1
|
Weißenbruch K, Mayor R. Actomyosin forces in cell migration: Moving beyond cell body retraction. Bioessays 2024; 46:e2400055. [PMID: 39093597 DOI: 10.1002/bies.202400055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
In textbook illustrations of migrating cells, actomyosin contractility is typically depicted as the contraction force necessary for cell body retraction. This dogma has been transformed by the molecular clutch model, which acknowledges that actomyosin traction forces also generate and transmit biomechanical signals at the leading edge, enabling cells to sense and shape their migratory path in mechanically complex environments. To fulfill these complementary functions, the actomyosin system assembles a gradient of contractile energy along the front-rear axis of migratory cells. Here, we highlight the hierarchic assembly and self-regulatory network structure of the actomyosin system and explain how the kinetics of different nonmuscle myosin II (NM II) paralogs synergize during contractile force generation. Our aim is to emphasize how protrusion formation, cell adhesion, contraction, and retraction are spatiotemporally integrated during different modes of migration, including chemotaxis and durotaxis. Finally, we hypothesize how different NM II paralogs might tune aspects of migration in vivo, highlighting future research directions.
Collapse
Affiliation(s)
- Kai Weißenbruch
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|
2
|
Deng Y, Banerjee T, Pal DS, Banerjee P, Zhan H, Borleis J, Igleias PA, Devreotes PN. PIP5K-Ras bistability initiates plasma membrane symmetry breaking to regulate cell polarity and migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613115. [PMID: 39314378 PMCID: PMC11419139 DOI: 10.1101/2024.09.15.613115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Symmetry breaking, polarity establishment, and spontaneous cell protrusion formation are fundamental but poorly explained cell behaviors. Here, we demonstrate that a biochemical network, where the mutually inhibitory localization of PIP5K and Ras activities plays a central role, governs these processes. First, in resting cells devoid of cytoskeletal activity, PIP5K is uniformly elevated on the plasma membrane, while Ras activity remains minimal. Symmetry is broken by spontaneous local displacements of PIP5K, coupled with simultaneous activations of Ras and downstream signaling events, including PI3K activation. Second, knockout of PIP5K dramatically increases both the incidence and size of Ras-PI3K activation patches, accompanied by branched F-actin assembly. This leads to enhanced cortical wave formation, increased protrusive activity, and a shift in migration mode. Third, high inducible overexpression of PIP5K virtually eliminates Ras-PI3K signaling, cytoskeletal activity, and cell migration, while acute recruitment of cytosolic PIP5K to the membrane induces contraction and blebs in cancer cells. These arrested phenotypes are reversed by reducing myosin II activity, indicating myosin's involvement in the PIP5K-Ras-centered regulatory network. Remarkably, low inducible overexpression of PIP5K unexpectedly facilitates polarity establishment, highlighting PIP5K as a highly sensitive master regulator of these processes. Simulations of a computational model combining an excitable system, cytoskeletal loops, and dynamic partitioning of PIP5K recreates the experimental observations. Taken together, our results reveal that a bistable, mutually exclusive localization of PIP5K and active Ras on the plasma membrane triggers the initial symmetry breaking. Coupled actomyosin reduction and increased actin polymerization lead to intermittently extended protrusions and, with feedback from the cytoskeleton, self-organizing, complementary gradients of PIP5K versus Ras steepen, raising the threshold of the networks at the rear and lowering it at the front to generate polarity for cell migration.
Collapse
Affiliation(s)
- Yu Deng
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- These authors contributed equally to this work
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- These authors contributed equally to this work
| | - Parijat Banerjee
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD, USA
| | - Huiwang Zhan
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A. Igleias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N. Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Banerjee T, Matsuoka S, Biswas D, Miao Y, Pal DS, Kamimura Y, Ueda M, Devreotes PN, Iglesias PA. A dynamic partitioning mechanism polarizes membrane protein distribution. Nat Commun 2023; 14:7909. [PMID: 38036511 PMCID: PMC10689845 DOI: 10.1038/s41467-023-43615-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
The plasma membrane is widely regarded as the hub of the numerous signal transduction activities. Yet, the fundamental biophysical mechanisms that spatiotemporally compartmentalize different classes of membrane proteins remain unclear. Using multimodal live-cell imaging, here we first show that several lipid-anchored membrane proteins are consistently depleted from the membrane regions where the Ras/PI3K/Akt/F-actin network is activated. The dynamic polarization of these proteins does not depend upon the F-actin-based cytoskeletal structures, recurring shuttling between membrane and cytosol, or directed vesicular trafficking. Photoconversion microscopy and single-molecule measurements demonstrate that these lipid-anchored molecules have substantially dissimilar diffusion profiles in different regions of the membrane which enable their selective segregation. When these diffusion coefficients are incorporated into an excitable network-based stochastic reaction-diffusion model, simulations reveal that the altered affinity mediated selective partitioning is sufficient to drive familiar propagating wave patterns. Furthermore, normally uniform integral and lipid-anchored membrane proteins partition successfully when membrane domain-specific peptides are optogenetically recruited to them. We propose "dynamic partitioning" as a new mechanism that can account for large-scale compartmentalization of a wide array of lipid-anchored and integral membrane proteins during various physiological processes where membrane polarizes.
Collapse
Affiliation(s)
- Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Satomi Matsuoka
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Debojyoti Biswas
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yuchuan Miao
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Pablo A Iglesias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Meyer H, Rieger H. Alignment interaction and band formation in assemblies of autochemorepulsive walkers. Phys Rev E 2023; 108:034604. [PMID: 37849087 DOI: 10.1103/physreve.108.034604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/18/2023] [Indexed: 10/19/2023]
Abstract
Chemotaxis refers to the motion of an organism induced by chemical stimuli and is a motility mode shared by many living species that has been developed by evolution to optimize certain biological processes such as foraging or immune response. In particular, autochemotaxis refers to chemotaxis mediated by a cue produced by the chemotactic particle itself. Here, we investigate the collective behavior of autochemotactic particles that are repelled by the cue and therefore migrate preferentially towards low-concentration regions. To this end, we introduce a lattice model inspired by the true self-avoiding walk which reduces to the Keller-Segel model in the continuous limit, for which we describe the rich phase behavior. We first rationalize the chemically mediated alignment interaction between walkers in the limit of stationary concentration fields, and then describe the various large-scale structures that can spontaneously form and the conditions for them to emerge, among which we find stable bands traveling at constant speed in the direction transverse to the band.
Collapse
Affiliation(s)
- Hugues Meyer
- Department of Theoretical Physics & Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Heiko Rieger
- Department of Theoretical Physics & Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| |
Collapse
|
5
|
Sixt S, Gruber M, Kolle G, Galla T, Bitzinger D. The Effect of Local Anesthetics on Neutrophils in the Context of Different Isolation Techniques. Biomedicines 2023; 11:2170. [PMID: 37626667 PMCID: PMC10452207 DOI: 10.3390/biomedicines11082170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Various functions of polymorphonuclear neutrophils (PMNs) are related to diseases and postoperative plasma changes. The influence of some local anesthetics (LAs) on PMNs obtained by conventional isolation methods and their functions has already been demonstrated. This study investigates the effect of selected LAs on PMNs, comparing a new isolation method with conventional ones. To obtain the PMNs, we performed either gelafundin sedimentation, hypotonic lysis or density gradient centrifugation. Subsequently, PMNs were mixed with different concentrations of bupivacaine, levobupivacaine, lidocaine or ropivacaine. Live cell imaging and flow cytometry were performed to quantify the migration, ROS production, NETosis and antigen expression of PMNs. We found the inhibition of chemotaxis and ROS production by LAs. PMNs showed a strong reduction in time to half maximal NETosis in response to bupivacaine and lidocaine, but not to levobupivacaine and ropivacaine. We also found distinct differences in survival time and migration duration between the isolation methods. This suggests that the careful selection of LAs has a short-term impact on in vitro PMNs.
Collapse
Affiliation(s)
- Sara Sixt
- Department of Anesthesiology, University Hospital Regensburg, 93042 Regensburg, Germany
| | | | | | | | | |
Collapse
|
6
|
Pal DS, Banerjee T, Lin Y, de Trogoff F, Borleis J, Iglesias PA, Devreotes PN. Actuation of single downstream nodes in growth factor network steers immune cell migration. Dev Cell 2023; 58:1170-1188.e7. [PMID: 37220748 PMCID: PMC10524337 DOI: 10.1016/j.devcel.2023.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/14/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023]
Abstract
Ras signaling is typically associated with cell growth, but not direct regulation of motility or polarity. By optogenetically targeting different nodes in the Ras/PI3K/Akt network in differentiated human HL-60 neutrophils, we abruptly altered protrusive activity, bypassing the chemoattractant receptor/G-protein network. First, global recruitment of active KRas4B/HRas isoforms or a RasGEF, RasGRP4, immediately increased spreading and random motility. Second, activating Ras at the cell rear generated new protrusions, reversed pre-existing polarity, and steered sustained migration in neutrophils or murine RAW 264.7 macrophages. Third, recruiting a RasGAP, RASAL3, to cell fronts extinguished protrusions and changed migration direction. Remarkably, persistent RASAL3 recruitment at stable fronts abrogated directed migration in three different chemoattractant gradients. Fourth, local recruitment of the Ras-mTORC2 effector, Akt, in neutrophils or Dictyostelium amoebae generated new protrusions and rearranged pre-existing polarity. Overall, these optogenetic effects were mTORC2-dependent but relatively independent of PI3K. Thus, receptor-independent, local activations of classical growth-control pathways directly control actin assembly, cell shape, and migration modes.
