1
|
Cho SH, Kim JH, Kim S. Perturbed cell cycle phase-dependent positioning and nuclear migration of retinal progenitors along the apico-basal axis underlie global retinal disorganization in the LCA8-like mouse model. Dev Biol 2025; 517:39-54. [PMID: 39284539 DOI: 10.1016/j.ydbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/29/2024]
Abstract
Combined removal of Crb1 and Crb2 from the developing optic vesicle evokes cellular and laminar disorganization by disrupting the apical cell-cell adhesion in developing retinal epithelium. As a result, at postnatal stages, affected mouse retinas show temporarily thickened, coarsely laminated retinas in addition to functional deficits, including a severely abnormal electroretinogram and decreased visual acuity. These features are reminiscent of Leber congenital amaurosis 8, which is caused in humans by subsets of Crb1 mutations. However, the cellular basis of the abnormalities in retinal progenitor cells (RPCs) that lead to retinal disorganization is largely unknown. In this study, we analyze specific features of RPCs in mutant retinas, including maintenance of the progenitor pool, cell cycle progression, cell cycle phase-dependent nuclear positioning, cell survival, and generation of mature retinal cell types. We find crucial defects in the mutant RPCs. Upon removal of CRB1 and CRB2, apical structures of the RPCs, determined by markers of cilia and centrosomes, are basally shifted. In addition, the positioning of the somata of the M-phase cells, normally localized at the apical surface of the retinal epithelium, is basally shifted in a nearly randomized pattern along the apico-basal axis. Consequently, we propose that positioning of RPCs is desynchronized from cell cycle phase and largely randomized during embryonic development at E17.5. Because the resultant postmitotic cells inevitably lose positional information, the outer and inner nuclear layers (ONL and INL) fail to form from ONBL during neonatal development and retinal cells become mixed locally and globally. Additional results of the lost tissue polarity in Crb1/Crb2 dKO retinas include atypical formation of heterotopic cell patches containing photoreceptor cells in the ganglion cell layer and acellular patches filled with neural processes. Collectively, these changes lead to a mouse model of LCA8-like pathology. LCA8-like pathology differs substantially from the well-characterized, broad range of degeneration phenotypes that arise during the differentiation of photoreceptor and Muller glial cells in retinitis pigmentosa 12, a closely related disease caused by mutated human Crb1. Importantly, the present results suggest that Crb1/Crb2 serve indispensable functions in maintaining cell-cycle phase-dependent positioning of RPCs along the apico-basal axis, regulating cell cycle progression, and maintaining structural laminar integrity without significantly affecting the size of the RPC pools, generation of the subsets of the retinal cell types, or the distribution of cell cycle phases during RPC division. Taken together, these findings provide the crucial cellular basis of the thickening and severely disorganized lamination that are the unique features of the retinal abnormalities in LCA8 patients.
Collapse
Affiliation(s)
- Seo-Hee Cho
- Center for Translational Medicine, Department of Medicine, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Ji Hyang Kim
- Center for Translational Medicine, Department of Medicine, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Seonhee Kim
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| |
Collapse
|
2
|
Zaidi D, Chinnappa K, Yigit BN, Viola V, Cifuentes-Diaz C, Jabali A, Uzquiano A, Lemesre E, Perez F, Ladewig J, Ferent J, Ozlu N, Francis F. Forebrain Eml1 depletion reveals early centrosomal dysfunction causing subcortical heterotopia. J Cell Biol 2024; 223:e202310157. [PMID: 39316454 PMCID: PMC11450323 DOI: 10.1083/jcb.202310157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/19/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Subcortical heterotopia is a cortical malformation associated with epilepsy, intellectual disability, and an excessive number of cortical neurons in the white matter. Echinoderm microtubule-associated protein like 1 (EML1) mutations lead to subcortical heterotopia, associated with abnormal radial glia positioning in the cortical wall, prior to malformation onset. This perturbed distribution of proliferative cells is likely to be a critical event for heterotopia formation; however, the underlying mechanisms remain unexplained. This study aimed to decipher the early cellular alterations leading to abnormal radial glia. In a forebrain conditional Eml1 mutant model and human patient cells, primary cilia and centrosomes are altered. Microtubule dynamics and cell cycle kinetics are also abnormal in mouse mutant radial glia. By rescuing microtubule formation in Eml1 mutant embryonic brains, abnormal radial glia delamination and heterotopia volume were significantly reduced. Thus, our new model of subcortical heterotopia reveals the causal link between Eml1's function in microtubule regulation and cell position, both critical for correct cortical development.
Collapse
Affiliation(s)
- Donia Zaidi
- Institut du Fer à Moulin, Paris, France
- Institut National de Santé et de Recherche Médicale (INSERM, UMR-S 1270), Paris, France
- Sorbonne Université, Paris, France
| | - Kaviya Chinnappa
- Institut du Fer à Moulin, Paris, France
- Institut National de Santé et de Recherche Médicale (INSERM, UMR-S 1270), Paris, France
- Sorbonne Université, Paris, France
| | - Berfu Nur Yigit
- Department of Molecular Biology and Genetics, Koc University, İstanbul, Turkiye
| | - Valeria Viola
- Institut du Fer à Moulin, Paris, France
- Institut National de Santé et de Recherche Médicale (INSERM, UMR-S 1270), Paris, France
- Sorbonne Université, Paris, France
| | - Carmen Cifuentes-Diaz
- Institut du Fer à Moulin, Paris, France
- Institut National de Santé et de Recherche Médicale (INSERM, UMR-S 1270), Paris, France
- Sorbonne Université, Paris, France
| | - Ammar Jabali
- Central Institute of Mental Health (ZI), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Hector Institute for Translational Brain Research (HITBR), Mannheim, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana Uzquiano
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, AL, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, AL, USA
| | - Emilie Lemesre
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, Paris, France
| | - Franck Perez
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, Paris, France
| | - Julia Ladewig
- Central Institute of Mental Health (ZI), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Hector Institute for Translational Brain Research (HITBR), Mannheim, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julien Ferent
- Institut du Fer à Moulin, Paris, France
- Institut National de Santé et de Recherche Médicale (INSERM, UMR-S 1270), Paris, France
- Sorbonne Université, Paris, France
| | - Nurhan Ozlu
- Department of Molecular Biology and Genetics, Koc University, İstanbul, Turkiye
- Koc University, Research Center for Translational Medicine (KUTTAM), İstanbul, Turkiye
| | - Fiona Francis
- Institut du Fer à Moulin, Paris, France
- Institut National de Santé et de Recherche Médicale (INSERM, UMR-S 1270), Paris, France
- Sorbonne Université, Paris, France
| |
Collapse
|
3
|
Sastry L, Rylee J, Mahato S, Zelhof AC. Proximity labeling reveals interactions necessary to maintain the distinct apical domains of Drosophila photoreceptors. J Cell Sci 2024; 137:jcs262223. [PMID: 39540276 DOI: 10.1242/jcs.262223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Specialized membrane and cortical protein regions are common features of cells and are utilized to isolate differential cellular functions. In Drosophila photoreceptors, the apical membrane domain is defined by two distinct morphological membranes: the rhabdomere microvilli and the stalk membrane. To define the apical cortical protein complexes, we performed proximity labeling screens utilizing the rhabdomeric-specific protein PIP82 as bait. We found that the PIP82 interactome is enriched in actin-binding and cytoskeleton proteins, as well as proteins for cellular trafficking. Analysis of one target, Bifocal, with PIP82 revealed two independent pathways for localization to the rhabdomeric membrane and an additional mechanism of crosstalk between the protein complexes of the rhabdomeric and stalk membranes. The loss of Bifocal, and enhancement in the PIP82, bifocal double mutant, resulted in the additional distribution of Crumbs, an apical stalk membrane protein, to the lateral basal photoreceptor membrane. This phenotype was recapitulated by the knockdown of the catalytic subunit of Protein phosphatase 1, a known interactor with Bifocal. Taken together, these results expand our understanding of the molecular mechanisms underlying the generation of the two distinct photoreceptor apical domains.
