1
|
Dhulipalla S, Duarte GA, Wu L, DiPersio MR, Lamar JM, DiPersio CM, Longmate WM. Keratinocyte Integrin α3β1 Promotes Efficient Healing of Wound Epidermis. JID INNOVATIONS 2025; 5:100310. [PMID: 39385750 PMCID: PMC11459640 DOI: 10.1016/j.xjidi.2024.100310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 10/12/2024] Open
Abstract
To date, studies of the role for epidermal integrin α3β1 in cutaneous wound re-epithelialization have produced conflicting results: wound studies in skin from global α3-null neonatal mice have implicated the integrin in promoting timely wound re-epithelialization, whereas studies in adult mice with constitutive, epidermal-specific α3β1 deletion have not. The objective of this study was to utilize a model of inducible α3β1 deletion in the epidermis to clarify the role of α3β1 in the healing of adult wounds. We utilized the recently developed transgenic K14Cre-ERT::α3flx/flx mice (ie, inducible α3 epidermal knockout), permitting us to delete floxed Itga3 alleles (α3flx/flx) from epidermis just prior to wounding with topical treatment of 4-hydroxytamoxifen. This allows for the elucidation of α3β1-dependent wound healing in adult skin, free from compensatory mechanisms that may occur after embryonic deletion of epidermal α3β1 in the widely used constitutive α3β1-knockout mouse. We found that re-epithelializing wound gaps are larger in inducible α3 epidermal knockout mice than in control mice, indicating delayed healing, and that epidermal integrin α3β1 promotes healing of wounds, at least in part by enhancing keratinocyte proliferation. This work provides essential rationale for future studies to investigate integrin α3β1 as a therapeutic target to facilitate wound healing.
Collapse
Affiliation(s)
- Sanjana Dhulipalla
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Giesse Albeche Duarte
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Lei Wu
- Department of Surgery, Albany Medical College, Albany, New York, USA
| | - Mathieu R. DiPersio
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - John M. Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - C. Michael DiPersio
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
- Department of Surgery, Albany Medical College, Albany, New York, USA
| | - Whitney M. Longmate
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
- Department of Surgery, Albany Medical College, Albany, New York, USA
| |
Collapse
|
2
|
Hirata R, Iwata T, Fujita T, Nagahara T, Matsuda S, Sasaki S, Taniguchi Y, Hamamoto Y, Ouhara K, Kudo Y, Kurihara H, Mizuno N. Periostin regulates integrin expression in gingival epithelial cells. J Oral Biosci 2024; 66:170-178. [PMID: 38048847 DOI: 10.1016/j.job.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVE Human gingival epithelial cells (HGECs) function as a mechanical barrier against invasion by pathogenic organisms through epithelial cell-cell junction complexes, which are complex components of integrin. Integrins play an important role in the protective functions of HGECs. Human periodontal ligament (HPL) cells regulate periodontal homeostasis. However, periodontitis results in the loss of HPL cells. Therefore, as replenishment, HPL cells or mesenchymal stem cells (MSCs) can be transplanted. Herein, HPL cells and MSCs were used to elucidate the regulatory mechanisms of HGECs, assuming periodontal tissue homeostasis. METHODS Human gingival fibroblasts (HGFs), HGECs, HPL cells, and MSCs were cultured, and the conditioned medium was collected. With or without silencing periostin mRNA, HGECs were cultured under normal conditions or in a conditioned medium. Integrin and periostin mRNA expression was determined using real-time polymerase chain reaction. Integrin protein expression was analyzed using flow cytometry, and periostin protein expression was determined via western blotting. RESULTS The conditioned medium affected integrin expression in HGECs. Higher expression of periostin was observed in MSCs and HPL cells than in HGFs. The conditioned medium that contained periostin protein regulated integrin expression in HGECs. After silencing periostin in MSCs and HPL cells, periostin protein was not detected in the conditioned medium, and integrin expression in HGECs remained unaffected. CONCLUSIONS Integrins in HGECs are regulated by periostin secreted from HPL cells and MSCs. This result suggests that periostin maintains gingival cell adhesion and regulates bacterial invasion/infection. Therefore, the functional regulation of periostin-secreting cells is important in preventing periodontitis.
Collapse
Affiliation(s)
- Reika Hirata
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Tomoyuki Iwata
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan.
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Takayoshi Nagahara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Shinji Matsuda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Shinya Sasaki
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Yuri Taniguchi
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Yuta Hamamoto
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Yasusei Kudo
- Department of Oral Bioscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| |
Collapse
|
3
|
Patwardhan R, Nanda S, Wagner J, Stockter T, Dehmelt L, Nalbant P. Cdc42 activity in the trailing edge is required for persistent directional migration of keratinocytes. Mol Biol Cell 2024; 35:br1. [PMID: 37910204 PMCID: PMC10881163 DOI: 10.1091/mbc.e23-08-0318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
Fibroblasts migrate discontinuously by generating transient leading-edge protrusions and irregular, abrupt retractions of a narrow trailing edge. In contrast, keratinocytes migrate persistently and directionally via a single, stable, broad protrusion paired with a stable trailing-edge. The Rho GTPases Rac1, Cdc42 and RhoA are key regulators of cell protrusions and retractions. However, how these molecules mediate cell-type specific migration modes is still poorly understood. In fibroblasts, all three Rho proteins are active at the leading edge, suggesting short-range coordination of protrusive Rac1 and Cdc42 signals with RhoA retraction signals. Here, we show that Cdc42 was surprisingly active in the trailing-edge of migrating keratinocytes. Elevated Cdc42 activity colocalized with the effectors MRCK and N-WASP suggesting that Cdc42 controls both myosin activation and actin polymerization in the back. Indeed, Cdc42 was required to maintain the highly dynamic contractile acto-myosin retrograde flow at the trailing edge of keratinocytes, and its depletion induced ectopic protrusions in the back, leading to decreased migration directionality. These findings suggest that Cdc42 is required to stabilize the dynamic cytoskeletal polarization in keratinocytes, to enable persistent, directional migration.
Collapse
Affiliation(s)
- Rutuja Patwardhan
- Department of Molecular Cell Biology, Center of Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Suchet Nanda
- TU Dortmund University, Fakultät für Chemie und Chemische Biologie, 44227 Dortmund, Germany
| | - Jessica Wagner
- Department of Molecular Cell Biology, Center of Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Tom Stockter
- Department of Molecular Cell Biology, Center of Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Leif Dehmelt
- TU Dortmund University, Fakultät für Chemie und Chemische Biologie, 44227 Dortmund, Germany
| | - Perihan Nalbant
- Department of Molecular Cell Biology, Center of Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
4
|
Dai R, Xu Q, Shao Z, Wu X. The co-expression pattern of VEGFR-2 with indicators related to proliferation, apoptosis, and differentiation of anagen hair follicles. Open Life Sci 2023; 18:20220723. [PMID: 37744457 PMCID: PMC10512449 DOI: 10.1515/biol-2022-0723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/07/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
An increasing number of studies show that vascular endothelial growth factor is an important regulator of hair growth, and involves in processes of hair follicle development by vascularization. Recently, VEGF receptor-2 (VEGFR-2) has been detected in epithelial cells of hair follicles, indicating that it may have a direct role in the biological activity of hair follicles. To explore how VEGFR-2 regulates hair follicle development, we investigated the co-expression pattern of VEGFR-2 with β-catenin, Bax, Bcl-2, involucrin, AE13 (hair cortex cytokeratin), keratin 16, keratin 14, and Laminin 5 by immunofluorescence double staining in anagen hair follicles of normal human scalp skin. The results of double staining immunofluorescence showed a strong overlapping and similar expression pattern for VEGFR-2 with β-catenin and Bcl-2, and revealing associated expression pattern with involucrin, AE13, keratin 14, keratin 16, and Laminin 5. These results elucidated that VEGFR-2 activation may participate in hair follicle differentiation, proliferation, and apoptosis in vivo.
Collapse
Affiliation(s)
- Ru Dai
- Department of Dermatology, Zhejiang University School of Medicine Second Affiliated Hospital, 310009, Hangzhou, China
| | - Qunye Xu
- Department of Dermatology, The First People’s Hospital Daishan, 316261, Zhoushan, China
| | - Zheren Shao
- Department of Plastic Surgery, Zhejiang University School of Medicine Second Affiliated Hospital, 310009, Hangzhou, China
| | - Xianjie Wu
- Department of Dermatology, Zhejiang University School of Medicine Second Affiliated Hospital, 310009, Hangzhou, China
| |
Collapse
|
5
|
Rinta-Jaskari MM, Naillat F, Ruotsalainen HJ, Koivunen JT, Sasaki T, Pietilä I, Elamaa HP, Kaur I, Manninen A, Vainio SJ, Pihlajaniemi TA. Temporally and spatially regulated collagen XVIII isoforms are involved in ureteric tree development via the TSP1-like domain. Matrix Biol 2023; 115:139-159. [PMID: 36623578 DOI: 10.1016/j.matbio.2023.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Collagen XVIII (ColXVIII) is a component of the extracellular matrix implicated in embryogenesis and control of tissue homoeostasis. We now provide evidence that ColXVIII has a specific role in renal branching morphogenesis as observed in analyses of total and isoform-specific knockout embryos and mice. The expression of the short and the two longer isoforms differ temporally and spatially during renal development. The lack of ColXVIII or its specific isoforms lead to congenital defects in the 3D patterning of the ureteric tree where the short isoform plays a prominent role. Moreover, the ex vivo data suggests that ColXVIII is involved in the kidney epithelial tree patterning via its N-terminal domains, and especially the Thrombospondin-1-like domain common to all isoforms. This morphogenetic function likely involves integrins expressed in the ureteric epithelium. Altogether, the results point to an important role for ColXVIII in the matrix-integrin-mediated functions regulating renal development.
Collapse
Affiliation(s)
- Mia M Rinta-Jaskari
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Florence Naillat
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Heli J Ruotsalainen
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Jarkko T Koivunen
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Takako Sasaki
- Department of Biochemistry II, Faculty of Medicine, Oita University, Japan
| | - Ilkka Pietilä
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland; Currently: Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Harri P Elamaa
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Inderjeet Kaur
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Aki Manninen
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Seppo J Vainio
- Infotech Oulu, Kvantum Institute; Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Taina A Pihlajaniemi
- Oulu Center of Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland.
| |
Collapse
|
6
|
Fischer NG, Aparicio C. Junctional epithelium and hemidesmosomes: Tape and rivets for solving the "percutaneous device dilemma" in dental and other permanent implants. Bioact Mater 2022; 18:178-198. [PMID: 35387164 PMCID: PMC8961425 DOI: 10.1016/j.bioactmat.2022.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the "device"/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth's imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth's enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant - as a model percutaneous device - placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists.