Collapse
Affiliation(s)
- Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yiyan Lin
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Félix de Trogoff
- Department of Mechanical Engineering, STI School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Iglesias
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
7
|
Banerjee T, Matsuoka S, Biswas D, Miao Y, Pal DS, Kamimura Y, Ueda M, Devreotes PN, Iglesias PA. A dynamic partitioning mechanism polarizes membrane protein distribution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522496. [PMID: 36712016 PMCID: PMC9881856 DOI: 10.1101/2023.01.03.522496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The plasma membrane is widely regarded as the hub of the signal transduction network activities that drives numerous physiological responses, including cell polarity and migration. Yet, the symmetry breaking process in the membrane, that leads to dynamic compartmentalization of different proteins, remains poorly understood. Using multimodal live-cell imaging, here we first show that multiple endogenous and synthetic lipid-anchored proteins, despite maintaining stable tight association with the inner leaflet of the plasma membrane, were unexpectedly depleted from the membrane domains where the signaling network was spontaneously activated such as in the new protrusions as well as within the propagating ventral waves. Although their asymmetric patterns resembled those of standard peripheral "back" proteins such as PTEN, unlike the latter, these lipidated proteins did not dissociate from the membrane upon global receptor activation. Our experiments not only discounted the possibility of recurrent reversible translocation from membrane to cytosol as it occurs for weakly bound peripheral membrane proteins, but also ruled out the necessity of directed vesicular trafficking and cytoskeletal supramolecular structure-based restrictions in driving these dynamic symmetry breaking events. Selective photoconversion-based protein tracking assays suggested that these asymmetric patterns instead originate from the inherent ability of these membrane proteins to "dynamically partition" into distinct domains within the plane of the membrane. Consistently, single-molecule measurements showed that these lipid-anchored molecules have substantially dissimilar diffusion profiles in different regions of the membrane. When these profiles were incorporated into an excitable network-based stochastic reaction-diffusion model of the system, simulations revealed that our proposed "dynamic partitioning" mechanism is sufficient to give rise to familiar asymmetric propagating wave patterns. Moreover, we demonstrated that normally uniform integral and lipid-anchored membrane proteins in Dictyostelium and mammalian neutrophil cells can be induced to partition spatiotemporally to form polarized patterns, by optogenetically recruiting membrane domain-specific peptides to these proteins. Together, our results indicate "dynamic partitioning" as a new mechanism of plasma membrane organization, that can account for large-scale compartmentalization of a wide array of lipid-anchored and integral membrane proteins in different physiological processes.
Collapse
|
8
|
The Forces behind Directed Cell Migration. BIOPHYSICA 2022. [DOI: 10.3390/biophysica2040046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Directed cell migration is an essential building block of life, present when an embryo develops, a dendritic cell migrates toward a lymphatic vessel, or a fibrotic organ fails to restore its normal parenchyma. Directed cell migration is often guided by spatial gradients in a physicochemical property of the cell microenvironment, such as a gradient in chemical factors dissolved in the medium or a gradient in the mechanical properties of the substrate. Single cells and tissues sense these gradients, establish a back-to-front polarity, and coordinate the migration machinery accordingly. Central to these steps we find physical forces. In some cases, these forces are integrated into the gradient sensing mechanism. Other times, they transmit information through cells and tissues to coordinate a collective response. At any time, they participate in the cellular migratory system. In this review, we explore the role of physical forces in gradient sensing, polarization, and coordinating movement from single cells to multicellular collectives. We use the framework proposed by the molecular clutch model and explore to what extent asymmetries in the different elements of the clutch can lead to directional migration.
Collapse
|
9
|
Muljadi M, Fu YC, Cheng CM. Understanding the Cell's Response to Chemical Signals: Utilisation of Microfluidic Technology in Studies of Cellular and Dictyostelium discoideum Chemotaxis. MICROMACHINES 2022; 13:1737. [PMID: 36296089 PMCID: PMC9611482 DOI: 10.3390/mi13101737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Cellular chemotaxis has been the subject of a variety of studies due to its relevance in physiological processes, disease pathogenesis, and systems biology, among others. The migration of cells towards a chemical source remains a closely studied topic, with the Boyden chamber being one of the earlier techniques that has successfully studied cell chemotaxis. Despite its success, diffusion chambers such as these presented a number of problems, such as the quantification of many aspects of cell behaviour, the reproducibility of procedures, and measurement accuracy. The advent of microfluidic technology prompted more advanced studies of cell chemotaxis, usually involving the social amoeba Dictyostelium discoideum (D. discoideum) as a model organism because of its tendency to aggregate towards chemotactic agents and its similarities to higher eukaryotes. Microfluidic technology has made it possible for studies to look at chemotactic properties that would have been difficult to observe using classic diffusion chambers. Its flexibility and its ability to generate consistent concentration gradients remain some of its defining aspects, which will surely lead to an even better understanding of cell migratory behaviour and therefore many of its related biological processes. This paper first dives into a brief introduction of D. discoideum as a social organism and classical chemotaxis studies. It then moves to discuss early microfluidic devices, before diving into more recent and advanced microfluidic devices and their use with D. discoideum. The paper then closes with brief opinions about research progress in the field and where it will possibly lead in the future.
Collapse
Affiliation(s)
- Michael Muljadi
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yi-Chen Fu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
10
|
Banerjee T, Biswas D, Pal DS, Miao Y, Iglesias PA, Devreotes PN. Spatiotemporal dynamics of membrane surface charge regulates cell polarity and migration. Nat Cell Biol 2022; 24:1499-1515. [PMID: 36202973 PMCID: PMC10029748 DOI: 10.1038/s41556-022-00997-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 08/18/2022] [Indexed: 12/12/2022]
Abstract
During cell migration and polarization, numerous signal transduction and cytoskeletal components self-organize to generate localized protrusions. Although biochemical and genetic analyses have delineated many specific interactions, how the activation and localization of so many different molecules are spatiotemporally orchestrated at the subcellular level has remained unclear. Here we show that the regulation of negative surface charge on the inner leaflet of the plasma membrane plays an integrative role in the molecular interactions. Surface charge, or zeta potential, is transiently lowered at new protrusions and within cortical waves of Ras/PI3K/TORC2/F-actin network activation. Rapid alterations of inner leaflet anionic phospholipids-such as PI(4,5)P2, PI(3,4)P2, phosphatidylserine and phosphatidic acid-collectively contribute to the surface charge changes. Abruptly reducing the surface charge by recruiting positively charged optogenetic actuators was sufficient to trigger the entire biochemical network, initiate de novo protrusions and abrogate pre-existing polarity. These effects were blocked by genetic or pharmacological inhibition of key signalling components such as AKT and PI3K/TORC2. Conversely, increasing the negative surface charge deactivated the network and locally suppressed chemoattractant-induced protrusions or subverted EGF-induced ERK activation. Computational simulations involving excitable biochemical networks demonstrated that slight changes in feedback loops, induced by recruitment of the charged actuators, could lead to outsized effects on system activation. We propose that key signalling network components act on, and are in turn acted upon, by surface charge, closing feedback loops, which bring about the global-scale molecular self-organization required for spontaneous protrusion formation, cell migration and polarity establishment.
Collapse
Affiliation(s)
- Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Debojyoti Biswas
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yuchuan Miao
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Iglesias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
11
|
Quast T, Zölzer K, Guu D, Alvarez L, Küsters C, Kiermaier E, Kaupp UB, Kolanus W. A Stable Chemokine Gradient Controls Directional Persistence of Migrating Dendritic Cells. Front Cell Dev Biol 2022; 10:943041. [PMID: 36016652 PMCID: PMC9395945 DOI: 10.3389/fcell.2022.943041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Navigation of dendritic cells (DCs) from the site of infection to lymphoid organs is guided by concentration gradients of CCR7 ligands. How cells interpret chemokine gradients and how they couple directional sensing to polarization and persistent chemotaxis has remained largely elusive. Previous experimental systems were limited in the ability to control fast de novo formation of the final gradient slope, long-lasting stability of the gradient and to expose cells to dynamic stimulation. Here, we used a combination of microfluidics and quantitative in vitro live cell imaging to elucidate the chemotactic sensing strategy of DCs. The microfluidic approach allows us to generate soluble gradients with high spatio-temporal precision and to analyze actin dynamics, cell polarization, and persistent directional migration in both static and dynamic environments. We demonstrate that directional persistence of DC migration requires steady-state characteristics of the soluble gradient instead of temporally rising CCL19 concentration, implying that spatial sensing mechanisms control chemotaxis of DCs. Kymograph analysis of actin dynamics revealed that the presence of the CCL19 gradient is essential to stabilize leading edge protrusions in DCs and to determine directionality, since both cytoskeletal polarization and persistent chemotaxis are abrogated in the range of seconds when steady-state gradients are perturbed. In contrast to Dictyostelium amoeba, DCs are unable to decode oscillatory stimulation of soluble chemokine traveling waves into a directional response toward the wave source. These findings are consistent with the notion that DCs do not employ adaptive temporal sensing strategies that discriminate temporally increasing and decreasing chemoattractant concentrations in our setting. Taken together, in our experimental system DCs do not depend on increasing absolute chemokine concentration over time to induce persistent migration and do not integrate oscillatory stimulation. The observed capability of DCs to migrate with high directional persistence in stable gradients but not when subjected to periodic temporal cues, identifies spatial sensing as a key requirement for persistent chemotaxis of DCs.