Collapse
Affiliation(s)
- Lalitha Sastry
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Johnathan Rylee
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Simpla Mahato
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Andrew C Zelhof
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
4
|
Sahu S, Mishra M. Alteration of Cytoskeletal Proteins Leads to Retinal Degeneration in Drosophila. Cytoskeleton (Hoboken) 2024. [PMID: 39508206 DOI: 10.1002/cm.21955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
The eye holds a special fascination for many neuroscientists because of its meticulously organized structure. Vertebrates typically possess a simple camera-type eye, whereas the compound eye structure is predominantly observed in arthropods including model organism Drosophila melanogaster. Cell shape, cell polarization, and tissue integrity are the cell biological processes crucial for shaping the eye, which directly or indirectly depends on the cytoskeleton. Henceforth the cytoskeleton, specifically actin microfilaments, essentially has a dynamic role in the normal development and growth of eye structure. This review provides insight into the roles played by the actin cytoskeleton during the development and maintenance of the Drosophila eye.
Collapse
Affiliation(s)
- Surajita Sahu
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, India
| |
Collapse
|
5
|
Sun Y, Kronenberg NM, Sethi SK, Dash SN, Kovalik ME, Sempowski B, Strickland S, Raina R, Sperati CJ, Tian X, Ishibe S, Hall G, Gather MC. CRB2 Depletion Induces YAP Signaling and Disrupts Mechanosensing in Podocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619513. [PMID: 39484460 PMCID: PMC11527017 DOI: 10.1101/2024.10.22.619513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Focal Segmental Glomerulosclerosis (FSGS) is a histologic lesion caused by a variety of injurious stimuli that lead to dysfunction/loss of glomerular visceral epithelial cells (i.e. podocytes). Pathogenic mutations in CRB2, encoding the type 1 transmembrane protein Crumb 2 Homolog Protein, have been shown to cause early-onset corticosteroid-resistant nephrotic syndrome (SRNS)/FSGS. Here, we identified a 2-generation East Asian kindred (DUK40595) with biopsy-proven SRNS/FSGS caused by a compound heterozygous mutation in CRB2 comprised of the previously described truncating mutation p.Gly1036_Alafs*43 and a rare 9-bp deletion mutation p.Leu1074_Asp1076del. Because compound heterozygous mutations involving the truncating p.Gly1036_Alafs*43 variant have been associated with reduced CRB2 expression in podocytes and autosomal recessive SRNS/FSGS, we sought to define the pathogenic effects of CRB2 deficiency in podocytes. We show that CRB2 knockdown induces YAP activity and target gene expression in podocytes. It upregulates YAP-mediated mechanosignaling and increases the density of focal adhesion and F-actin. Using Elastic Resonator Interference Stress Microscopy (ERISM), we demonstrate that CRB2 knockdown also enhances podocyte contractility in a substrate stiffness-dependent manner. The knockdown effect decreases with increasing substrate stiffness, indicating impaired mechanosensing in CRB2 knockdown cells at low substrate stiffness. While the mechanical activation of CRB2 knockdown cells is associated with increased YAP activity, the enhanced cell contractility is not significantly reduced by the selective YAP inhibitors K-975 and verteporfin, suggesting that multiple pathways may be involved in mechanosignaling downstream of CRB2. Taken together, these studies provide the first evidence that CRB2 deficiency may impair podocyte mechanotransduction via disruption of YAP signaling in podocytes.