Collapse
Affiliation(s)
- Nicholas G. Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
- Division of Basic Research, Faculty of Odontology, UIC Barcelona – Universitat Internacional de Catalunya, C/. Josep Trueta s/n, 08195, Sant Cugat del Valles, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/. Baldiri Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
7
|
Contribution of Endothelial Laminin-Binding Integrins to Cellular Processes Associated with Angiogenesis. Cells 2022; 11:cells11050816. [PMID: 35269439 PMCID: PMC8909174 DOI: 10.3390/cells11050816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Endothelial cells engage extracellular matrix and basement membrane components through integrin-mediated adhesion to promote angiogenesis. Angiogenesis involves the sprouting of endothelial cells from pre-existing vessels, their migration into surrounding tissue, the upregulation of angiogenesis-associated genes, and the formation of new endothelial tubes. To determine whether the endothelial laminin-binding integrins, α6β4, and α3β1 contribute to these processes, we employed RNAi technology in organotypic angiogenesis assays, as well in migration assays, in vitro. The endothelial depletion of either α6β4 or α3β1 inhibited endothelial sprouting, indicating that these integrins have non-redundant roles in this process. Interestingly, these phenotypes were accompanied by overlapping and distinct changes in the expression of angiogenesis-associated genes. Lastly, depletion of α6β4, but not α3β1, inhibited migration. Taken together, these results suggest that laminin-binding integrins regulate processes associated with angiogenesis by distinct and overlapping mechanisms.
Collapse
|
8
|
Qu H, Miao T, Wang Y, Tan L, Huang B, Zhang L, Liu X, Long M, Zhang R, Liao X, Gong X, Wang J, Xiong X, Liu J, Li X, Yu J, Yang G, Zhu Z, Zheng H, Zheng Y. Dedicator of Cytokinesis 5 Regulates Keratinocyte Function and Promotes Diabetic Wound Healing. Diabetes 2021; 70:1170-1184. [PMID: 33627322 PMCID: PMC8173801 DOI: 10.2337/db20-1008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
Cutaneous wound healing is a fundamental biologic and coordinated process, and failure to maintain this process contributes to the dysfunction of tissue homeostasis, increasing the global burden of diabetic foot ulcerations. However, the factors that mediate this process are not fully understood. Here, we identify the pivotal role of dedicator of cytokinesis 5 (Dock5) in keratinocyte functions contributing to the process of skin wound healing. Specifically, Dock5 is highly upregulated during the proliferative phase of wound repair and is predominantly expressed in epidermal keratinocytes. It regulates keratinocyte adhesion, migration, and proliferation and influences the functions of extracellular matrix (ECM) deposition by facilitating the ubiquitination of transcription factor ZEB1 to activate laminin-332/integrin signaling. Genetic ablation of Dock5 in mice leads to attenuated reepithelialization and granulation tissue formation, and Dock5 overexpression-improved skin repair can be abrogated by LAMA3 knockdown. Importantly, Dock5 expression in the skin edge is reduced in patients and animal models of diabetes, further suggesting a direct correlation between its abundance and healing capability. The rescue of Dock5 expression in diabetic mice causes a significant improvement in reepithelialization, collagen deposition, ECM production, and granulation. Our study provides a potential therapeutic target for wound healing impairment during diabetes.
Collapse
Affiliation(s)
- Hua Qu
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Tian Miao
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
- Department of Respiratory and Critical Care Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Yuren Wang
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Liang Tan
- Department of Neurosurgery, Southwest Hospital, Army Medical University, Chongqing, China
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Bangliang Huang
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Linlin Zhang
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiufei Liu
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Min Long
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Rui Zhang
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiaoyu Liao
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiaoli Gong
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Ju Wang
- Department of Neurosurgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xin Xiong
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Junli Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Li
- Biology Science Institutes, Chongqing Medical University, Chongqing, China
| | - Jiang Yu
- Department of Outpatient, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Third Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hongting Zheng
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yi Zheng
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
9
|
How Have Leukocyte In Vitro Chemotaxis Assays Shaped Our Ideas about Macrophage Migration? BIOLOGY 2020; 9:biology9120439. [PMID: 33276594 PMCID: PMC7761587 DOI: 10.3390/biology9120439] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
Simple Summary The migration of immune cells is vital during inflammatory responses. Macrophages, which are a subset of immune cells, are unique in the ways they migrate because they can switch between different mechanism of migration. This crucial feature of macrophage migration has been underappreciated in the literature because technologies used to study macrophage migration were not able to efficiently detect those subtle differences between macrophages and other immune cells. This review article describes popular technologies used to study macrophage migration and critically assesses their advantages and disadvantages in macrophage migration studies. Abstract Macrophage chemotaxis is crucial during both onset and resolution of inflammation and unique among all leukocytes. Macrophages are able to switch between amoeboid and mesenchymal migration to optimise their migration through 3D environments. This subtle migration phenotype has been underappreciated in the literature, with macrophages often being grouped and discussed together with other leukocytes, possibly due to the limitations of current chemotaxis assays. Transwell assays were originally designed in the 1960s but despite their long-known limitations, they are still one of the most popular methods of studying macrophage migration. This review aims to critically evaluate transwell assays, and other popular chemotaxis assays, comparing their advantages and limitations in macrophage migration studies.
Collapse
|
10
|
Michopoulou A, Montmasson M, Garnier C, Lambert E, Dayan G, Rousselle P. A novel mechanism in wound healing: Laminin 332 drives MMP9/14 activity by recruiting syndecan-1 and CD44. Matrix Biol 2020; 94:1-17. [PMID: 32621878 DOI: 10.1016/j.matbio.2020.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
Re-epithelialization describes the resurfacing of a skin wound with new epithelium. In response to various stimuli including that of growth factors, cytokines and extracellular matrix (ECM), wound edge epidermal keratinocytes undergo cytoskeleton rearrangements compatible with their motile behavior and develop protrusive adhesion contacts. Matrix metalloproteinases (MMP) expression is crucial for proper cell movement and ECM remodeling; however, their deposition mechanism is unknown in keratinocytes. Here, we show that similar to cytokine IL-1ß, the precursor laminin 332 pro-migratory fragment G45 induces expression of the MMP-9 pro-enzyme, which together with MMP-14, further exerts its proteolytic activity within epithelial podosomes. This event strictly depends on the expression of the proteoglycan receptor syndecan-1 that was found in a ring surrounding the podosome core, co-localised with CD44. Our findings uncover that by directly recruiting both syndecan-1 and CD44, the laminin-332 G45 domain plays a major role in regulating mechanisms underlying keratinocyte / ECM remodeling during wound repair.
Collapse
Affiliation(s)
- Anna Michopoulou
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France
| | - Marine Montmasson
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France
| | - Cécile Garnier
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France
| | - Elise Lambert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France
| | - Guila Dayan
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France
| | - Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France.
| |
Collapse
|
11
|
Dhavalikar P, Robinson A, Lan Z, Jenkins D, Chwatko M, Salhadar K, Jose A, Kar R, Shoga E, Kannapiran A, Cosgriff-Hernandez E. Review of Integrin-Targeting Biomaterials in Tissue Engineering. Adv Healthc Mater 2020; 9:e2000795. [PMID: 32940020 PMCID: PMC7960574 DOI: 10.1002/adhm.202000795] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/27/2020] [Indexed: 12/12/2022]
Abstract
The ability to direct cell behavior has been central to the success of numerous therapeutics to regenerate tissue or facilitate device integration. Biomaterial scientists are challenged to understand and modulate the interactions of biomaterials with biological systems in order to achieve effective tissue repair. One key area of research investigates the use of extracellular matrix-derived ligands to target specific integrin interactions and induce cellular responses, such as increased cell migration, proliferation, and differentiation of mesenchymal stem cells. These integrin-targeting proteins and peptides have been implemented in a variety of different polymeric scaffolds and devices to enhance tissue regeneration and integration. This review first presents an overview of integrin-mediated cellular processes that have been identified in angiogenesis, wound healing, and bone regeneration. Then, research utilizing biomaterials are highlighted with integrin-targeting motifs as a means to direct these cellular processes to enhance tissue regeneration. In addition to providing improved materials for tissue repair and device integration, these innovative biomaterials provide new tools to probe the complex processes of tissue remodeling in order to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.
Collapse
Affiliation(s)
- Prachi Dhavalikar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Robinson
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ziyang Lan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Dana Jenkins
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Malgorzata Chwatko
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Karim Salhadar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Anupriya Jose
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ronit Kar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Erik Shoga
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Aparajith Kannapiran
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | | |
Collapse
|
12
|
Testing the Effectiveness of Curcuma longa Leaf Extract on a Skin Equivalent Using a Pumpless Skin-on-a-Chip Model. Int J Mol Sci 2020; 21:ijms21113898. [PMID: 32486109 PMCID: PMC7312991 DOI: 10.3390/ijms21113898] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 01/19/2023] Open
Abstract
The in vitro tests in current research employ simple culture methods that fail to mimic the real human tissue. In this study, we report drug testing with a ‘pumpless skin-on-a-chip’ that mimics the structural and functional responses of human skin. This model is a skin equivalent constituting two layers of the skin, dermis and epidermis, developed using human primary fibroblasts and keratinocytes. Using the gravity flow device system, the medium was rotated at an angle of 15 degrees on both sides so as to circulate through the pumpless skin-on-a-chip microfluidic channel. This pumpless skin-on-a-chip is composed of upper and lower chips, and is manufactured using porous membranes so that medium can be diffused and supplied to the skin equivalent. Drug testing was performed using Curcuma longa leaf extract (CLLE), a natural product cosmetic ingredient, to evaluate the usefulness of the chip and the efficacy of the cosmetic ingredient. It was found that the skin barrier function of the skin epidermis layer is enhanced to exhibit antiaging effects. This result indicates that the pumpless skin-on-a-chip model can be potentially used not only in the cosmetics and pharmaceutical industries but also in clinical applications as an alternative to animal studies.
Collapse
|
13
|
Rousselle P, Scoazec JY. Laminin 332 in cancer: When the extracellular matrix turns signals from cell anchorage to cell movement. Semin Cancer Biol 2020; 62:149-165. [PMID: 31639412 DOI: 10.1016/j.semcancer.2019.09.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/22/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023]
Abstract
Laminin 332 is crucial in the biology of epithelia. This large extracellular matrix protein consists of the heterotrimeric assembly of three subunits - α3, β3, and γ2 - and its multifunctionality relies on a number of extracellular proteolytic processing events. Laminin 332 is central to normal epithelium homeostasis by sustaining cell adhesion, polarity, proliferation, and differentiation. It also supports a major function in epithelial tissue formation, repair, and regeneration by buttressing cell migration and survival and basement membrane assembly. Interest in this protein increased after the discovery that its expression is perturbed in tumor cells, cancer-associated fibroblasts, and the tumor microenvironment. This review summarizes current knowledge regarding the established involvement of the laminin 332 γ2 chain in tumor invasiveness and discusses the role of its α3 and β3 subunits.