Collapse
Affiliation(s)
- Thomas Quast
- Molecular Immunology and Cell Biology, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Karolin Zölzer
- Molecular Immunology and Cell Biology, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Donald Guu
- Molecular Sensory Systems, Max Planck Institute for Neurobiology of Behavior—Caesar, Bonn, Germany
| | - Luis Alvarez
- Molecular Sensory Systems, Max Planck Institute for Neurobiology of Behavior—Caesar, Bonn, Germany
| | - Carsten Küsters
- Molecular Immunology and Cell Biology, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Eva Kiermaier
- Immune and Tumor Biology, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - U. Benjamin Kaupp
- Molecular Sensory Systems, Max Planck Institute for Neurobiology of Behavior—Caesar, Bonn, Germany
| | - Waldemar Kolanus
- Molecular Immunology and Cell Biology, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
- *Correspondence: Waldemar Kolanus,
| |
Collapse
|
12
|
Kirolos SA, Gomer RH. A chemorepellent inhibits local Ras activation to inhibit pseudopod formation to bias cell movement away from the chemorepellent. Mol Biol Cell 2021; 33:ar9. [PMID: 34788129 PMCID: PMC8886819 DOI: 10.1091/mbc.e20-10-0656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of cells to sense chemical gradients is essential during development, morphogenesis, and immune responses. Although much is known about chemoattraction, chemorepulsion remains poorly understood. Proliferating Dictyostelium cells secrete a chemorepellent protein called AprA. AprA prevents pseudopod formation at the region of the cell closest to the source of AprA, causing the random movement of cells to be biased away from the AprA. Activation of Ras proteins in a localized sector of a cell cortex helps to induce pseudopod formation, and Ras proteins are needed for AprA chemorepulsion. Here we show that AprA locally inhibits Ras cortical activation through the G protein–coupled receptor GrlH, the G protein subunits Gβ and Gα8, Ras protein RasG, protein kinase B, the p21-activated kinase PakD, and the extracellular signal–regulated kinase Erk1. Diffusion calculations and experiments indicate that in a colony of cells, high extracellular concentrations of AprA in the center can globally inhibit Ras activation, while a gradient of AprA that naturally forms at the edge of the colony allows cells to activate Ras at sectors of the cell other than the sector of the cell closest to the center of the colony, effectively inducing both repulsion from the colony and cell differentiation. Together, these results suggest that a pathway that inhibits local Ras activation can mediate chemorepulsion.
Collapse
Affiliation(s)
- Sara A Kirolos
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, Texas, 77843-3474 USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, Texas, 77843-3474 USA
| |
Collapse
|
13
|
d’Alessandro J, Barbier--Chebbah A, Cellerin V, Benichou O, Mège RM, Voituriez R, Ladoux B. Cell migration guided by long-lived spatial memory. Nat Commun 2021; 12:4118. [PMID: 34226542 PMCID: PMC8257581 DOI: 10.1038/s41467-021-24249-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
Living cells actively migrate in their environment to perform key biological functions-from unicellular organisms looking for food to single cells such as fibroblasts, leukocytes or cancer cells that can shape, patrol or invade tissues. Cell migration results from complex intracellular processes that enable cell self-propulsion, and has been shown to also integrate various chemical or physical extracellular signals. While it is established that cells can modify their environment by depositing biochemical signals or mechanically remodelling the extracellular matrix, the impact of such self-induced environmental perturbations on cell trajectories at various scales remains unexplored. Here, we show that cells can retrieve their path: by confining motile cells on 1D and 2D micropatterned surfaces, we demonstrate that they leave long-lived physicochemical footprints along their way, which determine their future path. On this basis, we argue that cell trajectories belong to the general class of self-interacting random walks, and show that self-interactions can rule large scale exploration by inducing long-lived ageing, subdiffusion and anomalous first-passage statistics. Altogether, our joint experimental and theoretical approach points to a generic coupling between motile cells and their environment, which endows cells with a spatial memory of their path and can dramatically change their space exploration.
Collapse
Affiliation(s)
- Joseph d’Alessandro
- grid.508487.60000 0004 7885 7602Université de Paris, CNRS, Institut Jacques Monod, Paris, F-75006 France
| | - Alex Barbier--Chebbah
- grid.462844.80000 0001 2308 1657Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, Paris, France
| | - Victor Cellerin
- grid.508487.60000 0004 7885 7602Université de Paris, CNRS, Institut Jacques Monod, Paris, F-75006 France
| | - Olivier Benichou
- grid.462844.80000 0001 2308 1657Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, Paris, France
| | - René Marc Mège
- grid.508487.60000 0004 7885 7602Université de Paris, CNRS, Institut Jacques Monod, Paris, F-75006 France
| | - Raphaël Voituriez
- grid.462844.80000 0001 2308 1657Laboratoire Jean Perrin and Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, Paris, France
| | - Benoît Ladoux
- grid.508487.60000 0004 7885 7602Université de Paris, CNRS, Institut Jacques Monod, Paris, F-75006 France
| |
Collapse
|
14
|
Ibata N, Terentjev EM. Development of Nascent Focal Adhesions in Spreading Cells. Biophys J 2020; 119:2063-2073. [PMID: 33068539 DOI: 10.1016/j.bpj.2020.09.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/11/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022] Open
Abstract
The eukaryotic cell develops organelles to sense and respond to the mechanical properties of its surroundings. These mechanosensing organelles aggregate into symmetry-breaking patterns to mediate cell motion and differentiation on substrate. The spreading of a cell plated onto a substrate is one of the simplest paradigms in which angular symmetry-breaking assemblies of mechanical sensors are seen to develop. We review evidence for the importance of the edge of the cell-extracellular matrix adhesion area in the aggregation of mechanosensors and develop a theoretical model for the clustering of mechanosensors into nascent focal adhesions on this contact ring. To study the spatial patterns arising on this topological feature, we use a one-dimensional lattice model with a nearest-neighbor interaction between individual integrin-mediated mechanosensors. We find the effective Ginzburg-Landau free energy for this model and determine the spectrum of spatial modes as the cell spreads and increases its contact area with the substrate. To test our model, we compare its predictions with measured distributions of paxillin in spreading fibroblasts.
Collapse
Affiliation(s)
- Neil Ibata
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Eugene M Terentjev
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
15
|
All Roads Lead to Directional Cell Migration. Trends Cell Biol 2020; 30:852-868. [PMID: 32873438 DOI: 10.1016/j.tcb.2020.08.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 01/17/2023]
Abstract
Directional cell migration normally relies on a variety of external signals, such as chemical, mechanical, or electrical, which instruct cells in which direction to move. Many of the major molecular and physical effects derived from these cues are now understood, leading to questions about whether directional cell migration is alike or distinct under these different signals, and how cells might be directed by multiple simultaneous cues, which would be expected in complex in vivo environments. In this review, we compare how different stimuli are spatially distributed, often as gradients, to direct cell movement and the mechanisms by which they steer cells. A comparison of the downstream effectors of directional cues suggests that different external signals regulate a common set of components: small GTPases and the actin cytoskeleton, which implies that the mechanisms downstream of different signals are likely to be closely related and underlies the idea that cell migration operates by a common set of physical principles, irrespective of the input.
Collapse
|
16
|
Pal DS, Li X, Banerjee T, Miao Y, Devreotes PN. The excitable signal transduction networks: movers and shapers of eukaryotic cell migration. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2020; 63:407-416. [PMID: 31840779 DOI: 10.1387/ijdb.190265pd] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In response to a variety of external cues, eukaryotic cells display varied migratory modes to perform their physiological functions during development and in the adult. Aberrations in cell migration result in embryonic defects and cancer metastasis. The molecular components involved in cell migration are remarkably conserved between the social amoeba Dictyostelium and mammalian cells. This makes the amoeba an excellent model system for studies of eukaryotic cell migration. These migration-associated components can be grouped into three networks: input, signal transduction and cytoskeletal. In migrating cells, signal transduction events such as Ras or PI3K activity occur at the protrusion tips, referred to as 'front', whereas events such as dissociation of PTEN from these regions are referred to as 'back'. Asymmetric distribution of such front and back events is crucial for establishing polarity and guiding cell migration. The triggering of these signaling events displays properties of biochemical excitability including all-or-nothing responsiveness to suprathreshold stimuli, refractoriness, and wave propagation. These signal transduction waves originate from a point and propagate towards the edge of the cell, thereby driving cytoskeletal activity and cellular protrusions. Any change in the threshold for network activation alters the range of the propagating waves and the size of cellular protrusions which gives rise to various migratory modes in cells. Thus, this review highlights excitable signal transduction networks as key players for coordinating cytoskeletal activities to drive cell migration in all eukaryotes.
Collapse
Affiliation(s)
- Dhiman S Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
17
|
Matsushita K. Adhesion-stabilizing long-distance transport of cells on tissue surface. Phys Rev E 2020; 101:052410. [PMID: 32575308 DOI: 10.1103/physreve.101.052410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/12/2020] [Indexed: 11/07/2022]
Abstract
The stable transport of migrating eukaryotic cells is essential in organ development and repair processes. However, the mechanism that preserves transport stability over long distances in organs is not fully understood. As the driving mechanism of cell migration, the expressions of heterophilic cell-cell adhesion between moving cells and scaffolding tissue have been observed in such transport. In this paper, we theoretically investigate this heterophilic adhesion, which is persistently polarized in the migrating cell, as a possible transport stabilization mechanism. The adhesion was examined on the basis of the cellular Potts model, and our results confirm the stabilization of the transport to be an effect of the persistence.
Collapse
|
18
|
Motta CMM, Endres KJ, Wesdemiotis C, Willits RK, Becker ML. Enhancing Schwann cell migration using concentration gradients of laminin-derived peptides. Biomaterials 2019; 218:119335. [PMID: 31302351 PMCID: PMC6868524 DOI: 10.1016/j.biomaterials.2019.119335] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022]
Abstract
Neuroregeneration following peripheral nerve injury is largely mediated by Schwann cells (SC), the principal glial cell that supports neurons in the peripheral nervous system. Axonal regeneration in vivo is limited by the extent of SC migration into the gap between the proximal and distal nerve, however, little is known regarding the principal driving forces for SC migration. Engineered microenvironments, such as molecular and protein gradients, play a role in the migration of many cell types, including cancer cells and fibroblasts. However, haptotactic strategies have not been applied widely to SC. Herein, a series of tethered laminin-derived peptides were analyzed for their influence on SC adhesion, proliferation, and alignment. Concentration gradient substrates were fabricated using a controlled vapor deposition method, followed by covalent peptide attachment via a thiol-ene reaction, and characterized by X-ray photoelectron spectroscopy (XPS) and MALDI-MS imaging. While tethered RGD peptides supported SC adhesion and proliferation, concentration gradients of RGD had little influence on biased SC directional migration. In contrast, YIGSR promoted less SC attachment than RGD, yet YIGSR peptide gradients directed migration with a strong bias to the concentration profile. With YIGSR peptide, overall speed increased with the steepness of the peptide concentration profile. YIGSR gradients had no haptotactic effect on rat dermal fibroblast migration, in contrast to fibroblast migration on RGD gradients. The response of SC to these tethered peptide gradients will guide the development of translationally relevant constructs designed to facilitate endogenous SC infiltration into defects for nerve regeneration.
