFA-6 blocks the regeneration of neurons by preventing rearrangements in the cytoskeleton. EFA-6 is normally found at the membrane that surrounds the neuron. However, Chen et al. show that when the axon is damaged, this protein rapidly moves to areas near the ends of microtubule filaments. EFA-6 interacts with two other proteins that are associated with microtubules and are required for axons to be able to regenerate. Chen et al.'s findings demonstrate that several proteins that regulate microtubule filaments play a key role in regenerating axons. All three of these proteins are found in humans and other animals so they have the potential to be targeted by drug therapies in future. The next challenge is to understand the details of how EFA-6 activity is affected by axon injury, and how this alters the cytoskeleton. DOI:http://dx.doi.org/10.7554/eLife.08695.002
Collapse
Affiliation(s)
- Lizhen Chen
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States.,University of California, San Diego, La Jolla, United States
| | - Marian Chuang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Thijs Koorman
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Mike Boxem
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States.,University of California, San Diego, La Jolla, United States.,Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, United States
| | - Andrew D Chisholm
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| |
Collapse
|
19
|
Woodruff JB, Wueseke O, Hyman AA. Pericentriolar material structure and dynamics. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0459. [PMID: 25047613 PMCID: PMC4113103 DOI: 10.1098/rstb.2013.0459] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A centrosome consists of two barrel-shaped centrioles embedded in a matrix of proteins known as the pericentriolar material (PCM). The PCM serves as a platform for protein complexes that regulate organelle trafficking, protein degradation and spindle assembly. Perhaps most important for cell division, the PCM concentrates tubulin and serves as the primary organizing centre for microtubules in metazoan somatic cells. Thus, similar to other well-described organelles, such as the nucleus and mitochondria, the cell has compartmentalized a multitude of vital biochemical reactions in the PCM. However, unlike these other organelles, the PCM is not membrane bound, but rather a dynamic collection of protein complexes and nucleic acids that constitute the organelle's interior and determine its boundary. How is the complex biochemical machinery necessary for the myriad centrosome functions concentrated and maintained in the PCM? Recent advances in proteomics and RNAi screening have unveiled most of the key PCM components and hinted at their molecular interactions (
table 1). Now we must understand how the interactions between these molecules contribute to the mesoscale organization and the assembly of the centrosome. Among outstanding questions are the intrinsic mechanisms that determine PCM shape and size, and how it functions as a biochemical reaction hub.
Collapse
Affiliation(s)
- Jeffrey B Woodruff
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Oliver Wueseke
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| |
Collapse
|
20
|
Kostrouch D, Kostrouchová M, Yilma P, Chughtai AA, Novotný JP, Novák P, Kostrouchová V, Kostrouchová M, Kostrouch Z. SKIP and BIR-1/Survivin have potential to integrate proteome status with gene expression. J Proteomics 2014; 110:93-106. [PMID: 25088050 DOI: 10.1016/j.jprot.2014.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/05/2014] [Accepted: 07/22/2014] [Indexed: 11/25/2022]
Abstract
UNLABELLED SKIP and BIR are evolutionarily conserved proteins; SKIP (SKP-1) is a known transcription and splicing cofactor while BIR-1/Survivin regulates cell division, gene expression and development. Their loss of function induces overlapping developmental phenotypes. We searched for SKP-1 and BIR-1 interaction on protein level using yeast two-hybrid screens and identified partially overlapping categories of proteins as SKIP-1 and BIR-1 interactors. The interacting proteins included ribosomal proteins, transcription factors, translation factors and cytoskeletal and motor proteins suggesting involvement in multiple protein complexes. To visualize the effect of BIR-1 on the proteome in Caenorhabditis elegans we induced a short time pulse BIR-1 overexpression in synchronized L1 larvae. This led to a dramatic alteration of the whole proteome pattern indicating that BIR-1 alone has the capacity to alter the chromatographic profile of many target proteins including proteins found to be interactors in yeast two hybrid screens. The results were validated for ribosomal proteins RPS3 and RPL5, non-muscle myosin and TAC-1, a transcription cofactor and a centrosome associated protein. Together, these results suggest that SKP-1 and BIR-1 are multifunctional proteins that form multiple protein complexes in both shared and distinct pathways and have the potential to connect proteome signals with the regulation of gene expression. BIOLOGICAL SIGNIFICANCE The genomic organization of the genes encoding BIR-1 and SKIP (SKP-1) in C. elegans have suggested that these two factors, each evolutionarily conserved, have related functions. However, these functional connections have remained elusive and underappreciated in light of limited information from C. elegans and other biological systems. Our results provide further evidence for a functional link between these two factors and suggest they may transmit proteome signals towards the regulation of gene expression.