Collapse
Affiliation(s)
- Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS - Université Lyon 1, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, F-69367, France.
| | - Jean Yves Scoazec
- Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94805 Villejuif cedex, France; Université Paris Sud, Faculté de Médecine de Bicêtre, 94270 Le Kremlin Bicêtre, France
| |
Collapse
|
14
|
Cancer Biology and Carcinogenesis: Fundamental Biological Processes and How They Are Deranged in Oral Cancer. TEXTBOOK OF ORAL CANCER 2020. [DOI: 10.1007/978-3-030-32316-5_29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Epidermolysis Bullosa-Associated Squamous Cell Carcinoma: From Pathogenesis to Therapeutic Perspectives. Int J Mol Sci 2019; 20:ijms20225707. [PMID: 31739489 PMCID: PMC6888002 DOI: 10.3390/ijms20225707] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 12/22/2022] Open
Abstract
Epidermolysis bullosa (EB) is a heterogeneous group of inherited skin disorders determined by mutations in genes encoding for structural components of the cutaneous basement membrane zone. Disease hallmarks are skin fragility and unremitting blistering. The most disabling EB (sub)types show defective wound healing, fibrosis and inflammation at lesional skin. These features expose patients to serious disease complications, including the development of cutaneous squamous cell carcinomas (SCCs). Almost all subjects affected with the severe recessive dystrophic EB (RDEB) subtype suffer from early and extremely aggressive SCCs (RDEB-SCC), which represent the first cause of death in these patients. The genetic determinants of RDEB-SCC do not exhaustively explain its unique behavior as compared to low-risk, ultraviolet-induced SCCs in the general population. On the other hand, a growing body of evidence points to the key role of tumor microenvironment in initiation, progression and spreading of RDEB-SCC, as well as of other, less-investigated, EB-related SCCs (EB-SCCs). Here, we discuss the recent advances in understanding the complex series of molecular events (i.e., fibrotic, inflammatory, and immune processes) contributing to SCC development in EB patients, cross-compare tumor features in the different EB subtypes and report the most promising therapeutic approaches to counteract or delay EB-SCCs.
Collapse
|
16
|
Bilgic A, Murrell DF. Novel diagnostic method to differentiate antilaminin-332 pemphigoid from other forms of pemphigoid. Br J Dermatol 2019; 182:270-271. [PMID: 31448410 DOI: 10.1111/bjd.18372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A Bilgic
- Antalya Training and Research Hospital, Dermatology Clinic, Antalya, Turkey
| | - D F Murrell
- Department of Dermatology, St George Hospital, University of New South Wales, Sydney, Australia
| |
Collapse
|
17
|
Giurdanella F, Nijenhuis AM, Diercks GFH, Jonkman MF, Pas HH. Keratinocyte footprint assay discriminates antilaminin-332 pemphigoid from all other forms of pemphigoid diseases. Br J Dermatol 2019; 182:373-381. [PMID: 31090065 PMCID: PMC7027452 DOI: 10.1111/bjd.18129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
Background Antilaminin‐332 mucous membrane pemphigoid is a chronic severe pemphigoid disease characterized by autoantibodies to laminin‐332. At present no commercial assay is available to demonstrate antilaminin‐332 antibodies, and diagnosis relies on in‐house techniques with limited sensitivities. Objectives In order to move, keratinocytes cultured in vitro secrete laminin‐332 to attach to the culture dish. In that way, they leave behind a unique footprint trail of laminin‐332. We aimed to develop a sensitive and specific laboratory assay to determine antilaminin‐332 autoantibodies in patient serum based on binding of patient IgG to these unique footprints. Methods Normal human keratinocytes were grown on glass coverslips and incubated with patient or control serum for 1 h. The binding of IgG was then investigated by immunofluorescence. After validating the test for its ability to identify antilaminin‐332 autoantibodies it was converted into a daily available test based on binding of IgG to dried coverslips that can be stored frozen. The staining patterns of sera from patients with antilaminin‐332 pemphigoid were then compared with those of sera from patients with other autoimmune bullous diseases and normal human sera. Results IgG of all antilaminin‐332 pemphigoid sera (n = 16) bound to laminin‐332 footprints, while all normal human controls (n = 55) were negative. From the sera of patients with other diseases (n = 72) four sera tested positive. The footprint assay was also positive for sera that were negative by salt‐split skin analysis, demonstrating that it is a very sensitive technique. Conclusions The keratinocyte footprint assay is a fast and specific assay to confirm or rule out the presence of antilaminin‐332 autoantibodies. What's already known about this topic? Antilaminin‐332 mucous membrane pemphigoid is a severe form of pemphigoid, and patients may have an increased risk of malignancies. The diagnosis of antilaminin‐332 mucous membrane pemphigoid is complicated by the lack of specific commercial tests for antilaminin‐332 antibodies and can be confirmed only in specialized laboratories. Keratinocytes in culture need laminin‐332 for adhesion and migration and therefore deposit it on the bottom of the culture dish.
What does this study add? The keratinocyte footprint assay detects antilaminin‐332 autoantibodies in patient serum using the native laminin‐332 produced by cultured keratinocytes.
What is the translational message? The keratinocyte footprint assay is a fast and specific assay to confirm or rule out the presence of antilaminin‐332 autoantibodies.
Linked Comment: https://doi.org/10.1111/bjd.18372. https://doi.org/10.1111/bjd.18761 available online
Collapse
Affiliation(s)
- F Giurdanella
- Center for Blistering Diseases, Department of Dermatology, University of Groningen, University Medical Center Groningen, PO Box 30 001, 9700 RB, Groningen, the Netherlands
| | - A M Nijenhuis
- Center for Blistering Diseases, Department of Dermatology, University of Groningen, University Medical Center Groningen, PO Box 30 001, 9700 RB, Groningen, the Netherlands
| | - G F H Diercks
- Center for Blistering Diseases, Department of Dermatology, University of Groningen, University Medical Center Groningen, PO Box 30 001, 9700 RB, Groningen, the Netherlands
| | - M F Jonkman
- Center for Blistering Diseases, Department of Dermatology, University of Groningen, University Medical Center Groningen, PO Box 30 001, 9700 RB, Groningen, the Netherlands
| | - H H Pas
- Center for Blistering Diseases, Department of Dermatology, University of Groningen, University Medical Center Groningen, PO Box 30 001, 9700 RB, Groningen, the Netherlands
| |
Collapse
|
18
|
Alexaline MM, Magne B, Zuleta Rodríguez A, Nivet M, Bacqueville D, Lataillade J, Trouillas M. Influence of fibrin matrices and their released factors on epidermal substitute phenotype and engraftment. J Tissue Eng Regen Med 2019; 13:1362-1374. [DOI: 10.1002/term.2879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Maia M. Alexaline
- Unité mixte Inserm U1197 ‐ Institut de Recherche Biomédicale des Armées (IRBA), Antenne Centre de Transfusion Sanguine des Armées Clamart France
- Celogos Paris France
| | - Brice Magne
- Unité mixte Inserm U1197 ‐ Institut de Recherche Biomédicale des Armées (IRBA), Antenne Centre de Transfusion Sanguine des Armées Clamart France
- Scarcell therapeutics Paris France
| | - Amparo Zuleta Rodríguez
- Unité mixte Inserm U1197 ‐ Institut de Recherche Biomédicale des Armées (IRBA), Antenne Centre de Transfusion Sanguine des Armées Clamart France
| | - Muriel Nivet
- Unité mixte Inserm U1197 ‐ Institut de Recherche Biomédicale des Armées (IRBA), Antenne Centre de Transfusion Sanguine des Armées Clamart France
| | - Daniel Bacqueville
- Unité mixte Inserm U1197 ‐ Institut de Recherche Biomédicale des Armées (IRBA), Antenne Centre de Transfusion Sanguine des Armées Clamart France
- Service Pharmacologie Division 2 et Pharmacocinétique cutanée, Département PharmacologieCentre R&D Pierre Fabre Dermo‐Cosmétique Toulouse France
| | - Jean‐Jacques Lataillade
- Unité mixte Inserm U1197 ‐ Institut de Recherche Biomédicale des Armées (IRBA), Antenne Centre de Transfusion Sanguine des Armées Clamart France
| | - Marina Trouillas
- Unité mixte Inserm U1197 ‐ Institut de Recherche Biomédicale des Armées (IRBA), Antenne Centre de Transfusion Sanguine des Armées Clamart France
| |
Collapse
|
19
|
De Rosa L, Secone Seconetti A, De Santis G, Pellacani G, Hirsch T, Rothoeft T, Teig N, Pellegrini G, Bauer JW, De Luca M. Laminin 332-Dependent YAP Dysregulation Depletes Epidermal Stem Cells in Junctional Epidermolysis Bullosa. Cell Rep 2019; 27:2036-2049.e6. [PMID: 31091444 DOI: 10.1016/j.celrep.2019.04.055] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/12/2019] [Accepted: 04/10/2019] [Indexed: 01/09/2023] Open
Abstract
Laminin 332-deficient junctional epidermolysis bullosa (JEB) is a severe genetic skin disease. JEB is marked by epidermal stem cell depletion, the origin of which is unknown. We show that dysregulation of the YAP and TAZ pathway underpins such stem cell depletion. Laminin 332-mediated YAP activity sustains human epidermal stem cells, detected as holoclones. Ablation of YAP selectively depletes holoclones, while enforced YAP blocks conversion of stem cells into progenitors and indefinitely extends the keratinocyte lifespan. YAP is dramatically decreased in JEB keratinocytes, which contain only phosphorylated, inactive YAP. In normal keratinocytes, laminin 332 and α6β4 ablation abolish YAP activity and recapitulate the JEB phenotype. In JEB keratinocytes, laminin 332-gene therapy rescues YAP activity and epidermal stem cells in vitro and in vivo. In JEB cells, enforced YAP recapitulates laminin 332-gene therapy, thus uncoupling adhesion from proliferation in epidermal stem cells. This work has important clinical implication for ex vivo gene therapy of JEB.