Collapse
Affiliation(s)
- Cecilia M M Motta
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, United States
| | - Kevin J Endres
- Department of Chemistry, The University of Akron, Akron, OH, 44325, United States
| | - Chrys Wesdemiotis
- Department of Chemistry, The University of Akron, Akron, OH, 44325, United States
| | - Rebecca K Willits
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, United States.
| | - Matthew L Becker
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, United States; Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, United States; Department of Chemistry, Mechanical Engineering and Materials Science, and Orthopaedic Surgery, Duke University, Durham, NC, 27708, United States.
| |
Collapse
|
19
|
Advanced 2D/3D cell migration assay for faster evaluation of chemotaxis of slow-moving cells. PLoS One 2019; 14:e0219708. [PMID: 31314801 PMCID: PMC6636736 DOI: 10.1371/journal.pone.0219708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/28/2019] [Indexed: 11/19/2022] Open
Abstract
Considering the essential role of chemotaxis of adherent, slow-moving cells in processes such as tumor metastasis or wound healing, a detailed understanding of the mechanisms and cues that direct migration of cells through tissues is highly desirable. The state-of-the-art chemotaxis instruments (e.g. microfluidic-based devices, bridge assays) can generate well-defined, long-term stable chemical gradients, crucial for quantitative investigation of chemotaxis in slow-moving cells. However, the majority of chemotaxis tools are designed for the purpose of an in-depth, but labor-intensive analysis of migratory behavior of single cells. This is rather inefficient for applications requiring higher experimental throughput, as it is the case of e.g. clinical examinations, chemoattractant screening or studies of the chemotaxis-related signaling pathways based on subcellular perturbations. Here, we present an advanced migration assay for accelerated and facilitated evaluation of the chemotactic response of slow-moving cells. The revised chemotaxis chamber contains a hydrogel microstructure–the migration arena, designed to enable identification of chemotactic behavior of a cell population in respect to the end-point of the experiment. At the same time, the assay in form of a microscopy slide enables direct visualization of the cells in either 2D or 3D environment, and provides a stable and linear gradient of chemoattractant. We demonstrate the correctness of the assay on the model study of HT-1080 chemotaxis in 3D and on 2D surface. Finally, we apply the migration arena chemotaxis assay to screen for a chemoattractant of primary keratinocytes, cells that play a major role in wound healing, being responsible for skin re-epithelialization and a successful wound closure. In direction of new therapeutic strategies to promote wound repair, we identified the chemotactic activity of the epithelial growth factor receptor (EGFR) ligands EGF and TGFα (transforming growth factor α).
Collapse
|
20
|
Chen S, Hourwitz MJ, Campanello L, Fourkas JT, Losert W, Parent CA. Actin Cytoskeleton and Focal Adhesions Regulate the Biased Migration of Breast Cancer Cells on Nanoscale Asymmetric Sawteeth. ACS NANO 2019; 13:1454-1468. [PMID: 30707556 PMCID: PMC7159974 DOI: 10.1021/acsnano.8b07140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Physical guidance from the underlying matrix is a key regulator of cancer invasion and metastasis. We explore the effects of surface topography on the migration phenotype of multiple breast cancer cell lines using aligned nanoscale ridges and asymmetric sawtooth structures. Both benign and metastatic breast cancer cells preferentially move parallel to nanoridges, with enhanced speeds compared to flat surfaces. In contrast, asymmetric sawtooth structures unidirectionally bias the movement of breast cancer cells in a cell-type-dependent manner. Quantitative analysis shows that the level of bias in cell migration increases when cells move with higher speeds or with higher directional persistence. Live-cell imaging studies further reveal that actin polymerization waves are unidirectionally guided by the sawteeth in the same direction as the cell motion. High-resolution fluorescence imaging and scanning electron microscopy studies reveal that two breast cancer cell lines with opposite migrational profiles exhibit profoundly different cell cortical plasticity and focal adhesion patterns. These results suggest that the overall migration response of cancer cells to surface topography is directly related to the underlying cytoskeletal architectures and dynamics, which are regulated by both intrinsic and extrinsic factors.
Collapse
Affiliation(s)
- Song Chen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Department of Pharmacology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Matt J. Hourwitz
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Leonard Campanello
- Department of Physics, University of Maryland, College Park, Maryland 20742, United States
| | - John T. Fourkas
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Department of Physics, University of Maryland, College Park, Maryland 20742, United States
| | - Carole A. Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Department of Pharmacology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
21
|
Structural basis of Gip1 for cytosolic sequestration of G protein in wide-range chemotaxis. Nat Commun 2018; 9:4635. [PMID: 30401901 PMCID: PMC6219514 DOI: 10.1038/s41467-018-07035-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022] Open
Abstract
G protein interacting protein 1 (Gip1) binds and sequesters heterotrimeric G proteins in the cytosolic pool, thus regulating G protein-coupled receptor (GPCR) signalling for eukaryotic chemotaxis. Here, we report the underlying structural basis of Gip1 function. The crystal structure reveals that the region of Gip1 that binds to the G protein has a cylinder-like fold with a central hydrophobic cavity composed of six α-helices. Mutagenesis and biochemical analyses indicate that the hydrophobic cavity and the hydrogen bond network at the entrance of the cavity are essential for complex formation with the geranylgeranyl modification on the Gγ subunit. Mutations of the cavity impair G protein sequestration and translocation to the membrane from the cytosol upon receptor stimulation, leading to defects in chemotaxis at higher chemoattractant concentrations. These results demonstrate that the Gip1-dependent regulation of G protein shuttling ensures wide-range gradient sensing in eukaryotic chemotaxis. Gip1 sequesters heterotrimeric G proteins in the cytosolic pool which regulates G protein-coupled receptor signalling for eukaryotic chemotaxis. Here the authors provide the crystal structure of Gip1's G protein-binding region and show that mutations in this region lead to G protein sequestration and ultimately chemotaxis defects.
Collapse
|
22
|
Tan X, Luo M, Liu AP. Clathrin-mediated endocytosis regulates fMLP-mediated neutrophil polarization. Heliyon 2018; 4:e00819. [PMID: 30263974 PMCID: PMC6157066 DOI: 10.1016/j.heliyon.2018.e00819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/30/2018] [Accepted: 09/20/2018] [Indexed: 11/19/2022] Open
Abstract
A cell's ability to establish polarization is one of the key steps in directional migration. Upon the addition of a chemoattractant, N-formylmethionyl-leucyl-phenylalanine (fMLP), neutrophils rapidly develop a front end marked by a wide and dense actin network which is a feature of cell polarization. Despite a general understanding of bi-directional crosstalk between endocytosis and polarization, it remains unclear how clathrin-mediated endocytosis (CME) induced by chemoattractant binding to formyl peptide receptor (FPR) affects neutrophil polarization. In this work, we characterized the spatial organization of FPR and clathrin-coated pits (CCPs), the functional unit of CME, with and without fMLP and found that fMLP induced different distributions of FPR and CCPs. We further found that cells had impaired polarization induced by fMLP when CME is inhibited by small molecule inhibitors. Under these conditions, pERK, pAkt308, and pAkt473 were all severely blocked or had altered dynamics. The spatial organization between actin and two major clathrin-mediated endocytic proteins, clathrin and β-arrestin, were distinct and supported clathrin and β-arrestin's functional roles in mediating neutrophil polarization. Together these results suggest that CME plays a pivotal role in a complex process such as cell polarization.
Collapse
Affiliation(s)
- Xinyu Tan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| | - Mingzhi Luo
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, United States
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, PR China
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States
- Biophysics Program, University of Michigan, Ann Arbor, Michigan, United States
- Corresponding author.
| |
Collapse
|
23
|
Shu L, Zhang B, Queller DC, Strassmann JE. Burkholderia bacteria use chemotaxis to find social amoeba Dictyostelium discoideum hosts. THE ISME JOURNAL 2018; 12:1977-1993. [PMID: 29795447 PMCID: PMC6052080 DOI: 10.1038/s41396-018-0147-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/05/2018] [Accepted: 03/28/2018] [Indexed: 12/15/2022]
Abstract
A key question in cooperation is how to find the right partners and maintain cooperative relationships. This is especially challenging for horizontally transferred bacterial symbionts where relationships must be repeatedly established anew. In the social amoeba Dictyostelium discoideum farming symbiosis, two species of inedible Burkholderia bacteria (Burkholderia agricolaris and Burkholderia hayleyella) initiate stable associations with naive D. discoideum hosts and cause carriage of additional bacterial species. However, it is not clear how the association between D. discoideum and its carried Burkholderia is formed and maintained. Here, we look at precisely how Burkholderia finds its hosts. We found that both species of Burkholderia clones isolated from D. discoideum, but not other tested Burkholderia species, are attracted to D. discoideum supernatant, showing that the association is not simply the result of haphazard engulfment by the amoebas. The chemotactic responses are affected by both partners. We find evidence that B. hayleyella prefers D. discoideum clones that currently or previously carried Burkholderia, while B. agricolaris does not show this preference. However, we find no evidence of Burkholderia preference for their own host clone or for other hosts of their own species. We further investigate the chemical differences of D. discoideum supernatants that might explain the patterns shown above using a mass spectrometry based metabolomics approach. These results show that these bacterial symbionts are able to preferentially find and to some extent choose their unicellular partners. In addition, this study also suggests that bacteria can actively search for and target phagocytic cells, which may help us better understand how bacteria interact with immune systems.