Collapse
Affiliation(s)
- David Kostrouch
- Laboratory of Molecular Pathology, Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Markéta Kostrouchová
- Laboratory of Molecular Pathology, Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Petr Yilma
- Laboratory of Molecular Pathology, Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Ahmed Ali Chughtai
- Laboratory of Molecular Pathology, Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Jan Philipp Novotný
- Laboratory of Molecular Pathology, Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Petr Novák
- Laboratory of Structure Biology and Cell Signaling, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Veronika Kostrouchová
- Laboratory of Molecular Pathology, Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Marta Kostrouchová
- Laboratory of Molecular Biology and Genetics, Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Zdeněk Kostrouch
- Laboratory of Molecular Pathology, Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic.
| |
Collapse
|
21
|
Mortuza GB, Cavazza T, Garcia-Mayoral MF, Hermida D, Peset I, Pedrero JG, Merino N, Blanco FJ, Lyngsø J, Bruix M, Pedersen JS, Vernos I, Montoya G. XTACC3-XMAP215 association reveals an asymmetric interaction promoting microtubule elongation. Nat Commun 2014; 5:5072. [PMID: 25262927 PMCID: PMC4200520 DOI: 10.1038/ncomms6072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/25/2014] [Indexed: 01/07/2023] Open
Abstract
chTOG is a conserved microtubule polymerase that catalyses the addition of tubulin dimers to promote microtubule growth. chTOG interacts with TACC3, a member of the transforming acidic coiled-coil (TACC) family. Here we analyse their association using the Xenopus homologues, XTACC3 (TACC3) and XMAP215 (chTOG), dissecting the mechanism by which their interaction promotes microtubule elongation during spindle assembly. Using SAXS, we show that the TACC domain (TD) is an elongated structure that mediates the interaction with the C terminus of XMAP215. Our data suggest that one TD and two XMAP215 molecules associate to form a four-helix coiled-coil complex. A hybrid methods approach was used to define the precise regions of the TACC heptad repeat and the XMAP215 C terminus required for assembly and functioning of the complex. We show that XTACC3 can induce the recruitment of larger amounts of XMAP215 by increasing its local concentration, thereby promoting efficient microtubule elongation during mitosis.
Collapse
Affiliation(s)
- Gulnahar B Mortuza
- 1] Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain [2] Macromolecular Crystallography Group, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Tommaso Cavazza
- 1] Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain [2] Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Maria Flor Garcia-Mayoral
- Department of Biological Physical Chemistry, Spanish National Research Council (CSIC), Institute of Physical Chemistry 'Rocasolano', Serrano 119, 28006 Madrid, Spain
| | - Dario Hermida
- 1] Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain [2] Macromolecular Crystallography Group, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Isabel Peset
- 1] Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain [2] Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Juan G Pedrero
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Nekane Merino
- Structural Biology Unit, CIC bioGUNE, 48160 Derio, Spain
| | - Francisco J Blanco
- 1] Structural Biology Unit, CIC bioGUNE, 48160 Derio, Spain [2] IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Jeppe Lyngsø
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry Aarhus University, Gustav Wieds Vej 14, Building 1590-252, 8000 Aarhus C, Denmark
| | - Marta Bruix
- Department of Biological Physical Chemistry, Spanish National Research Council (CSIC), Institute of Physical Chemistry 'Rocasolano', Serrano 119, 28006 Madrid, Spain
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry Aarhus University, Gustav Wieds Vej 14, Building 1590-252, 8000 Aarhus C, Denmark
| | - Isabelle Vernos
- 1] Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain [2] Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain [3] Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Guillermo Montoya
- 1] Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain [2] Macromolecular Crystallography Group, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
22
|
Lu MS, Johnston CA. Molecular pathways regulating mitotic spindle orientation in animal cells. Development 2013; 140:1843-56. [PMID: 23571210 DOI: 10.1242/dev.087627] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Orientation of the cell division axis is essential for the correct development and maintenance of tissue morphology, both for symmetric cell divisions and for the asymmetric distribution of fate determinants during, for example, stem cell divisions. Oriented cell division depends on the positioning of the mitotic spindle relative to an axis of polarity. Recent studies have illuminated an expanding list of spindle orientation regulators, and a molecular model for how cells couple cortical polarity with spindle positioning has begun to emerge. Here, we review both the well-established spindle orientation pathways and recently identified regulators, focusing on how communication between the cell cortex and the spindle is achieved, to provide a contemporary view of how positioning of the mitotic spindle occurs.