Collapse
Affiliation(s)
- Yingyu Sun
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Nils M. Kronenberg
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Sidharth K. Sethi
- Pediatric Nephrology and Pediatric Kidney Transplantation, Medanta Kidney and Urology Institute, The Medicity Hospital, Gurgaon, Haryana, India
| | - Surjya N. Dash
- Division of Nephrology, Department of Medicine, Duke University, Durham, North Carolina, U.S.A
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, U.S.A
| | - Maria E. Kovalik
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, U.S.A
| | - Benjamin Sempowski
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, U.S.A
| | - Shelby Strickland
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, U.S.A
| | - Rupresh Raina
- Division of Nephrology, Department of Medicine, Yale University, New Haven, Connecticut, U.S.A
- Cleveland Clinic Akron General Medical Center, Akron Nephrology Associates, Akron, Ohio, USA
| | - C. John Sperati
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, U.S.A
| | - Xuefei Tian
- Cleveland Clinic Akron General Medical Center, Akron Nephrology Associates, Akron, Ohio, USA
| | - Shuta Ishibe
- Cleveland Clinic Akron General Medical Center, Akron Nephrology Associates, Akron, Ohio, USA
| | - Gentzon Hall
- Division of Nephrology, Department of Medicine, Duke University, Durham, North Carolina, U.S.A
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, U.S.A
| | - Malte C. Gather
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
- Centre of Biophotonics, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, U.K
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Disease (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Bhattacharya R, Kumari J, Banerjee S, Tripathi J, Parihar SS, Mohan N, Sinha P. Hippo effector, Yorkie, is a tumor suppressor in select Drosophila squamous epithelia. Proc Natl Acad Sci U S A 2024; 121:e2319666121. [PMID: 39288176 PMCID: PMC11441523 DOI: 10.1073/pnas.2319666121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Mammalian Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) and Drosophila Yorkie (Yki) are transcription cofactors of the highly conserved Hippo signaling pathway. It has been long assumed that the YAP/TAZ/Yki signaling drives cell proliferation during organ growth. However, its instructive role in regulating developmentally programmed organ growth, if any, remains elusive. Out-of-context gain of YAP/TAZ/Yki signaling often turns oncogenic. Paradoxically, mechanically strained, and differentiated squamous epithelia display developmentally programmed constitutive nuclear YAP/TAZ/Yki signaling. The unknown, therefore, is how a growth-promoting YAP/TAZ/Yki signaling restricts proliferation in differentiated squamous epithelia. Here, we show that reminiscent of a tumor suppressor, Yki negatively regulates the cell growth-promoting PI3K/Akt/TOR signaling in the squamous epithelia of Drosophila tubular organs. Thus, downregulation of Yki signaling in the squamous epithelium of the adult male accessory gland (MAG) up-regulates PI3K/Akt/TOR signaling, inducing cell hypertrophy, exit from their cell cycle arrest, and, finally, culminating in squamous cell carcinoma (SCC). Thus, blocking PI3K/Akt/TOR signaling arrests Yki loss-induced MAG-SCC. Further, MAG-SCCs, like other lethal carcinomas, secrete a cachectin, Impl2-the Drosophila homolog of mammalian IGFBP7-inducing cachexia and shortening the lifespan of adult males. Moreover, in the squamous epithelium of other tubular organs, like the dorsal trunk of larval tracheal airways or adult Malpighian tubules, downregulation of Yki signaling triggers PI3K/Akt/TOR-induced cell hypertrophy. Our results reveal that Yki signaling plays an instructive, antiproliferative role in the squamous epithelia of tubular organs.
Collapse
Affiliation(s)
- Rachita Bhattacharya
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Jaya Kumari
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Shweta Banerjee
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Jyoti Tripathi
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Saurabh Singh Parihar
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Nitin Mohan
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Pradip Sinha
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| |
Collapse
|
7
|
Bingham R, McCarthy H, Buckley N. Exploring Retrograde Trafficking: Mechanisms and Consequences in Cancer and Disease. Traffic 2024; 25:e12931. [PMID: 38415291 DOI: 10.1111/tra.12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/29/2024]
Abstract
Retrograde trafficking (RT) orchestrates the intracellular movement of cargo from the plasma membrane, endosomes, Golgi or endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) in an inward/ER-directed manner. RT works as the opposing movement to anterograde trafficking (outward secretion), and the two work together to maintain cellular homeostasis. This is achieved through maintaining cell polarity, retrieving proteins responsible for anterograde trafficking and redirecting proteins that become mis-localised. However, aberrant RT can alter the correct location of key proteins, and thus inhibit or indeed change their canonical function, potentially causing disease. This review highlights the recent advances in the understanding of how upregulation, downregulation or hijacking of RT impacts the localisation of key proteins in cancer and disease to drive progression. Cargoes impacted by aberrant RT are varied amongst maladies including neurodegenerative diseases, autoimmune diseases, bacterial and viral infections (including SARS-CoV-2), and cancer. As we explore the intricacies of RT, it becomes increasingly apparent that it holds significant potential as a target for future therapies to offer more effective interventions in a wide range of pathological conditions.
Collapse
Affiliation(s)
- Rachel Bingham
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Helen McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Niamh Buckley
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| |
Collapse
|
8
|
Boon N, Lu X, Andriessen CA, Orlovà M, Quinn PM, Boon CJ, Wijnholds J. Characterization and AAV-mediated CRB gene augmentation in human-derived CRB1KO and CRB1KOCRB2+/- retinal organoids. Mol Ther Methods Clin Dev 2023; 31:101128. [PMID: 37886604 PMCID: PMC10597801 DOI: 10.1016/j.omtm.2023.101128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023]
Abstract
The majority of patients with mutations in CRB1 develop either early-onset retinitis pigmentosa as young children or Leber congenital amaurosis as newborns. The cause for the phenotypic variability in CRB1-associated retinopathies is unknown, but might be linked to differences in CRB1 and CRB2 protein levels in Müller glial cells and photoreceptor cells. Here, CRB1KO and CRB1KOCRB2+/- differentiation day 210 retinal organoids showed a significant decrease in the number of photoreceptor nuclei in a row and a significant increase in the number of photoreceptor cell nuclei above the outer limiting membrane. This phenotype with outer retinal abnormalities is similar to CRB1 patient-derived retinal organoids and Crb1 or Crb2 mutant mouse retinal disease models. The CRB1KO and CRB1KOCRB2+/- retinal organoids develop an additional inner retinal phenotype due to the complete loss of CRB1 from Müller glial cells, suggesting an essential role for CRB1 in proper localization of neuronal cell types. Adeno-associated viral (AAV) transduction was explored at early and late stages of organoid development. Moreover, AAV-mediated gene augmentation therapy with AAV.hCRB2 improved the outer retinal phenotype in CRB1KO retinal organoids. Altogether, these data provide essential information for future gene therapy approaches for patients with CRB1-associated retinal dystrophies.
Collapse
Affiliation(s)
- Nanda Boon
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Xuefei Lu
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Charlotte A. Andriessen
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Michaela Orlovà
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Peter M.J. Quinn
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Camiel J.F. Boon
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, 1000 AE Amsterdam, the Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| |
Collapse
|
9
|
Zhao H, Shi L, Li Z, Kong R, Jia L, Lu S, Wang JH, Dong MQ, Guo X, Li Z. Diamond controls epithelial polarity through the dynactin-dynein complex. Traffic 2023; 24:552-563. [PMID: 37642208 DOI: 10.1111/tra.12917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Epithelial polarity is critical for proper functions of epithelial tissues, tumorigenesis, and metastasis. The evolutionarily conserved transmembrane protein Crumbs (Crb) is a key regulator of epithelial polarity. Both Crb protein and its transcripts are apically localized in epithelial cells. However, it remains not fully understood how they are targeted to the apical domain. Here, using Drosophila ovarian follicular epithelia as a model, we show that epithelial polarity is lost and Crb protein is absent in the apical domain in follicular cells (FCs) in the absence of Diamond (Dind). Interestingly, Dind is found to associate with different components of the dynactin-dynein complex through co-IP-MS analysis. Dind stabilizes dynactin and depletion of dynactin results in almost identical defects as those observed in dind-defective FCs. Finally, both Dind and dynactin are also required for the apical localization of crb transcripts in FCs. Thus our data illustrate that Dind functions through dynactin/dynein-mediated transport of both Crb protein and its transcripts to the apical domain to control epithelial apico-basal (A/B) polarity.