Collapse
Affiliation(s)
- Longfei Shu
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Bojie Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - David C Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Joan E Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
24
|
Feng S, Zhou L, Zhang Y, Lü S, Long M. Mechanochemical modeling of neutrophil migration based on four signaling layers, integrin dynamics, and substrate stiffness. Biomech Model Mechanobiol 2018; 17:1611-1630. [PMID: 29968162 DOI: 10.1007/s10237-018-1047-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/24/2018] [Indexed: 01/09/2023]
Abstract
Directional neutrophil migration during human immune responses is a highly coordinated process regulated by both biochemical and biomechanical environments. In this paper, we developed an integrative mathematical model of neutrophil migration using a lattice Boltzmann-particle method built in-house to solve the moving boundary problem with spatiotemporal regulation of biochemical components. The mechanical features of the cell cortex are modeled by a series of spring-connected nodes representing discrete cell-substrate adhesive sites. The intracellular signaling cascades responsible for cytoskeletal remodeling [e.g., small GTPases, phosphoinositide-3-kinase (PI3K), and phosphatase and tensin homolog] are built based on our previous four-layered signaling model centered on the bidirectional molecular transport mechanism and implemented as reaction-diffusion equations. Focal adhesion dynamics are determined by force-dependent integrin-ligand binding kinetics and integrin recycling and are thus integrated with cell motion. Using numerical simulations, the model reproduces the major features of cell migration in response to uniform and gradient biochemical stimuli based on the quantitative spatiotemporal regulation of signaling molecules, which agree with experimental observations. The existence of multiple types of integrins with different binding kinetics could act as an adaptation mechanism for substrate stiffness. Moreover, cells can perform reversal, U-turn, or lock-on behaviors depending on the steepness of the reversal biochemical signals received. Finally, this model is also applied to predict the responses of mutants in which PTEN is overexpressed or disrupted.
Collapse
Affiliation(s)
- Shiliang Feng
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lüwen Zhou
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shouqin Lü
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
Feng SL, Zhou LW, Lü SQ, Zhang Y. Dynamic seesaw model for rapid signaling responses in eukaryotic chemotaxis. Phys Biol 2018; 15:056004. [PMID: 29757152 DOI: 10.1088/1478-3975/aac45b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Directed movement of eukaryotic cells toward spatiotemporally varied chemotactic stimuli enables rapid intracellular signaling responses. While macroscopic cellular manifestation is shaped by balancing external stimuli strength with finite internal delays, the organizing principles of the underlying molecular mechanisms remain to be clarified. Here, we developed a novel modeling framework based on a simple seesaw mechanism to elucidate how cells repeatedly reverse polarity. As a key feature of the modeling, the bottom module of bidirectional molecular transport is successively controlled by three upstream modules of signal reception, initial signal processing, and Rho GTPase regulation. Our simulations indicated that an isotropic cell is polarized in response to a graded input signal. By applying a reversal gradient to a chemoattractant signal, lamellipod-specific molecules (i.e. PIP3 and PI3K) disappear, first from the cell front, and then they redistribute at the opposite side, whereas functional molecules at the rear of the cell (i.e. PIP2 and PTEN) act oppositely. In particular, the model cell exhibits a seesaw-like spatiotemporal pattern for the establishment of front and rear and interconversion, consistent with those related experimental observations. Increasing the switching frequency of the chemotactic gradient causes the cell to stay in a trapped state, further supporting the proposed dynamics of eukaryotic chemotaxis with the underlying cytoskeletal remodeling.
Collapse
Affiliation(s)
- Shi Liang Feng
- Institute of mechanical engineering and mechanics, Ningbo University, Ningbo 315211, People's Republic of China. Center of Biomechanics and Bioengineering and Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | | | | | |
Collapse
|
26
|
Stuelten CH, Parent CA, Montell DJ. Cell motility in cancer invasion and metastasis: insights from simple model organisms. Nat Rev Cancer 2018; 18:296-312. [PMID: 29546880 PMCID: PMC6790333 DOI: 10.1038/nrc.2018.15] [Citation(s) in RCA: 324] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metastasis remains the greatest challenge in the clinical management of cancer. Cell motility is a fundamental and ancient cellular behaviour that contributes to metastasis and is conserved in simple organisms. In this Review, we evaluate insights relevant to human cancer that are derived from the study of cell motility in non-mammalian model organisms. Dictyostelium discoideum, Caenorhabditis elegans, Drosophila melanogaster and Danio rerio permit direct observation of cells moving in complex native environments and lend themselves to large-scale genetic and pharmacological screening. We highlight insights derived from each of these organisms, including the detailed signalling network that governs chemotaxis towards chemokines; a novel mechanism of basement membrane invasion; the positive role of E-cadherin in collective direction-sensing; the identification and optimization of kinase inhibitors for metastatic thyroid cancer on the basis of work in flies; and the value of zebrafish for live imaging, especially of vascular remodelling and interactions between tumour cells and host tissues. While the motility of tumour cells and certain host cells promotes metastatic spread, the motility of tumour-reactive T cells likely increases their antitumour effects. Therefore, it is important to elucidate the mechanisms underlying all types of cell motility, with the ultimate goal of identifying combination therapies that will increase the motility of beneficial cells and block the spread of harmful cells.
Collapse
Affiliation(s)
- Christina H. Stuelten
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Carole A. Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
- Department of Pharmacology, Michigan Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- ;
| | - Denise J. Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA, USA
- ;
| |
Collapse
|
27
|
Abstract
The use of vision to coordinate behavior requires an efficient control design that stabilizes the world on the retina or directs the gaze towards salient features in the surroundings. With a level gaze, visual processing tasks are simplified and behaviorally relevant features from the visual environment can be extracted. No matter how simple or sophisticated the eye design, mechanisms have evolved across phyla to stabilize gaze. In this review, we describe functional similarities in eyes and gaze stabilization reflexes, emphasizing their fundamental role in transforming sensory information into motor commands that support postural and locomotor control. We then focus on gaze stabilization design in flying insects and detail some of the underlying principles. Systems analysis reveals that gaze stabilization often involves several sensory modalities, including vision itself, and makes use of feedback as well as feedforward signals. Independent of phylogenetic distance, the physical interaction between an animal and its natural environment - its available senses and how it moves - appears to shape the adaptation of all aspects of gaze stabilization.
Collapse
Affiliation(s)
- Ben J Hardcastle
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Holger G Krapp
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
28
|
Autenrieth TJ, Frank SC, Greiner AM, Klumpp D, Richter B, Hauser M, Lee SI, Levine J, Bastmeyer M. Actomyosin contractility and RhoGTPases affect cell-polarity and directional migration during haptotaxis. Integr Biol (Camb) 2017; 8:1067-1078. [PMID: 27713970 DOI: 10.1039/c6ib00152a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although much is known about chemotaxis- induced by gradients of soluble chemical cues - the molecular mechanisms involved in haptotaxis (migration induced by substrate-bound protein gradients) are largely unknown. We used micropatterning to produce discontinuous gradients consisting of μm-sized fibronectin-dots arranged at constant lateral but continuously decreasing axial spacing. Parameters like gradient slope, protein concentration and size or shape of the fibronectin dots were modified to determine optimal conditions for directional cell migration in gradient patterns. We demonstrate that fibroblasts predominantly migrate uphill towards a higher fibronectin density in gradients with a dot size of 2 × 2 μm, a 2% and 6% slope, and a low fibronectin concentration of 1 μg ml-1. Increasing dot size to 3.5 × 3.5 μm resulted in stationary cells, whereas rectangular dots (2 × 3 μm) orientated perpendicular to the gradient axis preferentially induce lateral migration. During haptotaxis, the Golgi apparatus reorients to a posterior position between the nucleus and the trailing edge. Using pharmacological inhibitors, we demonstrate that actomyosin contractility and microtubule dynamics are a prerequisite for gradient recognition indicating that asymmetric intracellular forces are necessary to read the axis of adhesive gradients. In the haptotaxis signalling cascade, RhoA and Cdc42, and the atypical protein kinase C zeta (aPKCζ), but not Rac, are located upstream of actomyosin contractility.
Collapse
Affiliation(s)
- Tatjana J Autenrieth
- Zoological Institute, Department of Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany. and DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany and Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stephanie C Frank
- Zoological Institute, Department of Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany. and Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Alexandra M Greiner
- Zoological Institute, Department of Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany.
| | - Dominik Klumpp
- Zoological Institute, Department of Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany.
| | - Benjamin Richter
- Zoological Institute, Department of Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany. and Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Mario Hauser
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Seong-Il Lee
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook NY, USA
| | - Joel Levine
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook NY, USA
| | - Martin Bastmeyer
- Zoological Institute, Department of Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany. and DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany and Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
29
|
McCracken JM, Xu S, Badea A, Jang KI, Yan Z, Wetzel DJ, Nan K, Lin Q, Han M, Anderson MA, Lee JW, Wei Z, Pharr M, Wang R, Su J, Rubakhin SS, Sweedler JV, Rogers JA, Nuzzo RG. Deterministic Integration of Biological and Soft Materials onto 3D Microscale Cellular Frameworks. ADVANCED BIOSYSTEMS 2017; 1:1700068. [PMID: 29552634 PMCID: PMC5850936 DOI: 10.1002/adbi.201700068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Complex 3D organizations of materials represent ubiquitous structural motifs found in the most sophisticated forms of matter, the most notable of which are in life-sustaining hierarchical structures found in biology, but where simpler examples also exist as dense multilayered constructs in high-performance electronics. Each class of system evinces specific enabling forms of assembly to establish their functional organization at length scales not dissimilar to tissue-level constructs. This study describes materials and means of assembly that extend and join these disparate systems-schemes for the functional integration of soft and biological materials with synthetic 3D microscale, open frameworks that can leverage the most advanced forms of multilayer electronic technologies, including device-grade semiconductors such as monocrystalline silicon. Cellular migration behaviors, temporal dependencies of their growth, and contact guidance cues provided by the nonplanarity of these frameworks illustrate design criteria useful for their functional integration with living matter (e.g., NIH 3T3 fibroblast and primary rat dorsal root ganglion cell cultures).