Collapse
Affiliation(s)
- Michelle S Lu
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
23
|
Ha GH, Kim JL, Breuer EKY. Transforming acidic coiled-coil proteins (TACCs) in human cancer. Cancer Lett 2013; 336:24-33. [PMID: 23624299 DOI: 10.1016/j.canlet.2013.04.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/11/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
Abstract
Fine-tuned regulation of the centrosome/microtubule dynamics during mitosis is essential for faithful cell division. Thus, it is not surprising that deregulations in this dynamic network can contribute to genomic instability and tumorigenesis. Indeed, centrosome loss or amplification, spindle multipolarity and aneuploidy are often found in a majority of human malignancies, suggesting that defects in centrosome and associated microtubules may be directly or indirectly linked to cancer. Therefore, future research to identify and characterize genes required for the normal centrosome function and microtubule dynamics may help us gain insight into the complexity of cancer, and further provide new avenues for prognostic, diagnostics and therapeutic interventions. Members of the transforming acidic coiled-coil proteins (TACCs) family are emerging as important players of centrosome and microtubule-associated functions. Growing evidence indicates that TACCs are involved in the progression of certain solid tumors. Here, we will discuss our current understanding of the biological function of TACCs, their relevance to human cancer and possible implications for cancer management.
Collapse
Affiliation(s)
- Geun-Hyoung Ha
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | |
Collapse
|
24
|
Abstract
Accurate positioning of spindles is essential for asymmetric mitotic and meiotic cell divisions that are crucial for animal development and oocyte maturation, respectively. The predominant model for spindle positioning, termed "cortical pulling," involves attachment of the microtubule-based motor cytoplasmic dynein to the cortex, where it exerts a pulling force on microtubules that extend from the spindle poles to the cell cortex, thereby displacing the spindle. Recent studies have addressed important details of the cortical pulling mechanism and have revealed alternative mechanisms that may be used when microtubules do not extend from the spindle to the cortex.
Collapse
Affiliation(s)
- Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
25
|
Mos1-mediated transgenesis to probe consequences of single gene mutations in variation-rich isolates of Caenorhabditis elegans. PLoS One 2012; 7:e48762. [PMID: 23155404 PMCID: PMC3498238 DOI: 10.1371/journal.pone.0048762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/03/2012] [Indexed: 11/22/2022] Open
Abstract
Caenorhabditis elegans, especially the N2 isolate, is an invaluable biological model system. Numerous additional natural C. elegans isolates have been shown to have unexpected genotypic and phenotypic variations which has encouraged researchers to use next generation sequencing methodology to develop a more complete picture of genotypic variations among the isolates. To understand the phenotypic effects of a genomic variation (GV) on a single gene, in a variation-rich genetic background, one should analyze that particular GV in a well understood genetic background. In C. elegans, the analysis is usually done in N2, which requires extensive crossing to bring in the GV. This can be a very time consuming procedure thus it is important to establish a fast and efficient approach to test the effect of GVs from different isolates in N2. Here we use a Mos1-mediated single-copy insertion (MosSCI) method for phenotypic assessments of GVs from the variation-rich Hawaiian strain CB4856 in N2. Specifically, we investigate effects of variations identified in the CB4856 strain on tac-1 which is an essential gene that is necessary for mitotic spindle elongation and pronuclear migration. We show the usefulness of the MosSCI method by using EU1004 tac-1(or402) as a control. or402 is a temperature sensitive lethal allele within a well-conserved TACC domain (transforming acidic coiled-coil) that results in a leucine to phenylalanine change at amino acid 229. CB4856 contains a variation that affects the second exon of tac-1 causing a cysteine to tryptophan change at amino acid 94 also within the TACC domain. Using the MosSCI method, we analyze tac-1 from CB4856 in the N2 background and demonstrate that the C94W change, albeit significant, does not cause any obvious decrease in viability. This MosSCI method has proven to be a rapid and efficient way to analyze GVs.