Collapse
Affiliation(s)
- Laura De Rosa
- Centre for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessia Secone Seconetti
- Centre for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giorgio De Santis
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Pellacani
- Department of Surgery, Medicine, Dentistry, and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tobias Hirsch
- Department of Plastic Surgery, Burn Centre, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Germany
| | - Tobias Rothoeft
- Department of Neonatology and Pediatric Intensive Care, University Children's Hospital, Ruhr-University Bochum, Germany
| | - Norbert Teig
- Department of Neonatology and Pediatric Intensive Care, University Children's Hospital, Ruhr-University Bochum, Germany
| | - Graziella Pellegrini
- Centre for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Surgery, Medicine, Dentistry, and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Johann W Bauer
- EB House Austria and Department of Dermatology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Michele De Luca
- Centre for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
20
|
Park SH, Lee CW, Lee JH, Park JY, Roshandell M, Brennan CA, Choe KM. Requirement for and polarized localization of integrin proteins during Drosophila wound closure. Mol Biol Cell 2018; 29:2137-2147. [PMID: 29995573 PMCID: PMC6249799 DOI: 10.1091/mbc.e17-11-0635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 06/19/2018] [Accepted: 07/05/2018] [Indexed: 01/06/2023] Open
Abstract
Wound reepithelialization is an evolutionarily conserved process in which skin cells migrate as sheets to heal the breach and is critical to prevent infection but impaired in chronic wounds. Integrin heterodimers mediate attachment between epithelia and underlying extracellular matrix and also act in large signaling complexes. The complexity of the mammalian wound environment and evident redundancy among integrins has impeded determination of their specific contributions to reepithelialization. Taking advantage of the genetic tools and smaller number of integrins in Drosophila, we undertook a systematic in vivo analysis of integrin requirements in the reepithelialization of skin wounds in the larva. We identify αPS2-βPS and αPS3-βPS as the crucial integrin dimers and talin as the only integrin adhesion component required for reepithelialization. The integrins rapidly accumulate in a JNK-dependent manner in a few rows of cells surrounding a wound. Intriguingly, the integrins localize to the distal margin in these cells, instead of the frontal or lamellipodial distribution expected for proteins providing traction and recruit nonmuscle myosin II to the same location. These findings indicate that signaling roles of integrins may be important for epithelial polarization around wounds and lay the groundwork for using Drosophila to better understand integrin contributions to reepithelialization.
Collapse
Affiliation(s)
- Si-Hyoung Park
- Department of Systems Biology, Yonsei University, Seodaemun-gu, Seoul 03722, South Korea
| | - Chan-wool Lee
- Department of Systems Biology, Yonsei University, Seodaemun-gu, Seoul 03722, South Korea
| | - Ji-Hyun Lee
- Department of Systems Biology, Yonsei University, Seodaemun-gu, Seoul 03722, South Korea
| | - Jin Young Park
- Department of Systems Biology, Yonsei University, Seodaemun-gu, Seoul 03722, South Korea
| | - Mobina Roshandell
- Department of Biological Science, California State University, Fullerton, Fullerton, CA 92831
| | - Catherine A. Brennan
- Department of Biological Science, California State University, Fullerton, Fullerton, CA 92831
| | - Kwang-Min Choe
- Department of Systems Biology, Yonsei University, Seodaemun-gu, Seoul 03722, South Korea
| |
Collapse
|
21
|
Rotation of stress fibers as a single wheel in migrating fish keratocytes. Sci Rep 2018; 8:10615. [PMID: 30018412 PMCID: PMC6050267 DOI: 10.1038/s41598-018-28875-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022] Open
Abstract
Crawling migration plays an essential role in a variety of biological phenomena, including development, wound healing, and immune system function. Keratocytes are wound-healing cells in fish skin. Expansion of the leading edge of keratocytes and retraction of the rear are respectively induced by actin polymerization and contraction of stress fibers in the same way as for other cell types. Interestingly, stress fibers in keratocytes align almost perpendicular to the migration-direction. It seems that in order to efficiently retract the rear, it is better that the stress fibers align parallel to it. From the unique alignment of stress fibers in keratocytes, we speculated that the stress fibers may play a role for migration other than the retraction. Here, we reveal that the stress fibers are stereoscopically arranged so as to surround the cytoplasm in the cell body; we directly show, in sequential three-dimensional recordings, their rolling motion during migration. Removal of the stress fibers decreased migration velocity and induced the collapse of the left-right balance of crawling migration. The rotation of these stress fibers plays the role of a “wheel” in crawling migration of keratocytes.
Collapse
|
22
|
Sánchez-Sánchez BJ, Urbano JM, Comber K, Dragu A, Wood W, Stramer B, Martín-Bermudo MD. Drosophila Embryonic Hemocytes Produce Laminins to Strengthen Migratory Response. Cell Rep 2018; 21:1461-1470. [PMID: 29117553 PMCID: PMC5695906 DOI: 10.1016/j.celrep.2017.10.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/05/2017] [Accepted: 10/11/2017] [Indexed: 12/28/2022] Open
Abstract
The most prominent developmental function attributed to the extracellular matrix (ECM) is cell migration. While cells in culture can produce ECM to migrate, the role of ECM in regulating developmental cell migration is classically viewed as an exogenous matrix presented to the moving cells. In contrast to this view, we show here that Drosophila embryonic hemocytes deposit their own laminins in streak-like structures to migrate efficiently throughout the embryo. With the help of transplantation experiments, live microscopy, and image quantification, we demonstrate that autocrine-produced laminin regulates hemocyte migration by controlling lamellipodia dynamics, stability, and persistence. Proper laminin deposition is regulated by the RabGTPase Rab8, which is highly expressed and required in hemocytes for lamellipodia dynamics and migration. Our results thus support a model in which, during embryogenesis, the Rab8-regulated autocrine deposition of laminin reinforces directional and effective migration by stabilizing cellular protrusions and strengthening otherwise transient adhesion states. Drosophila embryonic hemocytes use autocrine-produced laminins for their migration Autocrine laminins regulate lamellipodia dynamics, stability, and persistence Rab8 regulates laminin deposition and lamellipodia dynamics in migrating hemocytes Laminins deposit in tracks around hemocytes and in a fibrillar mesh over the VNC
Collapse
Affiliation(s)
- Besaiz J Sánchez-Sánchez
- CABD (CSIC-Universidad Pablo de Olavide-JA), Sevilla 41013, Spain; Randall Centre for Cell and Molecular Biophysics, King's College London, London SE5 9AP, UK
| | - José M Urbano
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Kate Comber
- Department of Cellular and Molecular Medicine, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Anca Dragu
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE5 9AP, UK
| | - Will Wood
- Department of Cellular and Molecular Medicine, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Brian Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE5 9AP, UK
| | | |
Collapse
|
23
|
|
24
|
Potent laminin-inspired antioxidant regenerative dressing accelerates wound healing in diabetes. Proc Natl Acad Sci U S A 2018; 115:6816-6821. [PMID: 29891655 DOI: 10.1073/pnas.1804262115] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The successful treatment of chronic dermal wounds, such as diabetic foot ulcers (DFU), depends on the development of safe, effective, and affordable regenerative tools that the surgeon can rely on to promote wound closure. Although promising, strategies that involve cell-based therapies and the local release of exogenous growth factors are costly, require very long development times, and result in modest improvements in patient outcome. We describe the development of an antioxidant shape-conforming regenerative wound dressing that uses the laminin-derived dodecapeptide A5G81 as a potent tethered cell adhesion-, proliferation-, and haptokinesis-inducing ligand to locally promote wound closure. A5G81 immobilized within a thermoresponsive citrate-based hydrogel facilitates integrin-mediated spreading, migration, and proliferation of dermal and epidermal cells, resulting in faster tissue regeneration in diabetic wounds. This peptide-hydrogel system represents a paradigm shift in dermoconductive and dermoinductive strategies for treating DFU without the need for soluble biological or pharmacological factors.
Collapse
|
25
|
Schnittert J, Bansal R, Storm G, Prakash J. Integrins in wound healing, fibrosis and tumor stroma: High potential targets for therapeutics and drug delivery. Adv Drug Deliv Rev 2018; 129:37-53. [PMID: 29414674 DOI: 10.1016/j.addr.2018.01.020] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/16/2018] [Accepted: 01/29/2018] [Indexed: 12/20/2022]
Abstract
Wound healing is a complex process, which ultimately leads to fibrosis if not repaired well. Pathologically very similar to fibrosis is the tumor stroma, found in several solid tumors which are regarded as wounds that do not heal. Integrins are heterodimeric surface receptors which control various physiological cellular functions. Additionally, integrins also sense ECM-induced extracellular changes during pathological events, leading to cellular responses, which influence ECM remodeling. The purpose and scope of this review is to introduce integrins as key targets for therapeutics and drug delivery within the scope of wound healing, fibrosis and the tumor stroma. This review provides a general introduction to the biology of integrins including their types, ligands, means of signaling and interaction with growth factor receptors. Furthermore, we highlight integrins as key targets for therapeutics and drug delivery, based on their biological role, expression pattern within human tissues and at cellular level. Next, therapeutic approaches targeting integrins, with a focus on clinical studies, and targeted drug delivery strategies based on ligands are described.
Collapse
|
26
|
Silva EMR, Freitas VM, Bautz WG, de Barros LAP, da Gama de Souza LN. Immunohistochemical Study of Laminin-332 γ2 Chain and MMP-9 in High Risk of Malignant Transformation Oral Lesions and OSCC. J Oral Maxillofac Res 2018; 9:e3. [PMID: 29707182 PMCID: PMC5913416 DOI: 10.5037/jomr.2018.9103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 03/10/2018] [Indexed: 11/16/2022]
Abstract
Objectives Oral squamous cell carcinoma is associated with alterations in basement membrane. Laminin-332 is present in basal lamina and performs multiple biologic effects by γ2 chain. Matrix metalloproteinase acts disrupting extracellular components and was related to poor prognosis in cancer. Here, molecular profile of laminin-332 γ2 chain and matrix metalloproteinase-9 was assessed in oral lesions. Material and Methods The expression of laminin-332 γ2 chain and matrix metalloproteinase-9 (MMP-9) was examined by immunohistochemistry in 10 patients with high risk of malignant transformation oral lesions and 26 cases of oral squamous cell carcinoma (OSCC). Associations between microscopic and clinicopathologic features were established. Results Immunostaining of laminin-332 γ2 chain in high risk oral lesions was most detected in basement membrane which is continuous, while the majority of OSCC cases showed a discontinuous membrane (P = 0.001). It was observed a positive reaction for γ2 chain in invasive fronts and a higher expression in epithelial compartment of smoking patients with OSCC (P < 0.0001). In epithelium, MMP-9 expression was presented in all layers with no difference between lesions. However, an elevated immunostaining in stromal cells was associated with male patients (P = 0.0054), older than 60 years (P = 0.0101) and with OSCC. Conclusions Present study results support the hypothesis of changes in molecules expression in high risk oral lesions and oral squamous cell carcinoma. A relation between clinical and molecule profile was observed. Those molecules may represent a useful tool to predict oral cancer behaviour.