Collapse
Affiliation(s)
- Hang Zhao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Lin Shi
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhengran Li
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ruiyan Kong
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Lemei Jia
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Shan Lu
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Jian-Hua Wang
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Xuan Guo
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zhouhua Li
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
10
|
Fiedler J, Moennig T, Hinrichs JH, Weber A, Wagner T, Hemmer T, Schröter R, Weide T, Epting D, Bergmann C, Nedvetsky P, Krahn MP. PATJ inhibits histone deacetylase 7 to control tight junction formation and cell polarity. Cell Mol Life Sci 2023; 80:333. [PMID: 37878054 PMCID: PMC10600057 DOI: 10.1007/s00018-023-04994-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023]
Abstract
The conserved multiple PDZ-domain containing protein PATJ stabilizes the Crumbs-Pals1 complex to regulate apical-basal polarity and tight junction formation in epithelial cells. However, the molecular mechanism of PATJ's function in these processes is still unclear. In this study, we demonstrate that knockout of PATJ in epithelial cells results in tight junction defects as well as in a disturbed apical-basal polarity and impaired lumen formation in three-dimensional cyst assays. Mechanistically, we found PATJ to associate with and inhibit histone deacetylase 7 (HDAC7). Inhibition or downregulation of HDAC7 restores polarity and lumen formation. Gene expression analysis of PATJ-deficient cells revealed an impaired expression of genes involved in cell junction assembly and membrane organization, which is rescued by the downregulation of HDAC7. Notably, the function of PATJ regulating HDAC7-dependent cilia formation does not depend on its canonical interaction partner, Pals1, indicating a new role of PATJ, which is distinct from its function in the Crumbs complex. By contrast, polarity and lumen phenotypes observed in Pals1- and PATJ-deficient epithelial cells can be rescued by inhibition of HDAC7, suggesting that the main function of this polarity complex in this process is to modulate the transcriptional profile of epithelial cells by inhibiting HDAC7.
Collapse
Affiliation(s)
- Julia Fiedler
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Thomas Moennig
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Johanna H Hinrichs
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Annika Weber
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Thomas Wagner
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Tim Hemmer
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Rita Schröter
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Thomas Weide
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Daniel Epting
- Department of Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Carsten Bergmann
- Department of Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
- Medizinische Genetik Mainz, Limbach Genetics, 55128, Mainz, Germany
| | - Pavel Nedvetsky
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Michael P Krahn
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany.
| |
Collapse
|
11
|
Javorsky A, Humbert PO, Kvansakul M. Viral manipulation of cell polarity signalling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119536. [PMID: 37437846 DOI: 10.1016/j.bbamcr.2023.119536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Cell polarity refers to the asymmetric distribution of biomacromolecules that enable the correct orientation of a cell in a particular direction. It is thus an essential component for appropriate tissue development and function. Viral infections can lead to dysregulation of polarity. This is associated with a poor prognosis due to viral interference with core cell polarity regulatory scaffolding proteins that often feature PDZ (PSD-95, DLG, and ZO-1) domains including Scrib, Dlg, Pals1, PatJ, Par3 and Par6. PDZ domains are also promiscuous, binding to several different partners through their C-terminal region which contain PDZ-binding motifs (PBM). Numerous viruses encode viral effector proteins that target cell polarity regulators for their benefit and include papillomaviruses, flaviviruses and coronaviruses. A better understanding of the mechanisms of action utilised by viral effector proteins to subvert host cell polarity sigalling will provide avenues for future therapeutic intervention, while at the same time enhance our understanding of cell polarity regulation and its role tissue homeostasis.
Collapse
Affiliation(s)
- Airah Javorsky
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia; Department of Biochemistry & Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Marc Kvansakul
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
12
|
Boon N, Lu X, Andriessen CA, Moustakas I, Buck TM, Freund C, Arendzen CH, Böhringer S, Mei H, Wijnholds J. AAV-mediated gene augmentation therapy of CRB1 patient-derived retinal organoids restores the histological and transcriptional retinal phenotype. Stem Cell Reports 2023; 18:1123-1137. [PMID: 37084726 DOI: 10.1016/j.stemcr.2023.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/23/2023] Open
Abstract
Retinitis pigmentosa and Leber congenital amaurosis are inherited retinal dystrophies that can be caused by mutations in the Crumbs homolog 1 (CRB1) gene. CRB1 is required for organizing apical-basal polarity and adhesion between photoreceptors and Müller glial cells. CRB1 patient-derived induced pluripotent stem cells were differentiated into CRB1 retinal organoids that showed diminished expression of variant CRB1 protein observed by immunohistochemical analysis. Single-cell RNA sequencing revealed impact on, among others, the endosomal pathway and cell adhesion and migration in CRB1 patient-derived retinal organoids compared with isogenic controls. Adeno-associated viral (AAV) vector-mediated hCRB2 or hCRB1 gene augmentation in Müller glial and photoreceptor cells partially restored the histological phenotype and transcriptomic profile of CRB1 patient-derived retinal organoids. Altogether, we show proof-of-concept that AAV.hCRB1 or AAV.hCRB2 treatment improved the phenotype of CRB1 patient-derived retinal organoids, providing essential information for future gene therapy approaches for patients with mutations in the CRB1 gene.
Collapse
Affiliation(s)
- Nanda Boon
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Xuefei Lu
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Charlotte A Andriessen
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Ioannis Moustakas
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Thilo M Buck
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Christian Freund
- hiPSC Hotel, Department of Anatomy and Embryology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Christiaan H Arendzen
- hiPSC Hotel, Department of Anatomy and Embryology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Stefan Böhringer
- Department of Biomedical Data Sciences, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands; Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
| |
Collapse
|
13
|
Tilston-Lunel AM, Varelas X. Polarity in respiratory development, homeostasis and disease. Curr Top Dev Biol 2023; 154:285-315. [PMID: 37100521 DOI: 10.1016/bs.ctdb.2023.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
The respiratory system is composed of a multitude of cells that organize to form complex branched airways that end in alveoli, which respectively function to guide air flow and mediate gas exchange with the bloodstream. The organization of the respiratory sytem relies on distinct forms of cell polarity, which guide lung morphogenesis and patterning in development and provide homeostatic barrier protection from microbes and toxins. The stability of lung alveoli, the luminal secretion of surfactants and mucus in the airways, and the coordinated motion of multiciliated cells that generate proximal fluid flow, are all critical functions regulated by cell polarity, with defects in polarity contributing to respiratory disease etiology. Here, we summarize the current knowledge of cell polarity in lung development and homeostasis, highlighting key roles for polarity in alveolar and airway epithelial function and outlining relationships with microbial infections and diseases, such as cancer.