Collapse
|
26
|
Bellanger JM, Cueva JG, Baran R, Tang G, Goodman MB, Debant A. The doublecortin-related gene zyg-8 is a microtubule organizer in Caenorhabditis elegans neurons. J Cell Sci 2012; 125:5417-27. [PMID: 22956537 DOI: 10.1242/jcs.108381] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Doublecortin-domain containing (DCDC) genes play key roles in the normal and pathological development of the human brain cortex. The origin of the cellular specialisation and the functional redundancy of these microtubule (MT)-associated proteins (MAPs), especially those of Doublecortin (DCX) and Doublecortin-like kinase (DCLKs) genes, is still unclear. The DCX domain has the ability to control MT architecture and bundling. However, the physiological significance of such properties is not fully understood. To address these issues, we sought post-mitotic roles for zyg-8, the sole representative of the DCX-DCLK subfamily of genes in C. elegans. Previously, zyg-8 has been shown to control anaphase-spindle positioning in one-cell stage embryos, but functions of the gene later in development have not been investigated. Here we show that wild-type zyg-8 is required beyond early embryonic divisions for proper development, spontaneous locomotion and touch sensitivity of adult worms. Consistently, we find zyg-8 expression in the six touch receptor neurons (TRNs), as well as in a subset of other neuronal and non-neuronal cells. In TRNs and motoneurons, zyg-8 controls cell body shape/polarity and process outgrowth and morphology. Ultrastructural analysis of mutant animals reveals that zyg-8 promotes structural integrity, length and number of individual MTs, as well as their bundled organisation in TRNs, with no impact on MT architecture.
Collapse
Affiliation(s)
- Jean-Michel Bellanger
- CRBM-CNRS, Université Montpellier 2, 1919, route de Mende, 34293 Montpellier, France.
| | | | | | | | | | | |
Collapse
|
27
|
Lechner B, Rashbrooke MC, Collings DA, Eng RC, Kawamura E, Whittington AT, Wasteneys GO. The N-terminal TOG domain of Arabidopsis MOR1 modulates affinity for microtubule polymers. J Cell Sci 2012; 125:4812-21. [PMID: 22825869 DOI: 10.1242/jcs.107045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Microtubule-associated proteins of the highly conserved XMAP215/Dis1 family promote both microtubule growth and shrinkage, and move with the dynamic microtubule ends. The plant homologue, MOR1, is predicted to form a long linear molecule with five N-terminal TOG domains. Within the first (TOG1) domain, the mor1-1 leucine to phenylalanine (L174F) substitution causes temperature-dependent disorganization of microtubule arrays and reduces microtubule growth and shrinkage rates. By expressing the two N-terminal TOG domains (TOG12) of MOR1, both in planta for analysis in living cells and in bacteria for in vitro microtubule-binding and polymerization assays, we determined that the N-terminal domain of MOR1 is crucial for microtubule polymer binding. Tagging TOG12 at the N-terminus interfered with its ability to bind microtubules when stably expressed in Arabidopsis or when transiently overexpressed in leek epidermal cells, and impeded polymerase activity in vitro. In contrast, TOG12 tagged at the C-terminus interacted with microtubules in vivo, rescued the temperature-sensitive mor1-1 phenotype, and promoted microtubule polymerization in vitro. TOG12 constructs containing the L174F mor1-1 point mutation caused microtubule disruption when transiently overexpressed in leek epidermis and increased the affinity of TOG12 for microtubules in vitro. This suggests that the mor1-1 mutant protein makes microtubules less dynamic by binding the microtubule lattice too strongly to support rapid plus-end tracking. We conclude from our results that a balanced microtubule affinity in the N-terminal TOG domain is crucial for the polymerase activity of MOR1.