Collapse
Affiliation(s)
- Joselle M McCracken
- School of Chemical Sciences University of Illinois-Urbana Champaign Urbana, IL 61801, USA
| | - Sheng Xu
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Adina Badea
- School of Chemical Sciences University of Illinois-Urbana Champaign Urbana, IL 61801, USA
| | - Kyung-In Jang
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Zheng Yan
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - David J Wetzel
- School of Chemical Sciences University of Illinois-Urbana Champaign Urbana, IL 61801, USA
| | - Kewang Nan
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Qing Lin
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Mengdi Han
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Mikayla A Anderson
- School of Chemical Sciences University of Illinois-Urbana Champaign Urbana, IL 61801, USA
| | - Jung Woo Lee
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Zijun Wei
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Matt Pharr
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Renhan Wang
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Jessica Su
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Stanislav S Rubakhin
- Neuroscience Program University of Illinois-Urbana Champaign Urbana, IL 61801, USA
| | - Jonathan V Sweedler
- School of Chemical Sciences University of Illinois-Urbana Champaign Urbana, IL 61801, USA. Neuroscience Program University of Illinois-Urbana Champaign Urbana, IL 61801, USA
| | - John A Rogers
- School of Chemical Sciences University of Illinois-Urbana Champaign Urbana, IL 61801, USA. Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Ralph G Nuzzo
- School of Chemical Sciences University of Illinois-Urbana Champaign Urbana, IL 61801, USA. Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| |
Collapse
|
30
|
Devreotes PN, Bhattacharya S, Edwards M, Iglesias PA, Lampert T, Miao Y. Excitable Signal Transduction Networks in Directed Cell Migration. Annu Rev Cell Dev Biol 2017; 33:103-125. [PMID: 28793794 DOI: 10.1146/annurev-cellbio-100616-060739] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although directed migration of eukaryotic cells may have evolved to escape nutrient depletion, it has been adopted for an extensive range of physiological events during development and in the adult organism. The subversion of these movements results in disease, such as cancer. Mechanisms of propulsion and sensing are extremely diverse, but most eukaryotic cells move by extending actin-filled protrusions termed macropinosomes, pseudopodia, or lamellipodia or by extension of blebs. In addition to motility, directed migration involves polarity and directional sensing. The hundreds of gene products involved in these processes are organized into networks of parallel and interconnected pathways. Many of these components are activated or inhibited coordinately with stimulation and on each spontaneously extended protrusion. Moreover, these networks display hallmarks of excitability, including all-or-nothing responsiveness and wave propagation. Cellular protrusions result from signal transduction waves that propagate outwardly from an origin and drive cytoskeletal activity. The range of the propagating waves and hence the size of the protrusions can be altered by lowering or raising the threshold for network activation, with larger and wider protrusions favoring gliding or oscillatory behavior over amoeboid migration. Here, we evaluate the variety of models of excitable networks controlling directed migration and outline critical tests. We also discuss the utility of this emerging view in producing cell migration and in integrating the various extrinsic cues that direct migration.
Collapse
Affiliation(s)
- Peter N Devreotes
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| | - Sayak Bhattacharya
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | - Marc Edwards
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| | - Pablo A Iglesias
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205; .,Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | - Thomas Lampert
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| | - Yuchuan Miao
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| |
Collapse
|
31
|
Tarama M. Swinging motion of active deformable particles in Poiseuille flow. Phys Rev E 2017; 96:022602. [PMID: 28950457 DOI: 10.1103/physreve.96.022602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Indexed: 11/07/2022]
Abstract
Dynamics of active deformable particles in an external Poiseuille flow is investigated. To make the analysis general, we employ time-evolution equations derived from symmetry considerations that take into account an elliptical shape deformation. First, we clarify the relation of our model to that of rigid active particles. Then, we study the dynamical modes that active deformable particles exhibit by changing the strength of the external flow. We emphasize the difference between the active particles that tend to self-propel parallel to the elliptical shape deformation and those self-propelling perpendicularly. In particular, a swinging motion around the centerline far from the channel walls is discussed in detail.
Collapse
Affiliation(s)
- Mitsusuke Tarama
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, 606-8103, Japan
| |
Collapse
|
32
|
Schwarz J, Bierbaum V, Vaahtomeri K, Hauschild R, Brown M, de Vries I, Leithner A, Reversat A, Merrin J, Tarrant T, Bollenbach T, Sixt M. Dendritic Cells Interpret Haptotactic Chemokine Gradients in a Manner Governed by Signal-to-Noise Ratio and Dependent on GRK6. Curr Biol 2017; 27:1314-1325. [PMID: 28457871 DOI: 10.1016/j.cub.2017.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 01/05/2023]
Abstract
Navigation of cells along gradients of guidance cues is a determining step in many developmental and immunological processes. Gradients can either be soluble or immobilized to tissues as demonstrated for the haptotactic migration of dendritic cells (DCs) toward higher concentrations of immobilized chemokine CCL21. To elucidate how gradient characteristics govern cellular response patterns, we here introduce an in vitro system allowing to track migratory responses of DCs to precisely controlled immobilized gradients of CCL21. We find that haptotactic sensing depends on the absolute CCL21 concentration and local steepness of the gradient, consistent with a scenario where DC directionality is governed by the signal-to-noise ratio of CCL21 binding to the receptor CCR7. We find that the conditions for optimal DC guidance are perfectly provided by the CCL21 gradients we measure in vivo. Furthermore, we find that CCR7 signal termination by the G-protein-coupled receptor kinase 6 (GRK6) is crucial for haptotactic but dispensable for chemotactic CCL21 gradient sensing in vitro and confirm those observations in vivo. These findings suggest that stable, tissue-bound CCL21 gradients as sustainable "roads" ensure optimal guidance in vivo.
Collapse
Affiliation(s)
- Jan Schwarz
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Veronika Bierbaum
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Kari Vaahtomeri
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria; Translational Cancer Biology Program, Wihuri Research Institute, 00014 Helsinki, Finland
| | - Robert Hauschild
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Markus Brown
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria; Medizinische Universität Wien, 1090 Vienna, Austria
| | - Ingrid de Vries
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Alexander Leithner
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Anne Reversat
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Jack Merrin
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Teresa Tarrant
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27517, USA
| | - Tobias Bollenbach
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria; Universität zu Köln, Institut für Theoretische Physik, 50937 Cologne, Germany.
| | - Michael Sixt
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria.
| |
Collapse
|
33
|
Tanja Mierke C. Physical role of nuclear and cytoskeletal confinements in cell migration mode selection and switching. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.4.615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
34
|
Gera N, Swanson KD, Jin T. β-Arrestin 1-dependent regulation of Rap2 is required for fMLP-stimulated chemotaxis in neutrophil-like HL-60 cells. J Leukoc Biol 2016; 101:239-251. [PMID: 27493245 DOI: 10.1189/jlb.2a1215-572r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/13/2016] [Accepted: 07/15/2016] [Indexed: 01/14/2023] Open
Abstract
β-Arrestins have emerged as key regulators of cytoskeletal rearrangement that are required for directed cell migration. Whereas it is known that β-arrestins are required for formyl-Met-Leu-Phe receptor (FPR) recycling, less is known about their role in regulating FPR-mediated neutrophil chemotaxis. Here, we show that β-arrestin 1 (ArrB1) coaccumulated with F-actin within the leading edge of neutrophil-like HL-60 cells during chemotaxis, and its knockdown resulted in markedly reduced migration within fMLP gradients. The small GTPase Ras-related protein 2 (Rap2) was found to bind ArrB1 under resting conditions but dissociated upon fMLP stimulation. The FPR-dependent activation of Rap2 required ArrB1 but was independent of Gαi activity. Significantly, depletion of either ArrB1 or Rap2 resulted in reduced chemotaxis and defects in cellular repolarization within fMLP gradients. These data strongly suggest a model in which FPR is able to direct ArrB1 and other bound proteins that are required for lamellipodial extension to the leading edge in migrating neutrophils, thereby orientating and directing cell migration.
Collapse
Affiliation(s)
- Nidhi Gera
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA; and
| | - Kenneth D Swanson
- Department of Neurology, Division of Neuro-Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA; and
| |
Collapse
|
35
|
Senoo H, Cai H, Wang Y, Sesaki H, Iijima M. The novel RacE-binding protein GflB sharpens Ras activity at the leading edge of migrating cells. Mol Biol Cell 2016; 27:1596-605. [PMID: 27009206 PMCID: PMC4865317 DOI: 10.1091/mbc.e15-11-0796] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/18/2016] [Indexed: 12/25/2022] Open
Abstract
A novel protein, GflB, is found to control both Ras and Rho to optimize the reorganization of actin cytoskeletons for directed cell migration. GflB is subjected to feedback regulation from actin cytoskeletons, allowing cells to detect and control the size of actin-rich pseudopods and navigate their movements with extremely high precision. Directional sensing, a process in which cells convert an external chemical gradient into internal signaling events, is essential in chemotaxis. We previously showed that a Rho GTPase, RacE, regulates gradient sensing in Dictyostelium cells. Here, using affinity purification and mass spectrometry, we identify a novel RacE-binding protein, GflB, which contains a Ras GEF domain and a Rho GAP domain. Using biochemical and gene knockout approaches, we show that GflB balances the activation of Ras and Rho GTPases, which enables cells to precisely orient signaling events toward higher concentrations of chemoattractants. Furthermore, we find that GflB is located at the leading edge of migrating cells, and this localization is regulated by the actin cytoskeleton and phosphatidylserine. Our findings provide a new molecular mechanism that connects directional sensing and morphological polarization.