Collapse
|
14
|
Ahmad US, Uttagomol J, Wan H. The Regulation of the Hippo Pathway by Intercellular Junction Proteins. Life (Basel) 2022; 12:1792. [PMID: 36362947 PMCID: PMC9696951 DOI: 10.3390/life12111792] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 08/24/2023] Open
Abstract
The Hippo pathway is an evolutionarily conserved pathway that serves to promote cell death and differentiation while inhibiting cellular proliferation across species. The downstream effectors of this pathway, yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), are considered vital in promoting the output of the Hippo pathway, with activation of upstream kinases negatively regulating YAP/TAZ activity. The upstream regulation of the Hippo pathway is not entirely understood on a molecular level. However, several studies have shown that numerous cellular and non-cellular mechanisms such as cell polarity, contact inhibition, soluble factors, mechanical forces, and metabolism can convey external stimuli to the intracellular kinase cascade, promoting the activation of key components of the Hippo pathway and therefore regulating the subcellular localisation and protein activity of YAP/TAZ. This review will summarise what we have learnt about the role of intercellular junction-associated proteins in the activation of this pathway, including adherens junctions and tight junctions, and in particular our latest findings about the desmosomal components, including desmoglein-3 (DSG3), in the regulation of YAP signalling, phosphorylation, and subcellular translocation.
Collapse
Affiliation(s)
- Usama Sharif Ahmad
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Jutamas Uttagomol
- Oral Diagnosis Department, Faculty of Dentistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Hong Wan
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
15
|
Brault J, Bardin S, Lampic M, Carpentieri JA, Coquand L, Penisson M, Lachuer H, Victoria GS, Baloul S, El Marjou F, Boncompain G, Miserey‐Lenkei S, Belvindrah R, Fraisier V, Francis F, Perez F, Goud B, Baffet AD. RAB6
and dynein drive
post‐Golgi
apical transport to prevent neuronal progenitor delamination. EMBO Rep 2022; 23:e54605. [PMID: 35979738 PMCID: PMC9535803 DOI: 10.15252/embr.202254605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
Radial glial (RG) cells are the neural stem cells of the developing neocortex. Apical RG (aRG) cells can delaminate to generate basal RG (bRG) cells, a cell type associated with human brain expansion. Here, we report that aRG delamination is regulated by the post‐Golgi secretory pathway. Using in situ subcellular live imaging, we show that post‐Golgi transport of RAB6+ vesicles occurs toward the minus ends of microtubules and depends on dynein. We demonstrate that the apical determinant Crumbs3 (CRB3) is also transported by dynein. Double knockout of RAB6A/A' and RAB6B impairs apical localization of CRB3 and induces a retraction of aRG cell apical process, leading to delamination and ectopic division. These defects are phenocopied by knockout of the dynein activator LIS1. Overall, our results identify a RAB6‐dynein‐LIS1 complex for Golgi to apical surface transport in aRG cells, and highlights the role of this pathway in the maintenance of neuroepithelial integrity.
Collapse
Affiliation(s)
| | - Sabine Bardin
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | - Marusa Lampic
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | | | - Laure Coquand
- Institut Curie PSL Research University, CNRS UMR144 Paris France
- Sorbonne University Paris France
| | - Maxime Penisson
- Sorbonne University Paris France
- INSERM UMR‐S 1270 Paris France
- Institut du Fer à Moulin Paris France
| | - Hugo Lachuer
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | | | - Sarah Baloul
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | - Fatima El Marjou
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | | | | | - Richard Belvindrah
- Sorbonne University Paris France
- INSERM UMR‐S 1270 Paris France
- Institut du Fer à Moulin Paris France
| | - Vincent Fraisier
- UMR 144‐Cell and Tissue Imaging Facility (PICT‐IBiSA) CNRS‐Institut Curie Paris France
| | - Fiona Francis
- Sorbonne University Paris France
- INSERM UMR‐S 1270 Paris France
- Institut du Fer à Moulin Paris France
| | - Franck Perez
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | - Bruno Goud
- Institut Curie PSL Research University, CNRS UMR144 Paris France
| | - Alexandre D Baffet
- Institut Curie PSL Research University, CNRS UMR144 Paris France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Paris France
| |
Collapse
|
16
|
Apical-basal polarity and the control of epithelial form and function. Nat Rev Mol Cell Biol 2022; 23:559-577. [PMID: 35440694 DOI: 10.1038/s41580-022-00465-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 02/02/2023]
Abstract
Epithelial cells are the most common cell type in all animals, forming the sheets and tubes that compose most organs and tissues. Apical-basal polarity is essential for epithelial cell form and function, as it determines the localization of the adhesion molecules that hold the cells together laterally and the occluding junctions that act as barriers to paracellular diffusion. Polarity must also target the secretion of specific cargoes to the apical, lateral or basal membranes and organize the cytoskeleton and internal architecture of the cell. Apical-basal polarity in many cells is established by conserved polarity factors that define the apical (Crumbs, Stardust/PALS1, aPKC, PAR-6 and CDC42), junctional (PAR-3) and lateral (Scribble, DLG, LGL, Yurt and RhoGAP19D) domains, although recent evidence indicates that not all epithelia polarize by the same mechanism. Research has begun to reveal the dynamic interactions between polarity factors and how they contribute to polarity establishment and maintenance. Elucidating these mechanisms is essential to better understand the roles of apical-basal polarity in morphogenesis and how defects in polarity contribute to diseases such as cancer.