Collapse
Affiliation(s)
| | - Vanessa Morais Freitas
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São PauloBrazil
| | - Willian Grassi Bautz
- Department of Morphology, Health of Sciences Center, Federal University of Espírito SantoBrazil
| | | | | |
Collapse
|
27
|
Ghézali G, Calvo CF, Pillet LE, Llense F, Ezan P, Pannasch U, Bemelmans AP, Etienne Manneville S, Rouach N. Connexin 30 controls astroglial polarization during postnatal brain development. Development 2018; 145:145/4/dev155275. [PMID: 29475972 PMCID: PMC5869003 DOI: 10.1242/dev.155275] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/21/2018] [Indexed: 12/26/2022]
Abstract
Astrocytes undergo intense morphological maturation during development, changing from individual sparsely branched cells to polarized and tremendously ramified cells. Connexin 30, an astroglial gap-junction channel-forming protein expressed postnatally, regulates in situ the extension and ramification of astroglial processes. However, the involvement of connexin 30 in astroglial polarization, which is known to control cell morphology, remains unexplored. We found that connexin 30, independently of gap-junction-mediated intercellular biochemical coupling, alters the orientation of astrocyte protrusion, centrosome and Golgi apparatus during polarized migration in an in vitro wound-healing assay. Connexin 30 sets the orientation of astroglial motile protrusions via modulation of the laminin/β1 integrin/Cdc42 polarity pathway. Connexin 30 indeed reduces laminin levels, inhibits the redistribution of the β1-integrin extracellular matrix receptors, and inhibits the recruitment and activation of the small Rho GTPase Cdc42 at the leading edge of migrating astrocytes. In vivo, connexin 30, the expression of which is developmentally regulated, also contributes to the establishment of hippocampal astrocyte polarity during postnatal maturation. This study thus reveals that connexin 30 controls astroglial polarity during development. Summary: Connexin 30 sets the orientation of astroglial motile protrusions during polarized migration in vitro and contributes in vivo to the establishment of hippocampal astrocyte polarity during postnatal maturation.
Collapse
Affiliation(s)
- Grégory Ghézali
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris 75005, France.,Doctoral School N°158, Pierre and Marie Curie University, Paris 75005, France
| | - Charles-Félix Calvo
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris 75005, France
| | - Laure-Elise Pillet
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris 75005, France.,Doctoral School N°562, Paris Descartes University, Paris 75006, France
| | - Flora Llense
- Institut Pasteur, CNRS UMR 3691, Cell Polarity, Migration and Cancer Unit, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Pascal Ezan
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris 75005, France
| | - Ulrike Pannasch
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris 75005, France
| | - Alexis-Pierre Bemelmans
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale, Institut de biologie François Jacob, MIRCen, and CNRS UMR 9199, Université Paris-Sud, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses 92260, France
| | - Sandrine Etienne Manneville
- Institut Pasteur, CNRS UMR 3691, Cell Polarity, Migration and Cancer Unit, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Nathalie Rouach
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris 75005, France
| |
Collapse
|
28
|
Yan Y, Qian H, Jiang H, Yu H, Sun L, Wei X, Sun Y, Ge H, Zhou H, Li X, Hashimoto T, Tang X, Liu P. Laminins in an in vitro anterior lens capsule model established using HLE B-3 cells. Mol Med Rep 2018; 17:5726-5733. [PMID: 29436687 PMCID: PMC5866015 DOI: 10.3892/mmr.2018.8581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/11/2018] [Indexed: 12/23/2022] Open
Abstract
Cataracts are the most common eye disease to cause blindness in patients. The abnormal deposition of laminins (LMs) in the lens capsule and the disruption of capsular epithelium contribute to cataract development, although the mechanism by which this occurs is currently unclear. The present study aimed to reproduce HLE B-3 basement membranes (BMs) using HLE B-3 cells and to analyze the similarities of LM expression between HLE B-3 BMs and human anterior lens capsule (ALC). Immunohistochemistry (IHC), ELISA, western blot analysis and immunoprecipitation (IP)-western blot analysis were used to detect total LMs, LM trimers and 11 LM subunits in HLE B-3 cells, HLE B-3 BMs and human ALCs. In IHC staining, HLE B-3 cells and human ALCs were positive for LMs. In LM ELISA, all samples analyzed were positive for LMs. Western blot analysis detected all LM subunits except for LMγ3 in HLE B-3 cell lysate, 4 subunits (LMα4, LMα2, LMα1 and LMγ1) in HLE B-3 cell culture supernatant, 5 subunits (LMα4, LMα2, LMα1, LMβ3 and LMγ1) in HLE B-3 BMs, and 3 subunits (LMα4, LMγ2 and LMγ1) in human ALCs. The results of IP-western blot analysis revealed that the LM411 trimer was detected in HLE B-3 cell culture supernatant. These results indicated that HLE B-3 BMs were similar to human ALCs in terms of LM expression. Therefore, HLE B-3 BMs could be used as an in vitro ALC model to determine the role of LMs in ALC in the pathogenesis of cataracts and to select potential anti-cataract drugs.
Collapse
Affiliation(s)
- Yu Yan
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hua Qian
- Academician Workstation, Harbin Medical University and Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150081, P.R. China
| | - Hongda Jiang
- Department of Laboratory Diagnosis, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Haiyang Yu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Liyao Sun
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xi Wei
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yunduan Sun
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hongyan Ge
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Haizhou Zhou
- Department of Laboratory Diagnosis, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiaoguang Li
- Academician Workstation, Harbin Medical University and Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150081, P.R. China
| | - Takashi Hashimoto
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka 545‑8585, Japan
| | - Xianling Tang
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ping Liu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
29
|
Rousselle P, Montmasson M, Garnier C. Extracellular matrix contribution to skin wound re-epithelialization. Matrix Biol 2018; 75-76:12-26. [PMID: 29330022 DOI: 10.1016/j.matbio.2018.01.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/04/2017] [Accepted: 01/01/2018] [Indexed: 12/11/2022]
Abstract
The ability of skin to act as a barrier is primarily determined by cells that maintain the continuity and integrity of skin and restore it after injury. Cutaneous wound healing in adult mammals is a complex multi-step process that involves overlapping stages of blood clot formation, inflammation, re-epithelialization, granulation tissue formation, neovascularization, and remodeling. Under favorable conditions, epidermal regeneration begins within hours after injury and takes several days until the epithelial surface is intact due to reorganization of the basement membrane. Regeneration relies on numerous signaling cues and on multiple cellular processes that take place both within the epidermis and in other participating tissues. A variety of modulators are involved, including growth factors, cytokines, matrix metalloproteinases, cellular receptors, and extracellular matrix components. Here we focus on the involvement of the extracellular matrix proteins that impact epidermal regeneration during wound healing.
Collapse
Affiliation(s)
- Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS - Université Lyon 1, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, F-69367, France.
| | - Marine Montmasson
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS - Université Lyon 1, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, F-69367, France
| | - Cécile Garnier
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS - Université Lyon 1, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, F-69367, France
| |
Collapse
|
30
|
Shen C, Sun L, Zhu N, Qi F. Kindlin-1 contributes to EGF-induced re-epithelialization in skin wound healing. Int J Mol Med 2017; 39:949-959. [PMID: 28290610 PMCID: PMC5360437 DOI: 10.3892/ijmm.2017.2911] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 02/21/2017] [Indexed: 02/04/2023] Open
Abstract
The commercial use of epidermal growth factor (EGF) is extensive and has been shown to be effective for skin wound healing in clinical practice. There is evidence to indicate that the topical administration of EGF significantly accelerates re-epithelialization by promoting keratinocyte mitogenesis and migration following acute injury; however, the mechanisms involved remain to be elucidated. Thus, in this study, we focused on Kindlin-1, a four-point-one, ezrin, radixin, moesin (FERM)-domain-containing adaptor protein, and report its contribution to EGF-induced re-epithelialization in skin wound healing. In tissue samples, the expression of Kindlin-1 was induced upon EGF treatment compared to that in the natural healing group. In immortalized human keratinocytes (HaCaT cells), we further proved that Kindlin-1 was necessary for mediating EGF-induced activation signals, including integrin β1 activation, focal adhesion kinase (FAK) phosphorylation and actin re-organization, which finally led to enhanced cell proliferation and migration. These results indicate that Kindlin-1 is essential in EGF-induced re-epithelialization in skin wound healing and provide additional rationale for the clinical application of EGF in the treatment of acute wounds.
Collapse
Affiliation(s)
- Congcong Shen
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Linlin Sun
- Department of Biochemistry and Molecular Biology, Basic Medical College of Fudan University, Shanghai 200032, P.R. China
| | - Ningwen Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Fazhi Qi
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
31
|
Di Cio S, Bøggild TML, Connelly J, Sutherland DS, Gautrot JE. Differential integrin expression regulates cell sensing of the matrix nanoscale geometry. Acta Biomater 2017; 50:280-292. [PMID: 27940195 DOI: 10.1016/j.actbio.2016.11.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/28/2022]
Abstract
The nanoscale geometry and topography of the extra-cellular matrix (ECM) is an important parameter controlling cell adhesion and phenotype. Similarly, integrin expression and the geometrical maturation of adhesions they regulate have been correlated with important changes in cell spreading and phenotype. However, how integrin expression controls the nanoscale sensing of the ECM geometry is not clearly understood. Here we develop a new nanopatterning technique, electrospun nanofiber lithography (ENL), which allows the production of a quasi-2D fibrous nanopattern with controlled dimensions (250-1000nm) and densities. ENL relies on electrospun fibres to act as a mask for the controlled growth of protein-resistant polymer brushes. SEM, AFM and immunofluorescence imaging were used to characterise the resulting patterns and the adsorption of the extra-cellular matrix protein fibronectin to the patterned fibres. The control of adhesion formation was studied, as well as the remodelling and deposition of novel matrix. Cell spreading was found to be regulated by the size of fibres, similarly to previous observations made on circular nanopatterns. However, cell shape and polarity were more significantly affected. These changes correlated with important cytoskeleton reorganisation, with a gradual decrease in stress fibre formation as the pattern dimensions decrease. Finally, the differential expression of αvβ3 and α5β1 integrins in engineered cell lines was found to be an important mediator of cell sensing of the nanoscale geometry of the ECM. STATEMENT OF SIGNIFICANCE The novel nanofiber patterns developed in this study, via ENL, mimic the geometry and continuity of natural matrices found in the stroma of tissues, whilst preserving a quasi-2D character (to facilitate imaging and for comparison with other 2D systems such as micropatterned monolayers and circular nanopatches generated by colloidal lithography). These results demonstrate that the nanoscale geometry of the ECM plays an important role in regulating cell adhesion and that this is modulated by integrin expression. This is an important finding as it implies that the knowledge of the biochemical context underlying the integrin-mediated adhesive machinery of specific cell types should allow better design of biomaterials and biointerfaces. Indeed, changes in integrin expression are often associated with the control of cell proliferation and differentiation.