Collapse
Affiliation(s)
- Hiroshi Senoo
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Huaqing Cai
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Wang
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
36
|
Wang MX, Ma YQ, Lai PY. Regulatory effects on the population dynamics and wave propagation in a cell lineage model. J Theor Biol 2016; 393:105-17. [PMID: 26796226 DOI: 10.1016/j.jtbi.2015.12.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/26/2015] [Accepted: 12/29/2015] [Indexed: 11/28/2022]
Abstract
We consider the interplay of cell proliferation, cell differentiation (and de-differentiation), cell movement, and the effect of feedback regulations on the population and propagation dynamics of different cell types in a cell lineage model. Cells are assumed to secrete and respond to negative feedback molecules which act as a control on the cell lineage. The cell densities are described by coupled reaction-diffusion partial differential equations, and the propagating wave front solutions in one dimension are investigated analytically and by numerical solutions. In particular, wavefront propagation speeds are obtained analytically and verified by numerical solutions of the equations. The emphasis is on the effects of the feedback regulations on different stages in the cell lineage. It is found that when the progenitor cell is negatively regulated, the populations of the cell lineage are strongly down-regulated with the steady growth rate of the progenitor cell being driven to zero beyond a critical regulatory strength. An analytic expression for the critical regulation strength in terms of the model parameters is derived and verified by numerical solutions. On the other hand, if the inhibition is acting on the differentiated cells, the change in the population dynamics and wave propagation speed is small. In addition, it is found that only the propagating speed of the progenitor cells is affected by the regulation when the diffusion of the differentiated cells is large. In the presence of de-differentiation, the effect on down-regulating the progenitor population is weakened and there is no effect on the propagation speed due to regulation, suggesting that the effect of regulatory control is diminished by de-differentiation pathways.
Collapse
Affiliation(s)
- Mao-Xiang Wang
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China; School of Science, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China; Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Pik-Yin Lai
- Department of Physics, Graduate Institute of Biophysics, National Central University, Chungli 320, Taiwan, ROC.
| |
Collapse
|
37
|
Ebrahimian M, Yekehzare M, Ejtehadi MR. Low-Reynolds-number predator. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:063035. [PMID: 26764831 DOI: 10.1103/physreve.92.063035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Indexed: 06/05/2023]
Abstract
To generalize simple bead-linker model of swimmers to higher dimensions and to demonstrate the chemotaxis ability of such swimmers, here we introduce a low-Reynolds predator, using a two-dimensional triangular bead-spring model. Two-state linkers as mechanochemical enzymes expand as a result of interaction with particular activator substances in the environment, causing the whole body to translate and rotate. The concentration of the chemical stimulator controls expansion versus the contraction rate of each arm and so affects the ability of the body for diffusive movements; also the variation of activator substance's concentration in the environment breaks the symmetry of linkers' preferred state, resulting in the drift of the random walker along the gradient of the density of activators. External food or danger sources may attract or repel the body by producing or consuming the chemical activators of the organism's enzymes, inducing chemotaxis behavior. Generalization of the model to three dimensions is straightforward.
Collapse
Affiliation(s)
- Mehran Ebrahimian
- Department of Management and Economics, Sharif University of Technology
| | | | - Mohammad Reza Ejtehadi
- Department of Physics and Center of Excellence in Complex systems and Condensed Matter, Sharif University of Technology, Tehran, 1458889694, Iran
| |
Collapse
|
38
|
How grow-and-switch gravitropism generates root coiling and root waving growth responses in Medicago truncatula. Proc Natl Acad Sci U S A 2015; 112:12938-43. [PMID: 26432881 DOI: 10.1073/pnas.1509942112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Experimental studies show that plant root morphologies can vary widely from straight gravity-aligned primary roots to fractal-like root architectures. However, the opaqueness of soil makes it difficult to observe how environmental factors modulate these patterns. Here, we combine a transparent hydrogel growth medium with a custom built 3D laser scanner to directly image the morphology of Medicago truncatula primary roots. In our experiments, root growth is obstructed by an inclined plane in the growth medium. As the tilt of this rigid barrier is varied, we find Medicago transitions between randomly directed root coiling, sinusoidal root waving, and normal gravity-aligned morphologies. Although these root phenotypes appear morphologically distinct, our analysis demonstrates the divisions are less well defined, and instead, can be viewed as a 2D biased random walk that seeks the path of steepest decent along the inclined plane. Features of this growth response are remarkably similar to the widely known run-and-tumble chemotactic behavior of Escherichia coli bacteria, where biased random walks are used as optimal strategies for nutrient uptake.
Collapse
|
39
|
Collective cell migration: guidance principles and hierarchies. Trends Cell Biol 2015; 25:556-66. [DOI: 10.1016/j.tcb.2015.06.003] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/21/2015] [Accepted: 06/08/2015] [Indexed: 12/18/2022]
|
40
|
Hadjivasiliou Z, Iwasa Y, Pomiankowski A. Cell-cell signalling in sexual chemotaxis: a basis for gametic differentiation, mating types and sexes. J R Soc Interface 2015; 12:20150342. [PMID: 26156301 PMCID: PMC4535405 DOI: 10.1098/rsif.2015.0342] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/16/2015] [Indexed: 11/29/2022] Open
Abstract
While sex requires two parents, there is no obvious need for them to be differentiated into distinct mating types or sexes. Yet this is the predominate state of nature. Here, we argue that mating types could play a decisive role because they prevent the apparent inevitability of self-stimulation during sexual signalling. We rigorously assess this hypothesis by developing a model for signaller-detector dynamics based on chemical diffusion, chemotaxis and cell movement. Our model examines the conditions under which chemotaxis improves partner finding. Varying parameter values within ranges typical of protists and their environments, we show that simultaneous secretion and detection of a single chemoattractant can cause a multifold movement impediment and severely hinder mate finding. Mutually exclusive roles result in faster pair formation, even when cells conferring the same roles cannot pair up. This arrangement also allows the separate mating types to optimize their signalling or detecting roles, which is effectively impossible for cells that are both secretors and detectors. Our findings suggest that asymmetric roles in sexual chemotaxis (and possibly other forms of sexual signalling) are crucial, even without morphological differences, and may underlie the evolution of gametic differentiation among both mating types and sexes.
Collapse
Affiliation(s)
- Zena Hadjivasiliou
- Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology (CoMPLEX), University College London, Gower Street, London WC1E 6BT, UK Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Yoh Iwasa
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Andrew Pomiankowski
- Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology (CoMPLEX), University College London, Gower Street, London WC1E 6BT, UK Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
41
|
Manes NP, Angermann BR, Koppenol-Raab M, An E, Sjoelund VH, Sun J, Ishii M, Germain RN, Meier-Schellersheim M, Nita-Lazar A. Targeted Proteomics-Driven Computational Modeling of Macrophage S1P Chemosensing. Mol Cell Proteomics 2015. [PMID: 26199343 DOI: 10.1074/mcp.m115.048918] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Osteoclasts are monocyte-derived multinuclear cells that directly attach to and resorb bone. Sphingosine-1-phosphate (S1P)(1) regulates bone resorption by functioning as both a chemoattractant and chemorepellent of osteoclast precursors through two G-protein coupled receptors that antagonize each other in an S1P-concentration-dependent manner. To quantitatively explore the behavior of this chemosensing pathway, we applied targeted proteomics, transcriptomics, and rule-based pathway modeling using the Simmune toolset. RAW264.7 cells (a mouse monocyte/macrophage cell line) were used as model osteoclast precursors, RNA-seq was used to identify expressed target proteins, and selected reaction monitoring (SRM) mass spectrometry using internal peptide standards was used to perform absolute abundance measurements of pathway proteins. The resulting transcript and protein abundance values were strongly correlated. Measured protein abundance values, used as simulation input parameters, led to in silico pathway behavior matching in vitro measurements. Moreover, once model parameters were established, even simulated responses toward stimuli that were not used for parameterization were consistent with experimental findings. These findings demonstrate the feasibility and value of combining targeted mass spectrometry with pathway modeling for advancing biological insight.
Collapse
Affiliation(s)
- Nathan P Manes
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421
| | - Bastian R Angermann
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421
| | - Marijke Koppenol-Raab
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421
| | - Eunkyung An
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421
| | - Virginie H Sjoelund
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421
| | - Jing Sun
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421
| | - Masaru Ishii
- §Immunology Frontier Research Center, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ronald N Germain
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421
| | - Martin Meier-Schellersheim
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421
| | - Aleksandra Nita-Lazar
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421;
| |
Collapse
|
42
|
Loomis WF. Genetic control of morphogenesis in Dictyostelium. Dev Biol 2015; 402:146-61. [PMID: 25872182 PMCID: PMC4464777 DOI: 10.1016/j.ydbio.2015.03.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/12/2015] [Accepted: 03/25/2015] [Indexed: 01/06/2023]
Abstract
Cells grow, move, expand, shrink and die in the process of generating the characteristic shapes of organisms. Although the structures generated during development of the social amoeba Dictyostelium discoideum look nothing like the structures seen in metazoan embryogenesis, some of the morphogenetic processes used in their making are surprisingly similar. Recent advances in understanding the molecular basis for directed cell migration, cell type specific sorting, differential adhesion, secretion of matrix components, pattern formation, regulation and terminal differentiation are reviewed. Genes involved in Dictyostelium aggregation, slug formation, and culmination of fruiting bodies are discussed.