Collapse
|
17
|
Weatherly SM, Collin GB, Charette JR, Stone L, Damkham N, Hyde LF, Peterson JG, Hicks W, Carter GW, Naggert JK, Krebs MP, Nishina PM. Identification of Arhgef12 and Prkci as genetic modifiers of retinal dysplasia in the Crb1rd8 mouse model. PLoS Genet 2022; 18:e1009798. [PMID: 35675330 PMCID: PMC9212170 DOI: 10.1371/journal.pgen.1009798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 06/21/2022] [Accepted: 05/03/2022] [Indexed: 12/03/2022] Open
Abstract
Mutations in the apicobasal polarity gene CRB1 lead to diverse retinal diseases, such as Leber congenital amaurosis, cone-rod dystrophy, retinitis pigmentosa (with and without Coats-like vasculopathy), foveal retinoschisis, macular dystrophy, and pigmented paravenous chorioretinal atrophy. Limited correlation between disease phenotypes and CRB1 alleles, and evidence that patients sharing the same alleles often present with different disease features, suggest that genetic modifiers contribute to clinical variation. Similarly, the retinal phenotype of mice bearing the Crb1 retinal degeneration 8 (rd8) allele varies with genetic background. Here, we initiated a sensitized chemical mutagenesis screen in B6.Cg-Crb1rd8/Pjn, a strain with a mild clinical presentation, to identify genetic modifiers that cause a more severe disease phenotype. Two models from this screen, Tvrm266 and Tvrm323, exhibited increased retinal dysplasia. Genetic mapping with high-throughput exome and candidate-gene sequencing identified causative mutations in Arhgef12 and Prkci, respectively. Epistasis analysis of both strains indicated that the increased dysplastic phenotype required homozygosity of the Crb1rd8 allele. Retinal dysplastic lesions in Tvrm266 mice were smaller and caused less photoreceptor degeneration than those in Tvrm323 mice, which developed an early, large diffuse lesion phenotype. At one month of age, Müller glia and microglia mislocalization at dysplastic lesions in both modifier strains was similar to that in B6.Cg-Crb1rd8/Pjn mice but photoreceptor cell mislocalization was more extensive. External limiting membrane disruption was comparable in Tvrm266 and B6.Cg-Crb1rd8/Pjn mice but milder in Tvrm323 mice. Immunohistological analysis of mice at postnatal day 0 indicated a normal distribution of mitotic cells in Tvrm266 and Tvrm323 mice, suggesting normal early development. Aberrant electroretinography responses were observed in both models but functional decline was significant only in Tvrm323 mice. These results identify Arhgef12 and Prkci as modifier genes that differentially shape Crb1-associated retinal disease, which may be relevant to understanding clinical variability and underlying disease mechanisms in humans.
Collapse
Affiliation(s)
| | - Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Nattaya Damkham
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Lillian F. Hyde
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Wanda Hicks
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | | | - Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| |
Collapse
|
18
|
Rathbun LI, Everett CA, Bergstralh DT. Emerging Cnidarian Models for the Study of Epithelial Polarity. Front Cell Dev Biol 2022; 10:854373. [PMID: 35433674 PMCID: PMC9012326 DOI: 10.3389/fcell.2022.854373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial tissues are vital to the function of most organs, providing critical functions such as secretion, protection, and absorption. Cells within an epithelial layer must coordinate to create functionally distinct apical, lateral, and basal surfaces in order to maintain proper organ function and organism viability. This is accomplished through the careful targeting of polarity factors to their respective locations within the cell, as well as the strategic placement of post-mitotic cells within the epithelium during tissue morphogenesis. The process of establishing and maintaining epithelial tissue integrity is conserved across many species, as important polarity factors and spindle orientation mechanisms can be found in many phyla. However, most of the information gathered about these processes and players has been investigated in bilaterian organisms such as C. elegans, Drosophila, and vertebrate species. This review discusses the advances made in the field of epithelial polarity establishment from more basal organisms, and the advantages to utilizing these simpler models. An increasing number of cnidarian model organisms have been sequenced in recent years, such as Hydra vulgaris and Nematostella vectensis. It is now feasible to investigate how polarity is established and maintained in basal organisms to gain an understanding of the most basal requirements for epithelial tissue morphogenesis.
Collapse
Affiliation(s)
| | | | - Dan T. Bergstralh
- Department of Biology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
19
|
Rust K, Wodarz A. Transcriptional Control of Apical-Basal Polarity Regulators. Int J Mol Sci 2021; 22:ijms222212340. [PMID: 34830224 PMCID: PMC8624420 DOI: 10.3390/ijms222212340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022] Open
Abstract
Cell polarity is essential for many functions of cells and tissues including the initial establishment and subsequent maintenance of epithelial tissues, asymmetric cell division, and morphogenetic movements. Cell polarity along the apical-basal axis is controlled by three protein complexes that interact with and co-regulate each other: The Par-, Crumbs-, and Scrib-complexes. The localization and activity of the components of these complexes is predominantly controlled by protein-protein interactions and protein phosphorylation status. Increasing evidence accumulates that, besides the regulation at the protein level, the precise expression control of polarity determinants contributes substantially to cell polarity regulation. Here we review how gene expression regulation influences processes that depend on the induction, maintenance, or abolishment of cell polarity with a special focus on epithelial to mesenchymal transition and asymmetric stem cell division. We conclude that gene expression control is an important and often neglected mechanism in the control of cell polarity.
Collapse
Affiliation(s)
- Katja Rust
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University, 35037 Marburg, Germany
- Correspondence: (K.R.); (A.W.)
| | - Andreas Wodarz
- Department of Molecular Cell Biology, Institute I for Anatomy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cluster of Excellence—Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
- Correspondence: (K.R.); (A.W.)
| |
Collapse
|
20
|
Vasquez CG, de la Serna EL, Dunn AR. How cells tell up from down and stick together to construct multicellular tissues - interplay between apicobasal polarity and cell-cell adhesion. J Cell Sci 2021; 134:272658. [PMID: 34714332 DOI: 10.1242/jcs.248757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polarized epithelia define a topological inside and outside, and hence constitute a key evolutionary innovation that enabled the construction of complex multicellular animal life. Over time, this basic function has been elaborated upon to yield the complex architectures of many of the organs that make up the human body. The two processes necessary to yield a polarized epithelium, namely regulated adhesion between cells and the definition of the apicobasal (top-bottom) axis, have likewise undergone extensive evolutionary elaboration, resulting in multiple sophisticated protein complexes that contribute to both functions. Understanding how these components function in combination to yield the basic architecture of a polarized cell-cell junction remains a major challenge. In this Review, we introduce the main components of apicobasal polarity and cell-cell adhesion complexes, and outline what is known about their regulation and assembly in epithelia. In addition, we highlight studies that investigate the interdependence between these two networks. We conclude with an overview of strategies to address the largest and arguably most fundamental unresolved question in the field, namely how a polarized junction arises as the sum of its molecular parts.