Collapse
Affiliation(s)
- Bettina Lechner
- Department of Botany, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Peset I, Vernos I. The TACC proteins: TACC-ling microtubule dynamics and centrosome function. Trends Cell Biol 2008; 18:379-88. [PMID: 18656360 DOI: 10.1016/j.tcb.2008.06.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/04/2008] [Accepted: 06/04/2008] [Indexed: 12/28/2022]
Abstract
A major quest in cell biology is to understand the molecular mechanisms underlying the high plasticity of the microtubule network at different stages of the cell cycle, and during and after differentiation. Initial reports described the centrosomal localization of proteins possessing transforming acidic coiled-coil (TACC) domains. This discovery prompted several groups to examine the role of TACC proteins during cell division, leading to indications that they are important players in this complex process in different organisms. Here, we review the current understanding of the role of TACC proteins in the regulation of microtubule dynamics, and we highlight the complexity of centrosome function.
Collapse
Affiliation(s)
- Isabel Peset
- Cell and Developmental Biology Program, Centre for Genomic Regulation (CRG), University Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona 08003, Spain.
| | | |
Collapse
|
29
|
Translational control by cytoplasmic polyadenylation in Xenopus oocytes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:217-29. [PMID: 18316045 PMCID: PMC2323027 DOI: 10.1016/j.bbagrm.2008.02.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 01/30/2008] [Accepted: 02/04/2008] [Indexed: 12/21/2022]
Abstract
Elongation of the poly(A) tails of specific mRNAs in the cytoplasm is a crucial regulatory step in oogenesis and early development of many animal species. The best studied example is the regulation of translation by cytoplasmic polyadenylation elements (CPEs) in the 3′ untranslated region of mRNAs involved in Xenopus oocyte maturation. In this review we discuss the mechanism of translational control by the CPE binding protein (CPEB) in Xenopus oocytes as follows:The cytoplasmic polyadenylation machinery such as CPEB, the subunits of cleavage and polyadenylation specificity factor (CPSF), symplekin, Gld-2 and poly(A) polymerase (PAP). The signal transduction that leads to the activation of CPE-mediated polyadenylation during oocyte maturation, including the potential roles of kinases such as MAPK, Aurora A, CamKII, cdk1/Ringo and cdk1/cyclin B. The role of deadenylation and translational repression, including the potential involvement of PARN, CCR4/NOT, maskin, pumilio, Xp54 (Ddx6, Rck), other P-body components and isoforms of the cap binding initiation factor eIF4E.
Finally we discuss some of the remaining questions regarding the mechanisms of translational regulation by cytoplasmic polyadenylation and give our view on where our knowledge is likely to be expanded in the near future.
Collapse
|
30
|
Goulding MB, Canman JC, Senning EN, Marcus AH, Bowerman B. Control of nuclear centration in the C. elegans zygote by receptor-independent Galpha signaling and myosin II. ACTA ACUST UNITED AC 2007; 178:1177-91. [PMID: 17893243 PMCID: PMC2064652 DOI: 10.1083/jcb.200703159] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mitotic spindle positioning in the Caenorhabditis elegans zygote involves microtubule-dependent pulling forces applied to centrosomes. In this study, we investigate the role of actomyosin in centration, the movement of the nucleus-centrosome complex (NCC) to the cell center. We find that the rate of wild-type centration depends equally on the nonmuscle myosin II NMY-2 and the Galpha proteins GOA-1/GPA-16. In centration- defective let-99(-) mutant zygotes, GOA-1/GPA-16 and NMY-2 act abnormally to oppose centration. This suggests that LET-99 determines the direction of a force on the NCC that is promoted by Galpha signaling and actomyosin. During wild-type centration, NMY-2-GFP aggregates anterior to the NCC tend to move further anterior, suggesting that actomyosin contraction could pull the NCC. In GOA-1/GPA-16-depleted zygotes, NMY-2 aggregate displacement is reduced and largely randomized, whereas in a let-99(-) mutant, NMY-2 aggregates tend to make large posterior displacements. These results suggest that Galpha signaling and LET-99 control centration by regulating polarized actomyosin contraction.
Collapse
Affiliation(s)
- Morgan B Goulding
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| | | | | | | | | |
Collapse
|