Collapse
Affiliation(s)
- Stefania Di Cio
- Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London E1 4NS, UK; School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - Thea M L Bøggild
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
| | - John Connelly
- Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London E1 4NS, UK; Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, 4 Newark Street, London E1 2AT, UK
| | | | - Julien E Gautrot
- Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London E1 4NS, UK; School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
32
|
Löffek S, Franzke CW, Helfrich I. Tension in Cancer. Int J Mol Sci 2016; 17:ijms17111910. [PMID: 27854331 PMCID: PMC5133907 DOI: 10.3390/ijms17111910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/02/2016] [Accepted: 11/09/2016] [Indexed: 12/30/2022] Open
Abstract
Integrins represent a large family of cell receptors that mediate adhesion to the extracellular matrix (ECM), thereby modulating a variety of cellular functions that are required for proliferation, migration, malignant conversion and invasiveness. During tumorigenesis the conversion of a tumor cell from sessile, stationary phenotype to an invasive phenotype requires the ability of tumor cells to interact with their environment in order to transduce signals from the ECM into the cells. Hence, there is increasing evidence that changes in the composition, topography and tension of tumor matrix can be sensed by integrin receptors, leading to the regulation of intracellular signalling events which subsequently help to fuel cancer progression. The fact that intracellular signals perceived from integrin ligand binding impact on almost all steps of tumor progression, including tumor cell proliferation, survival, metastatic dissemination and colonization of a metastatic niche, renders integrins as ideal candidates for the development of therapeutic agents. In this review we summarize the role of integrins in cancer with the special focus on cancer therapies and the recent progress that has been made in the understanding of “integrin-induced tension in cancer”. Finally, we conclude with clinical evidence for the role of integrin-mediated mechanotransduction in the development of therapy-resistant tumors.
Collapse
Affiliation(s)
- Stefanie Löffek
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, 45147 Essen, Germany.
- German Cancer Consortium (DKTK), University Duisburg-Essen, 45147 Essen, Germany.
| | - Claus-Werner Franzke
- Department of Dermatology and Venerology, Medical Center, University of Freiburg, Hauptstraße 7, 79104 Freiburg, Germany.
| | - Iris Helfrich
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, 45147 Essen, Germany.
- German Cancer Consortium (DKTK), University Duisburg-Essen, 45147 Essen, Germany.
| |
Collapse
|
33
|
Sigston EAW, Longano A, Strzelecki AT, Williams BRG. Surgical margins in head and neck squamous cell carcinoma: Effect of heat artifact on immunohistochemistry as a future tool for assessment. Head Neck 2016; 38:1401-6. [PMID: 27043324 DOI: 10.1002/hed.24450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/02/2016] [Accepted: 02/08/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Margins in head and neck squamous cell carcinoma (HNSCC) are determined by morphological changes assessed via hematoxylin-eosin staining. Physiological changes may not be detected by this technique. The purpose of this study was to determine if a protein biomarker, laminin-332γ2, overexpressed in cancer cells at the invasive front in HNSCC, remains unaffected by heat produced during resection, supporting a role for immunohistochemistry assessment of margins. METHODS Archived tissue blocks from glottic squamous cell carcinomas (SCCs) resected by CO2 laser likely to contain both cancer cells and artifact were identified; 129-paired slides were obtained. One slide of each pair was stained with hematoxylin-eosin; the second stained for laminin-332γ2. The presence of cancer cells, artifact, and positive laminin-332γ2 staining was recorded. Twenty-seven pairs met the inclusion criteria. RESULTS Immunohistochemistry staining of laminin-332γ is preserved in presence of heat artifact. CONCLUSION This study supports use of immunohistochemistry to assess margins. © 2016 Wiley Periodicals, Inc. Head Neck 38: 1401-1406, 2016.
Collapse
Affiliation(s)
- Elizabeth A W Sigston
- Department of Otorhinolaryngology, Head and Neck Surgery, Monash Health (previously Southern Health), Melbourne, Victoria, Australia
- Department of Surgery (Monash Medical Centre), Monash University, Melbourne, Victoria, Australia
- Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Anthony Longano
- Department of Anatomical Pathology, Monash Health (previously Southern Health), Melbourne, Victoria, Australia
| | - Aneta T Strzelecki
- Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Bryan R G Williams
- Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
34
|
Youssefian L, Vahidnezhad H, Saeidian AH, Ahmadizadeh K, Has C, Uitto J. Kindler syndrome, an orphan disease of cell/matrix adhesion in the skin – molecular genetics and therapeutic opportunities. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1207519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Integrin-mediated regulation of epidermal wound functions. Cell Tissue Res 2016; 365:467-82. [PMID: 27351421 DOI: 10.1007/s00441-016-2446-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/02/2016] [Indexed: 01/14/2023]
Abstract
During cutaneous wound healing, keratinocyte proliferation and migration are critical for re-epithelialization. In addition the epidermis secretes growth factors, cytokines, proteases, and matricellular proteins into the wound microenvironment that modify the extracellular matrix and stimulate other wound cells that control the inflammatory response, promote angiogenesis and facilitate tissue contraction and remodeling. Wound keratinocytes express at least seven different integrins-the major cell adhesion receptors for the extracellular matrix-that collectively control essential cell-autonomous functions to ensure proper re-epithelialization, including migration, proliferation, survival and basement membrane assembly. Moreover, it has become evident in recent years that some integrins can regulate paracrine signals from wound epidermis that stimulate other wound cells involved in angiogenesis, contraction and inflammation. Importantly, it is likely that abnormal integrin expression or function in the epidermis contributes to wound pathologies such as over-exuberant healing (e.g., hypertrophic scar formation) or diminished healing (e.g., chronic wounds). In this review, we discuss current knowledge of integrin function in the epidermis, which implicates them as attractive therapeutic targets to promote wound healing or treat wound pathologies. We also discuss challenges that arise from the complex roles that multiple integrins play in wound epidermis, which may be regulated through extracellular matrix remodeling that determines ligand availability. Indeed, understanding how different integrin functions are temporally coordinated in wound epidermis and which integrin functions go awry in pathological wounds, will be important to determine how best to target them clinically to achieve maximum therapeutic benefit. Graphical abstract In addition to their well-characterized roles in keratinocyte adhesion, migration and wound re-epithelialization, epidermal integrins play important roles in modifying the wound microenvironment by regulating the expression and secretion of growth factors, extracellular proteases, and matricellular proteins that stimulate other wound cells, including vascular endothelial cells and fibroblasts/myofibroblasts.
Collapse
|
36
|
Jacków J, Löffek S, Nyström A, Bruckner-Tuderman L, Franzke CW. Collagen XVII Shedding Suppresses Re-Epithelialization by Directing Keratinocyte Migration and Dampening mTOR Signaling. J Invest Dermatol 2016; 136:1031-1041. [PMID: 26827763 DOI: 10.1016/j.jid.2016.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/10/2015] [Accepted: 01/05/2016] [Indexed: 12/16/2022]
Abstract
Transmembrane collagen XVII is traditionally viewed as an important hemidesmosomal attachment component that promotes stable dermal-epidermal adhesion in the skin. However, its expression is highly elevated at the leading edges of cutaneous wounds or invasive carcinomas, suggesting alternative functions in cell migration. The collagenous ectodomain of collagen XVII is constitutively shed from the cell surface by a disintegrin and metalloproteinases, and this shedding is strongly induced during wound healing. Recently, we investigated the physiological relevance of collagen XVII shedding by generating knock-in mice, which exclusively express a functional non-sheddable collagen XVII mutant. Prevention of ectodomain shedding in these mice caused no spontaneous phenotype in resting skin, but accelerated re-epithelialization on skin wounding. Here, we investigated the mechanistic function of shedding during wound healing. Using the non-shedding collagen XVII mice as a model, we uncovered ectodomain shedding as a highly dynamic modulator of in vivo proliferation and motility of activated keratinocytes through tight coordination of α6β4 integrin-laminin-332 interactions and dampening of mechanistic target of rapamycin signaling at the wound edges. Thus, our studies identify ectodomain shedding of collagen XVII as an interactive platform that translates shedding into a signal for directed cell growth and motility during skin regeneration.
Collapse
Affiliation(s)
- Joanna Jacków
- Department of Dermatology, Medical Center, University of Freiburg, Germany.
| | - Stefanie Löffek
- Department of Dermatology, Medical Center, University of Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center, University of Freiburg, Germany
| | | | | |
Collapse
|
37
|
Nicholas MN, Jeschke MG, Amini-Nik S. Cellularized Bilayer Pullulan-Gelatin Hydrogel for Skin Regeneration. Tissue Eng Part A 2016; 22:754-64. [PMID: 27072720 PMCID: PMC4876533 DOI: 10.1089/ten.tea.2015.0536] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/12/2016] [Indexed: 12/24/2022] Open
Abstract
Skin substitutes significantly reduce the morbidity and mortality of patients with burn injuries and chronic wounds. However, current skin substitutes have disadvantages related to high costs and inadequate skin regeneration due to highly inflammatory wounds. Thus, new skin substitutes are needed. By combining two polymers, pullulan, an inexpensive polysaccharide with antioxidant properties, and gelatin, a derivative of collagen with high water absorbency, we created a novel inexpensive hydrogel-named PG-1 for "pullulan-gelatin first generation hydrogel"-suitable for skin substitutes. After incorporating human fibroblasts and keratinocytes onto PG-1 using centrifugation over 5 days, we created a cellularized bilayer skin substitute. Cellularized PG-1 was compared to acellular PG-1 and no hydrogel (control) in vivo in a mouse excisional skin biopsy model using newly developed dome inserts to house the skin substitutes and prevent mouse skin contraction during wound healing. PG-1 had an average pore size of 61.69 μm with an ideal elastic modulus, swelling behavior, and biodegradability for use as a hydrogel for skin substitutes. Excellent skin cell viability, proliferation, differentiation, and morphology were visualized through live/dead assays, 5-bromo-2'-deoxyuridine proliferation assays, and confocal microscopy. Trichrome and immunohistochemical staining of excisional wounds treated with the cellularized skin substitute revealed thicker newly formed skin with a higher proportion of actively proliferating cells and incorporation of human cells compared to acellular PG-1 or control. Excisional wounds treated with acellular or cellularized hydrogels showed significantly less macrophage infiltration and increased angiogenesis 14 days post skin biopsy compared to control. These results show that PG-1 has ideal mechanical characteristics and allows ideal cellular characteristics. In vivo evidence suggests that cellularized PG-1 promotes skin regeneration and may help promote wound healing in highly inflammatory wounds, such as burns and chronic wounds.