Collapse
Affiliation(s)
- William F Loomis
- Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
43
|
Lorenzo-Morales J, Khan NA, Walochnik J. An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. ACTA ACUST UNITED AC 2015; 22:10. [PMID: 25687209 PMCID: PMC4330640 DOI: 10.1051/parasite/2015010] [Citation(s) in RCA: 447] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/06/2015] [Indexed: 12/21/2022]
Abstract
Free-living amoebae of the genus Acanthamoeba are causal agents of a severe sight-threatening infection of the cornea known as Acanthamoeba keratitis. Moreover, the number of reported cases worldwide is increasing year after year, mostly in contact lens wearers, although cases have also been reported in non-contact lens wearers. Interestingly, Acanthamoeba keratitis has remained significant, despite our advances in antimicrobial chemotherapy and supportive care. In part, this is due to an incomplete understanding of the pathogenesis and pathophysiology of the disease, diagnostic delays and problems associated with chemotherapeutic interventions. In view of the devastating nature of this disease, here we present our current understanding of Acanthamoeba keratitis and molecular mechanisms associated with the disease, as well as virulence traits of Acanthamoeba that may be potential targets for improved diagnosis, therapeutic interventions and/or for the development of preventative measures. Novel molecular approaches such as proteomics, RNAi and a consensus in the diagnostic approaches for a suspected case of Acanthamoeba keratitis are proposed and reviewed based on data which have been compiled after years of working on this amoebic organism using many different techniques and listening to many experts in this field at conferences, workshops and international meetings. Altogether, this review may serve as the milestone for developing an effective solution for the prevention, control and treatment of Acanthamoeba infections.
Collapse
Affiliation(s)
- Jacob Lorenzo-Morales
- University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain
| | - Naveed A Khan
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
44
|
Mutch LJ, Howden JD, Jenner EPL, Poulter NS, Rappoport JZ. Polarised clathrin-mediated endocytosis of EGFR during chemotactic invasion. Traffic 2015; 15:648-64. [PMID: 24921075 PMCID: PMC4309520 DOI: 10.1111/tra.12165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Directed cell migration is critical for numerous physiological processes including development and wound healing. However chemotaxis is also exploited during cancer progression. Recent reports have suggested links between vesicle trafficking pathways and directed cell migration. Very little is known about the potential roles of endocytosis pathways during metastasis. Therefore we performed a series of studies employing a previously characterised model for chemotactic invasion of cancer cells to assess specific hypotheses potentially linking endocytosis to directed cell migration. Our results demonstrate that clathrin-mediated endocytosis is indispensable for epidermal growth factor (EGF) directed chemotactic invasion of MDA-MB-231 cells. Conversely, caveolar endocytosis is not required in this mode of migration. We further found that chemoattractant receptor (EGFR) trafficking occurs by clathrin-mediated endocytosis and is polarised towards the front of migrating cells. However, we found no role for clathrin-mediated endocytosis in focal adhesion disassembly in this migration model. Thus, this study has characterised the role of endocytosis during chemotactic invasion and has identified functions mechanistically linking clathrin-mediated endocytosis to directed cell motility.
Collapse
Affiliation(s)
- Laura Jane Mutch
- School of Biosciences, The University of BirminghamEdgbaston, Birmingham, B15 2TT, UK
| | - Jake Davey Howden
- School of Biosciences, The University of BirminghamEdgbaston, Birmingham, B15 2TT, UK
| | | | - Natalie Sarah Poulter
- Centre for Cardiovascular Research, Institute for Biomedical Research, The College of Medical and Dental Sciences, The University of BirminghamEdgbaston, Birmingham, B15 2TT, UK
| | - Joshua Zachary Rappoport
- School of Biosciences, The University of BirminghamEdgbaston, Birmingham, B15 2TT, UK
- *Corresponding author: Joshua Z. Rappoport,
| |
Collapse
|
45
|
Abstract
Chemotaxis, or directed motion in chemical gradients, is critical for various biological processes. Many eukaryotic cells perform spatial sensing, i.e. they detect gradients by comparing spatial differences in binding occupancy of chemosensory receptors across their membrane. In many theoretical models of spatial sensing, it is assumed, for the sake of simplicity, that the receptors concerned do not move. However, in reality, receptors undergo diverse modes of diffusion, and can traverse considerable distances in the time it takes such cells to turn in an external gradient. This sets a physical limit on the accuracy of spatial sensing, which we explore using a model in which receptors diffuse freely over the membrane. We find that the Fisher information carried in binding and unbinding events decreases monotonically with the diffusion constant of the receptors.
Collapse
|
46
|
Roberts HM, Ling MR, Insall R, Kalna G, Spengler J, Grant MM, Chapple ILC. Impaired neutrophil directional chemotactic accuracy in chronic periodontitis patients. J Clin Periodontol 2015; 42:1-11. [PMID: 25360483 PMCID: PMC4340045 DOI: 10.1111/jcpe.12326] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2014] [Indexed: 12/13/2022]
Abstract
AIM To investigate the chemotactic accuracy of peripheral blood neutrophils from patients with chronic periodontitis compared with matched healthy controls, before and after non-surgical periodontal therapy. MATERIAL & METHODS Neutrophils were isolated from patients and controls (n = 18) by density centrifugation. Using the Insall chamber and video microscopy, neutrophils were analysed for directional chemotaxis towards N-formyl-methionyl-leucyl-phenylalanine [fMLP (10 nM), or CXCL8 (200 ng/ml)]. Circular statistics were utilized for the analysis of cell movement. RESULTS Prior to treatment, neutrophils from patients with chronic periodontitis had significantly reduced speed, velocity and chemotactic accuracy compared to healthy controls for both chemoattractants. Following periodontal treatment, patient neutrophils continued to display reduced speed in response to both chemoattractants. However, velocity and accuracy were normalized for the weak chemoattractant CXCL8 while they remained significantly reduced for fMLP. CONCLUSIONS Chronic periodontitis is associated with reduced neutrophil chemotaxis, and this is only partially restored by successful treatment. Dysfunctional neutrophil chemotaxis may predispose patients with periodontitis to their disease by increasing tissue transit times, thus exacerbating neutrophil-mediated collateral host tissue damage.
Collapse
Affiliation(s)
- Helen M Roberts
- Periodontal Research Group and MRC Centre for Immune Regulation, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Feng S, Zhu W. Bidirectional molecular transport shapes cell polarization in a two-dimensional model of eukaryotic chemotaxis. J Theor Biol 2014; 363:235-46. [DOI: 10.1016/j.jtbi.2014.08.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/17/2014] [Accepted: 08/18/2014] [Indexed: 12/17/2022]
|
48
|
Alcazar W, López AS, Alakurtti S, Tuononen ML, Yli-Kauhaluoma J, Ponte-Sucre A. Betulin derivatives impair Leishmania braziliensis viability and host–parasite interaction. Bioorg Med Chem 2014; 22:6220-6. [DOI: 10.1016/j.bmc.2014.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/12/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
|
49
|
O'Neill PR, Gautam N. Subcellular optogenetic inhibition of G proteins generates signaling gradients and cell migration. Mol Biol Cell 2014; 25:2305-14. [PMID: 24920824 PMCID: PMC4116304 DOI: 10.1091/mbc.e14-04-0870] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cells sense gradients of extracellular cues and generate polarized responses such as cell migration and neurite initiation. There is static information on the intracellular signaling molecules involved in these responses, but how they dynamically orchestrate polarized cell behaviors is not well understood. A limitation has been the lack of methods to exert spatial and temporal control over specific signaling molecules inside a living cell. Here we introduce optogenetic tools that act downstream of native G protein-coupled receptor (GPCRs) and provide direct control over the activity of endogenous heterotrimeric G protein subunits. Light-triggered recruitment of a truncated regulator of G protein signaling (RGS) protein or a Gβγ-sequestering domain to a selected region on the plasma membrane results in localized inhibition of G protein signaling. In immune cells exposed to spatially uniform chemoattractants, these optogenetic tools allow us to create reversible gradients of signaling activity. Migratory responses generated by this approach show that a gradient of active G protein αi and βγ subunits is sufficient to generate directed cell migration. They also provide the most direct evidence so for a global inhibition pathway triggered by Gi signaling in directional sensing and adaptation. These optogenetic tools can be applied to interrogate the mechanistic basis of other GPCR-modulated cellular functions.
Collapse
Affiliation(s)
- Patrick R O'Neill
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110
| | - N Gautam
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
50
|
Driscoll MK, Sun X, Guven C, Fourkas JT, Losert W. Cellular contact guidance through dynamic sensing of nanotopography. ACS NANO 2014; 8:3546-55. [PMID: 24649900 PMCID: PMC4017610 DOI: 10.1021/nn406637c] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 03/20/2014] [Indexed: 05/25/2023]
Abstract
We investigate the effects of surface nanotopography on the migration and cell shape dynamics of the amoeba Dictyostelium discoideum. Multiple prior studies have implicated the patterning of focal adhesions in contact guidance. However, we observe significant contact guidance of Dictyostelium along surfaces with nanoscale ridges or grooves, even though this organism lacks integrin-based adhesions. Cells that move parallel to nanoridges are faster, more protrusive at their fronts, and more elongated than are cells that move perpendicular to nanoridges. Quantitative studies show that nanoridges spaced 1.5 μm apart exhibit the greatest contact guidance efficiency. Because Dictyostelium cells exhibit oscillatory shape dynamics, we model contact guidance as a process in which stochastic cellular harmonic oscillators couple to the periodicity of the nanoridges. In support of this connection, we find that nanoridges nucleate actin polymerization waves of nanoscale width that propagate parallel to the nanoridges.
Collapse
Affiliation(s)
- Meghan K. Driscoll
- Department of Physics, Department of Chemistry and Biochemistry, and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States
| | - Xiaoyu Sun
- Department of Physics, Department of Chemistry and Biochemistry, and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States
| | - Can Guven
- Department of Physics, Department of Chemistry and Biochemistry, and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States
| | - John T. Fourkas
- Department of Physics, Department of Chemistry and Biochemistry, and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States
| | - Wolfgang Losert
- Department of Physics, Department of Chemistry and Biochemistry, and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States
| |
Collapse
|