Collapse
Affiliation(s)
- Claudia G Vasquez
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Eva L de la Serna
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.,Biophysics Program, Stanford University, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Hwang D, Kim M, Kim S, Kwon MR, Kang YS, Kim D, Kang HC, Lim DS. AMOTL2 mono-ubiquitination by WWP1 promotes contact inhibition by facilitating LATS activation. Life Sci Alliance 2021; 4:4/10/e202000953. [PMID: 34404733 PMCID: PMC8372784 DOI: 10.26508/lsa.202000953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 11/24/2022] Open
Abstract
This work reveals a novel function of WWP1 E3 ligase in the mono-ubiquitination of AMOTL2, which enables the binding and activation of LATS kinases upon contact inhibition. Contact inhibition is a key cellular phenomenon that prevents cells from hyper-proliferating upon reaching confluence. Although not fully characterized, a critical driver of this process is the Hippo signaling pathway, whose downstream effector yes-associated protein plays pivotal roles in cell growth and differentiation. Here, we provide evidence that the E3 ligase WWP1 (WW-domain containing protein 1) mono-ubiquitinates AMOTL2 (angiomotin-like 2) at K347 and K408. Mono-ubiquitinated AMOTL2, in turn, interacts with the kinase LATS2, which facilitates recruitment of the upstream Hippo pathway component SAV1 and ultimately promotes yes-associated protein phosphorylation and subsequent cytoplasmic sequestration and/or degradation. Furthermore, contact inhibition induced by high cell density promoted the localization and stabilization of WWP1 at cell junctions, where it interacted with Crumbs polarity proteins. Notably, the Crumbs complex was functionally important for AMOTL2 mono-ubiquitination and LATS activation under high cell density conditions. These findings delineate a functionally important molecular mechanism in which AMOTL2 mono-ubiquitination by WWP1 at cell junctions and LATS activation are tightly coupled to upstream cell density cues.
Collapse
Affiliation(s)
- Daehee Hwang
- National Creative Research Center for Cell Plasticity, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Miju Kim
- National Creative Research Center for Cell Plasticity, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Soyeon Kim
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Mi Ra Kwon
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Ye-Seul Kang
- National Creative Research Center for Cell Plasticity, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Dahyun Kim
- National Creative Research Center for Cell Plasticity, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Ho-Chul Kang
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Dae-Sik Lim
- National Creative Research Center for Cell Plasticity, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
22
|
Hebbar S, Knust E. Reactive oxygen species (ROS) constitute an additional player in regulating epithelial development. Bioessays 2021; 43:e2100096. [PMID: 34260754 DOI: 10.1002/bies.202100096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules produced in cells. So far, they have mostly been connected to diseases and pathological conditions. More recent results revealed a somewhat unexpected role of ROS in control of developmental processes. In this review, we elaborate on ROS in development, focussing on their connection to epithelial tissue morphogenesis. After briefly summarising unique characteristics of epithelial cells, we present some characteristic features of ROS species, their production and targets, with a focus on proteins important for epithelial development and function. Finally, we provide examples of regulation of epithelial morphogenesis by ROS, and also of developmental genes that regulate the overall redox status. We conclude by discussing future avenues of research that will further elucidate ROS regulation in epithelial development.
Collapse
Affiliation(s)
- Sarita Hebbar
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
23
|
Pojer JM, Saiful Hilmi AJ, Kondo S, Harvey KF. Crumbs and the apical spectrin cytoskeleton regulate R8 cell fate in the Drosophila eye. PLoS Genet 2021; 17:e1009146. [PMID: 34097697 PMCID: PMC8211197 DOI: 10.1371/journal.pgen.1009146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 06/17/2021] [Accepted: 05/11/2021] [Indexed: 12/31/2022] Open
Abstract
The Hippo pathway is an important regulator of organ growth and cell fate. In the R8 photoreceptor cells of the Drosophila melanogaster eye, the Hippo pathway controls the fate choice between one of two subtypes that express either the blue light-sensitive Rhodopsin 5 (Hippo inactive R8 subtype) or the green light-sensitive Rhodopsin 6 (Hippo active R8 subtype). The degree to which the mechanism of Hippo signal transduction and the proteins that mediate it are conserved in organ growth and R8 cell fate choice is currently unclear. Here, we identify Crumbs and the apical spectrin cytoskeleton as regulators of R8 cell fate. By contrast, other proteins that influence Hippo-dependent organ growth, such as the basolateral spectrin cytoskeleton and Ajuba, are dispensable for the R8 cell fate choice. Surprisingly, Crumbs promotes the Rhodopsin 5 cell fate, which is driven by Yorkie, rather than the Rhodopsin 6 cell fate, which is driven by Warts and the Hippo pathway, which contrasts with its impact on Hippo activity in organ growth. Furthermore, neither the apical spectrin cytoskeleton nor Crumbs appear to regulate the Hippo pathway through mechanisms that have been observed in growing organs. Together, these results show that only a subset of Hippo pathway proteins regulate the R8 binary cell fate decision and that aspects of Hippo signalling differ between growing organs and post-mitotic R8 cells.
Collapse
Affiliation(s)
- Jonathan M. Pojer
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Abdul Jabbar Saiful Hilmi
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kieran F. Harvey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
24
|
Shard C, Luna-Escalante J, Schweisguth F. Tissue-wide coordination of epithelium-to-neural stem cell transition in the Drosophila optic lobe requires Neuralized. J Cell Biol 2021; 219:152101. [PMID: 32946560 PMCID: PMC7594497 DOI: 10.1083/jcb.202005035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Many tissues are produced by specialized progenitor cells emanating from epithelia via epithelial-to-mesenchymal transition (EMT). Most studies have so far focused on EMT involving single or isolated groups of cells. Here we describe an EMT-like process that requires tissue-level coordination. This EMT-like process occurs along a continuous front in the Drosophila optic lobe neuroepithelium to produce neural stem cells (NSCs). We find that emerging NSCs remain epithelial and apically constrict before dividing asymmetrically to produce neurons. Apical constriction is associated with contractile myosin pulses and involves RhoGEF3 and down-regulation of the Crumbs complex by the E3 ubiquitin ligase Neuralized. Anisotropy in Crumbs complex levels also results in accumulation of junctional myosin. Disrupting the regulation of Crumbs by Neuralized lowered junctional myosin and led to imprecision in the integration of emerging NSCs into the front. Thus, Neuralized promotes smooth progression of the differentiation front by coupling epithelium remodeling at the tissue level with NSC fate acquisition.