Collapse
Affiliation(s)
- Mathew N Nicholas
- Department of Surgery, Sunnybrook Research Institute, Ross Tilley Burn Centre, University of Toronto , Toronto, Ontario, Canada
| | - Marc G Jeschke
- Department of Surgery, Sunnybrook Research Institute, Ross Tilley Burn Centre, University of Toronto , Toronto, Ontario, Canada
| | - Saeid Amini-Nik
- Department of Surgery, Sunnybrook Research Institute, Ross Tilley Burn Centre, University of Toronto , Toronto, Ontario, Canada
| |
Collapse
|
38
|
Cheng DQ, Gu XD, Li ZY, Xiang JB, Chen ZY. Expression of C4.4A is a potential independent prognostic factor for patients with gastric cancer. Asian Pac J Cancer Prev 2016; 15:3895-9. [PMID: 24935570 DOI: 10.7314/apjcp.2014.15.9.3895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
C4.4A, a metastasis-associated gene, encodes a glycolipid-anchored membrane protein which is overexpressed in several human malignancies. However, there are few data available on C4.4A expression and its relationship with progression in gastric cancer. Our study was designed to explore the expression of C4.4A in gastric cancer and to correlate it with clinical outcome. C4.4A expression was studied by quantitative real-time RT-PCR and immunohistochemistry for assessment of correlations with clinicopathological factors. C4.4A mRNA expression was significantly up-regulated in gastric cancer as compared with noncancerous tissue (p<0.05)., being observed in 107 (88.4%) of the 121 gastric cancer cases by immunohistochemistry. We found that the expression of C4.4A mRNA was correlated with size of the tumor, depth of invasion, lymph node metastasis, distant metastasis and TNM stage. Moreover, patients with overexpression of C4.4A has a significantly worse survival (p<0.05). Further multivariable analysis indicated that the expression of C4.4A was an independent prognostic indicator for gastric cancer (p<0.05). In conclusion, overexpression of C4.4A correlates with metastatic potential of gastric cancer and C4.4A could be a novel independent prognostic marker for predicting outcome.
Collapse
Affiliation(s)
- Da-Qing Cheng
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China E-mail :
| | | | | | | | | |
Collapse
|
39
|
DH A. The Role of Insulin in Wound Healing Process: Mechanism of Action and Pharmaceutical Applications. ACTA ACUST UNITED AC 2016. [DOI: 10.15406/japlr.2016.02.00007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Nishimura M, Nishie W, Shirafuji Y, Shinkuma S, Natsuga K, Nakamura H, Sawamura D, Iwatsuki K, Shimizu H. Extracellular cleavage of collagen XVII is essential for correct cutaneous basement membrane formation. Hum Mol Genet 2016; 25:328-39. [PMID: 26604146 DOI: 10.1093/hmg/ddv478] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/16/2015] [Indexed: 02/04/2023] Open
Abstract
In skin, basal keratinocytes in the epidermis are tightly attached to the underlying dermis by the basement membrane (BM). The correct expression of hemidesmosomal and extracellular matrix (ECM) proteins is essential for BM formation, and the null-expression of one molecule may induce blistering diseases associated with immature BM formation in humans. However, little is known about the significance of post-translational processing of hemidesmosomal or ECM proteins in BM formation. Here we show that the C-terminal cleavage of hemidesmosomal transmembrane collagen XVII (COL17) is essential for correct BM formation. The homozygous p.R1303Q mutation in COL17 induces BM duplication and blistering in humans. Although laminin 332, a major ECM protein, interacts with COL17 around p.R1303, the mutation leaves the binding of both molecules unchanged. Instead, the mutation hampers the physiological C-terminal cleavage of COL17 in the ECM. Consequently, non-cleaved COL17 ectodomain remnants induce the aberrant deposition of laminin 332 in the ECM, which is thought to be the major pathogenesis of the BM duplication that results from this mutation. As an example of impaired cleavage of COL17, this study shows that regulated processing of hemidesmosomal proteins is essential for correct BM organization in skin.
Collapse
Affiliation(s)
- Machiko Nishimura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan,
| | - Yoshinori Shirafuji
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama 700-8558, Japan and
| | - Satoru Shinkuma
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Hideki Nakamura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Daisuke Sawamura
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Zaifu-Cho 5, Hirosaki 036-8562, Japan
| | - Keiji Iwatsuki
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama 700-8558, Japan and
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan,
| |
Collapse
|
41
|
Jiang LW, Chen H, Lu H. Using human epithelial amnion cells in human de-epidermized dermis for skin regeneration. J Dermatol Sci 2015; 81:26-34. [PMID: 26596214 DOI: 10.1016/j.jdermsci.2015.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/14/2015] [Accepted: 10/27/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Human amniotic epithelial cells (hAECs) is a desirable reserve of stem cells. Human de-epidermized dermis (DED) retains basic tissue structure and parts of the basement membrane (BM) components at the acelluIar dermal surface, and provides a potential tool for skin regeneration. OBJECTIVE To evaluate the potential role of hAECs in skin regeneration, we used DED to perform organotypic culture of hAECs to develop organotypic skin. METHODS HAECs were isolated and cultured. Biological characteristics of hAECs were determined by immunocytochemistry and flow cytometry. To prepare DED, the epidermis was removed and then repeated freeze-thaw cycles. HAECs and fibroblast were seeded onto DED to perform the submerged culture for 3 days and then to be maintained at the air-liquid interface for 14 days to form organotypic culture. To identify whether the obtained DED retain the BM structure and components, the histological characteristics of DED and the BM were detected by immunohistochemistry. To evaluate whether the organotypic skin has similar histological characteristics with normal human skin, the marks of epidermal proliferation and differentiation and basement membrane component were detected by immunohistochemistry. Moreover, cell ultrastructure, cell-cell contact and ultrastructure of BM were examined under the transmission electron microscopy. RESULTS HAECs has stem-cell characteristics with strong pluripotent Oct-4 and embryonic marker SSEA-4 expression. DED has effectively cleansed the cell components and continuous distributions of laminin and collagen IV. The histological appearance of tissue-engineered skin in vitro has 4 to 9 continuous layers of stratified epithelium and is similar to normal human skin in morphology. Immunohistochemical studies revealed that proliferation and differentiation markers such as Ki67, CK19, CK14, CK10, filaggrin but not CK18 expressed similar pattern characteristics to normal human epidermis. In addition, Periodic acid-Schiff stain showed that a uniform red staining strip located at the epidermal-dermal junction. BM component proteins (type IV collagen and laminin) and cell adhesion protein (desmoglein) were detected by immunohistochemistry in organotypic skin. Ultrastructurally, desmosomes, hemidesmosomes and BM zone (BMZ) were observed in organotypic skin. CONCLUSIONS Our studies indicate that the hAECs is a promising stem cell source for tissue-engineered skin, and DED with hAECs is a potential application prospects in regenerative medicine.
Collapse
Affiliation(s)
- Lei-Wei Jiang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China; Department of Dermatology, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550001, PR China
| | - Hongduo Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Hongguang Lu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China; Department of Dermatology, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550001, PR China.
| |
Collapse
|
42
|
Generating and characterizing the mechanical properties of cell-derived matrices using atomic force microscopy. Methods 2015; 94:85-100. [PMID: 26439175 DOI: 10.1016/j.ymeth.2015.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/26/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022] Open
Abstract
Mechanical interaction between cells and their surrounding extracellular matrix (ECM) controls key processes such as proliferation, differentiation and motility. For many years, two-dimensional (2D) models were used to better understand the interactions between cells and their surrounding ECM. More recently, variation of the mechanical properties of tissues has been reported to play a major role in physiological and pathological scenarios such as cancer progression. The 3D architecture of the ECM finely tunes cellular behavior to perform physiologically relevant tasks. Technical limitations prevented scientists from obtaining accurate assessment of the mechanical properties of physiologically realistic matrices. There is therefore a need for combining the production of high-quality cell-derived 3D matrices (CDMs) and the characterization of their topographical and mechanical properties. Here, we describe methods that allow to accurately measure the young modulus of matrices produced by various cellular types. In the first part, we will describe and review several protocols for generating CDMs matrices from endothelial, epithelial, fibroblastic, muscle and mesenchymal stem cells. We will discuss tools allowing the characterization of the topographical details as well as of the protein content of such CDMs. In a second part, we will report the methodologies that can be used, based on atomic force microscopy, to accurately evaluate the stiffness properties of the CDMs through the quantification of their young modulus. Altogether, such methodologies allow characterizing the stiffness and topography of matrices deposited by the cells, which is key for the understanding of cellular behavior in physiological conditions.
Collapse
|
43
|
Liu L, Li J, Zhang L, Zhang F, Zhang R, Chen X, Brakebusch C, Wang Z, Liu X. Cofilin phosphorylation is elevated after F-actin disassembly induced by Rac1 depletion. Biofactors 2015; 41:352-9. [PMID: 26496994 DOI: 10.1002/biof.1235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/24/2015] [Indexed: 11/12/2022]
Abstract
Cytoskeletal reorganization is essential to keratinocyte function. Rac1 regulates cytoskeletal reorganization through signaling pathways such as the cofilin cascade. Cofilin severs actin filaments after activation by dephosphorylation. Rac1 was knocked out in mouse keratinocytes and it was found that actin filaments disassembled. In the epidermis of mice in which Rac1 was knocked out only in keratinocytes, cofilin phosphorylation was aberrantly elevated, corresponding to repression of the phosphatase slingshot1 (SSH1). These effects were independent of the signaling pathways for p21-activated kinase/LIM kinase (Pak/LIMK), protein kinase C, or protein kinase D or generation of reactive oxygen species. Similarly, when actin polymerization was specifically inhibited or Rac1 was knocked down, cofilin phosphorylation was enhanced and SSH1 was repressed. Repression of SSH1 partially blocked actin depolymerization induced by Rac1 depletion. Therefore, aberrant cofilin phosphorylation that induces actin polymerization might be a consequence of actin disassembly induced by the absence of Rac1.
Collapse
Affiliation(s)
- Linna Liu
- Department of Pharmaceutics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Li
- Department of Burn and Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Liwang Zhang
- Scientific Research Department, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Rong Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xiang Chen
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Cord Brakebusch
- BRIC Biomedical Institute, University of Copenhagen, Copenhagen, Denmark
| | - Zhipeng Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xinyou Liu
- Department of Pharmaceutics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
44
|
Yamada M, Sekiguchi K. Molecular Basis of Laminin-Integrin Interactions. CURRENT TOPICS IN MEMBRANES 2015; 76:197-229. [PMID: 26610915 DOI: 10.1016/bs.ctm.2015.07.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Laminins are composed of three polypeptide chains, designated as α, β, and γ. The C-terminal region of laminin heterotrimers, containing coiled-coil regions, short tails, and laminin globular (LG) domains, is necessary and sufficient for binding to integrins, which are the major laminin receptor class. Laminin recognition by integrins critically requires the α chain LG domains and a glutamic acid residue of the γ chain at the third position from the C-terminus. Furthermore, the C-terminal region of the β chain contains a short amino acid sequence that modulates laminin affinity for integrins. Thus, all three of the laminin chains act cooperatively to facilitate integrin binding. Mammals possess 5 α (α1-5), 3 β (β1-3), and 3 γ (γ1-3) chains, combinations of which give rise to 16 distinct laminin isoforms. Each isoform is expressed in a tissue-specific and developmental stage-specific manner, exerting its functions through binding of integrins. In this review, we detail the current knowledge surrounding the molecular basis and physiological relevance of specific interactions between laminins and integrins, and describe the mechanisms underlying laminin action through integrins.
Collapse
Affiliation(s)
- Masashi Yamada
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kiyotoshi Sekiguchi
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
45
|
Iorio V, Troughton LD, Hamill KJ. Laminins: Roles and Utility in Wound Repair. Adv Wound Care (New Rochelle) 2015; 4:250-263. [PMID: 25945287 DOI: 10.1089/wound.2014.0533] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/27/2014] [Indexed: 01/13/2023] Open
Abstract
Significance: Laminins are complex extracellular macromolecules that are major players in the control of a variety of core cell processes, including regulating rates of cell proliferation, differentiation, adhesion, and migration. Laminins, and related extracellular matrix components, have essential roles in tissue homeostasis; however, during wound healing, the same proteins are critical players in re-epithelialization and angiogenesis. Understanding how these proteins influence cell behavior in these different conditions holds great potential in identifying new strategies to enhance normal wound closure or to treat chronic/nonhealing wounds. Recent Advances: Laminin-derived bioactive peptides and, more recently, laminin-peptide conjugated scaffolds, have been designed to improve tissue regeneration after injuries. These peptides have been shown to be effective in decreasing inflammation and granulation tissue, and in promoting re-epithelialization, angiogenesis, and cell migration. Critical Issues: Although there is now a wealth of knowledge concerning laminin form and function, there are still areas of some controversy. These include the relative contribution of two laminin-based adhesive devices (focal contacts and hemidesmosomes) to the re-epithelialization process, the impact and implications of laminin proteolytic processing, and the importance of laminin polymer formation on cell behavior. In addition, the roles in wound healing of the laminin-related proteins, netrins, and LaNts are still to be fully defined. Future Directions: The future of laminin-based therapeutics potentially lies in the bioengineering of specific substrates to support laminin deposition for ex vivo expansion of autologous cells for graft formation and transplantation. Significant recent advances suggest that this goal is within sight.
Collapse
Affiliation(s)
- Valentina Iorio
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Lee D. Troughton
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Kevin J. Hamill
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
46
|
Wang X, Zhao Y, Yang Y, Qin M. Novel ENAM and LAMB3 mutations in Chinese families with hypoplastic amelogenesis imperfecta. PLoS One 2015; 10:e0116514. [PMID: 25769099 PMCID: PMC4358960 DOI: 10.1371/journal.pone.0116514] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/10/2014] [Indexed: 11/18/2022] Open
Abstract
Amelogenesis imperfecta is a group of inherited diseases affecting the quality and quantity of dental enamel. To date, mutations in more than ten genes have been associated with non-syndromic amelogenesis imperfecta (AI). Among these, ENAM and LAMB3 mutations are known to be parts of the etiology of hypoplastic AI in human cases. When both alleles of LAMB3 are defective, it could cause junctional epidermolysis bullosa (JEB), while with only one mutant allele in the C-terminus of LAMB3, it could result in severe hypoplastic AI without skin fragility. We enrolled three Chinese families with hypoplastic autosomal-dominant AI. Despite the diagnosis falling into the same type, the characteristics of their enamel hypoplasia were different. Screening of ENAM and LAMB3 genes was performed by direct sequencing of genomic DNA from blood samples. Disease-causing mutations were identified and perfectly segregated with the enamel defects in three families: a 19-bp insertion mutation in the exon 7 of ENAM (c.406_407insTCAAAAAAGCCGACCACAA, p.K136Ifs*16) in Family 1, a single-base deletion mutation in the exon 5 of ENAM (c. 139delA, p. M47Cfs*11) in Family 2, and a LAMB3 nonsense mutation in the last exon (c.3466C>T, p.Q1156X) in Family 3. Our results suggest that heterozygous mutations in ENAM and LAMB3 genes can cause hypoplastic AI with markedly different phenotypes in Chinese patients. And these findings extend the mutation spectrum of both genes and can be used for mutation screening of AI in the Chinese population.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuan Yang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Man Qin
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
47
|
Monteiro IP, Gabriel D, Timko BP, Hashimoto M, Karajanagi S, Tong R, Marques AP, Reis RL, Kohane DS. A two-component pre-seeded dermal-epidermal scaffold. Acta Biomater 2014; 10:4928-4938. [PMID: 25192821 PMCID: PMC4254066 DOI: 10.1016/j.actbio.2014.08.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/18/2014] [Accepted: 08/25/2014] [Indexed: 12/14/2022]
Abstract
We have developed a bilayered dermal-epidermal scaffold for application in the treatment of full-thickness skin defects. The dermal component gels in situ and adapts to the lesion shape, delivering human dermal fibroblasts in a matrix of fibrin and cross-linked hyaluronic acid modified with a cell adhesion-promoting peptide. Fibroblasts were able to form a tridimensional matrix due to material features such as tailored mechanical properties, presence of protease-degradable elements and cell-binding ligands. The epidermal component is a robust membrane containing cross-linked hyaluronic acid and poly-l-lysine, on which keratinocytes were able to attach and to form a monolayer. Amine-aldehyde bonding at the interface between the two components allows the formation of a tightly bound composite scaffold. Both parts of the scaffold were designed to provide cell-type-specific cues to allow for cell proliferation and form a construct that mimics the skin environment.
Collapse
Affiliation(s)
- I P Monteiro
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory University of Minho, Braga/Guimarães, Portugal
| | - D Gabriel
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - B P Timko
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - M Hashimoto
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - S Karajanagi
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - R Tong
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - A P Marques
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory University of Minho, Braga/Guimarães, Portugal
| | - R L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory University of Minho, Braga/Guimarães, Portugal
| | - D S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
48
|
Koivisto L, Heino J, Häkkinen L, Larjava H. Integrins in Wound Healing. Adv Wound Care (New Rochelle) 2014; 3:762-783. [PMID: 25493210 DOI: 10.1089/wound.2013.0436] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 01/06/2023] Open
Abstract
Significance: Regulation of cell adhesions during tissue repair is fundamentally important for cell migration, proliferation, and protein production. All cells interact with extracellular matrix proteins with cell surface integrin receptors that convey signals from the environment into the nucleus, regulating gene expression and cell behavior. Integrins also interact with a variety of other proteins, such as growth factors, their receptors, and proteolytic enzymes. Re-epithelialization and granulation tissue formation are crucially dependent on the temporospatial function of multiple integrins. This review explains how integrins function in wound repair. Recent Advances: Certain integrins can activate latent transforming growth factor beta-1 (TGF-β1) that modulates wound inflammation and granulation tissue formation. Dysregulation of TGF-β1 function is associated with scarring and fibrotic disorders. Therefore, these integrins represent targets for therapeutic intervention in fibrosis. Critical Issues: Integrins have multifaceted functions and extensive crosstalk with other cell surface receptors and molecules. Moreover, in aberrant healing, integrins may assume different functions, further increasing the complexity of their functionality. Discovering and understanding the role that integrins play in wound healing provides an opportunity to identify the mechanisms for medical conditions, such as excessive scarring, chronic wounds, and even cancer. Future Directions: Integrin functions in acute and chronic wounds should be further addressed in models better mimicking human wounds. Application of any products in acute or chronic wounds will potentially alter integrin functions that need to be carefully considered in the design.
Collapse
Affiliation(s)
- Leeni Koivisto
- Laboratory of Periodontal Biology, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Jyrki Heino
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Lari Häkkinen
- Laboratory of Periodontal Biology, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Hannu Larjava
- Laboratory of Periodontal Biology, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
49
|
Sung BH, Weaver AM. Regulation of lysosomal secretion by cortactin drives fibronectin deposition and cell motility. BIOARCHITECTURE 2014; 1:257-260. [PMID: 22545176 PMCID: PMC3337126 DOI: 10.4161/bioa.1.6.19197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Directional cellular movement is required for various organismal processes, including immune defense and cancer metastasis. Proper navigation of migrating cells involves responding to a complex set of extracellular cues, including diffusible chemical signals and physical structural information. In tissues, conflicting gradients and signals may require cells to not only respond to the environment but also modulate it for efficient adhesion formation and directional cell motility. Recently, we found that cells endocytose fibronectin (FN) and resecrete it from a late endosomal/lysosomal (LE/Lys) compartment to provide an autocrine extracellular matrix (ECM) substrate for cell motility. Branched actin assembly regulated by cortactin was required for trafficking of FN-containing vesicles from LE/Lys to the cell surface. These findings suggest a model in which migrating cells use lysosomal secretion as a versatile mechanism to modulate the ECM environment, promote adhesion assembly and enhance directional migration.
Collapse
|
50
|
Gautrot JE, Malmström J, Sundh M, Margadant C, Sonnenberg A, Sutherland DS. The nanoscale geometrical maturation of focal adhesions controls stem cell differentiation and mechanotransduction. NANO LETTERS 2014; 14:3945-52. [PMID: 24848978 DOI: 10.1021/nl501248y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We show that the nanoscale adhesion geometry controls the spreading and differentiation of epidermal stem cells. We find that cells respond to such hard nanopatterns similarly to their behavior on soft hydrogels. Cellular responses were seen to stem from local changes in diffusion dynamics of the adapter protein vinculin and associated impaired mechanotransduction rather than impaired recruitment of proteins involved in focal adhesion formation.
Collapse
Affiliation(s)
- Julien E Gautrot
- Institute of Bioengineering and ‡School of Engineering and Materials Science, Queen Mary, University of London , Mile End Road, London E1 4NS, United Kingdom
| | | | | | | | | | | |
Collapse
|