Collapse
Affiliation(s)
- Chloé Shard
- Institut Pasteur, Paris, France.,UMR3738, Centre National de la Recherche Scientifique, Paris, France
| | - Juan Luna-Escalante
- Institut Pasteur, Paris, France.,UMR3738, Centre National de la Recherche Scientifique, Paris, France.,Laboratoire de Physique, Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Sorbonne Université, Université Paris Diderot, Paris, France
| | - François Schweisguth
- Institut Pasteur, Paris, France.,UMR3738, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
25
|
Gauthier KD, Rocheleau CE. Golgi localization of the LIN-2/7/10 complex points to a role in basolateral secretion of LET-23 EGFR in the Caenorhabditiselegans vulval precursor cells. Development 2021; 148:dev194167. [PMID: 33526581 PMCID: PMC10692275 DOI: 10.1242/dev.194167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/25/2021] [Indexed: 12/28/2022]
Abstract
The evolutionarily conserved LIN-2 (CASK)/LIN-7 (Lin7A-C)/LIN-10 (APBA1) complex plays an important role in regulating spatial organization of membrane proteins and signaling components. In Caenorhabditiselegans, the complex is essential for the development of the vulva by promoting the localization of the sole Epidermal growth factor receptor (EGFR) ortholog LET-23 to the basolateral membrane of the vulva precursor cells where it can specify the vulval cell fate. To understand how the LIN-2/7/10 complex regulates receptor localization, we determined its expression and localization during vulva development. We found that LIN-7 colocalizes with LET-23 EGFR at the basolateral membrane, whereas the LIN-2/7/10 complex colocalizes with LET-23 EGFR at cytoplasmic punctae that mostly overlap with the Golgi. Furthermore, LIN-10 recruits LIN-2, which in turn recruits LIN-7. We demonstrate that the complex forms in vivo with a particularly strong interaction and colocalization between LIN-2 and LIN-7, consistent with them forming a subcomplex. Thus, the LIN-2/7/10 complex forms on the Golgi on which it likely targets LET-23 EGFR trafficking to the basolateral membrane rather than functioning as a tether.
Collapse
Affiliation(s)
- Kimberley D Gauthier
- Division of Endocrinology and Metabolism, Department of Medicine, and Department of Anatomy and Cell Biology, McGill University; and the Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Christian E Rocheleau
- Division of Endocrinology and Metabolism, Department of Medicine, and Department of Anatomy and Cell Biology, McGill University; and the Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
26
|
Clark BS, Miesfeld JB, Flinn MA, Collery RF, Link BA. Dynamic Polarization of Rab11a Modulates Crb2a Localization and Impacts Signaling to Regulate Retinal Neurogenesis. Front Cell Dev Biol 2021; 8:608112. [PMID: 33634099 PMCID: PMC7900515 DOI: 10.3389/fcell.2020.608112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/28/2020] [Indexed: 01/31/2023] Open
Abstract
Interkinetic nuclear migration (IKNM) is the process in which pseudostratified epithelial nuclei oscillate from the apical to basal surface and in phase with the mitotic cycle. In the zebrafish retina, neuroepithelial retinal progenitor cells (RPCs) increase Notch activity with apical movement of the nuclei, and the depth of nuclear migration correlates with the probability that the next cell division will be neurogenic. This study focuses on the mechanisms underlying the relationships between IKNM, cell signaling, and neurogenesis. In particular, we have explored the role IKNM has on endosome biology within RPCs. Through genetic manipulation and live imaging in zebrafish, we find that early (Rab5-positive) and recycling (Rab11a-positive) endosomes polarize in a dynamic fashion within RPCs and with reference to nuclear position. Functional analyses suggest that dynamic polarization of recycling endosomes and their activity within the neuroepithelia modulates the subcellular localization of Crb2a, consequently affecting multiple signaling pathways that impact neurogenesis including Notch, Hippo, and Wnt activities. As nuclear migration is heterogenous and asynchronous among RPCs, Rab11a-affected signaling within the neuroepithelia is modulated in a differential manner, providing mechanistic insight to the correlation of IKNM and selection of RPCs to undergo neurogenesis.
Collapse
Affiliation(s)
- Brian S Clark
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Joel B Miesfeld
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael A Flinn
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ross F Collery
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin Eye Institute, Milwaukee, WI, United States
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
27
|
Geusz RJ, Wang A, Chiou J, Lancman JJ, Wetton N, Kefalopoulou S, Wang J, Qiu Y, Yan J, Aylward A, Ren B, Dong PDS, Gaulton KJ, Sander M. Pancreatic progenitor epigenome maps prioritize type 2 diabetes risk genes with roles in development. eLife 2021; 10:e59067. [PMID: 33544077 PMCID: PMC7864636 DOI: 10.7554/elife.59067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic variants associated with type 2 diabetes (T2D) risk affect gene regulation in metabolically relevant tissues, such as pancreatic islets. Here, we investigated contributions of regulatory programs active during pancreatic development to T2D risk. Generation of chromatin maps from developmental precursors throughout pancreatic differentiation of human embryonic stem cells (hESCs) identifies enrichment of T2D variants in pancreatic progenitor-specific stretch enhancers that are not active in islets. Genes associated with progenitor-specific stretch enhancers are predicted to regulate developmental processes, most notably tissue morphogenesis. Through gene editing in hESCs, we demonstrate that progenitor-specific enhancers harboring T2D-associated variants regulate cell polarity genes LAMA1 and CRB2. Knockdown of lama1 or crb2 in zebrafish embryos causes a defect in pancreas morphogenesis and impairs islet cell development. Together, our findings reveal that a subset of T2D risk variants specifically affects pancreatic developmental programs, suggesting that dysregulation of developmental processes can predispose to T2D.
Collapse
Affiliation(s)
- Ryan J Geusz
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Sanford Consortium for Regenerative MedicineSan DiegoUnited States
- Biomedical Graduate Studies Program, University of California, San DiegoSan DiegoUnited States
| | - Allen Wang
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Sanford Consortium for Regenerative MedicineSan DiegoUnited States
| | - Joshua Chiou
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Biomedical Graduate Studies Program, University of California, San DiegoSan DiegoUnited States
| | - Joseph J Lancman
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery InstituteSan DiegoUnited States
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery InstituteSan DiegoUnited States
| | - Nichole Wetton
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Sanford Consortium for Regenerative MedicineSan DiegoUnited States
| | - Samy Kefalopoulou
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Sanford Consortium for Regenerative MedicineSan DiegoUnited States
| | - Jinzhao Wang
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Sanford Consortium for Regenerative MedicineSan DiegoUnited States
| | - Yunjiang Qiu
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Jian Yan
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Anthony Aylward
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
| | - Bing Ren
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Ludwig Institute for Cancer ResearchSan DiegoUnited States
| | - P Duc Si Dong
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery InstituteSan DiegoUnited States
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery InstituteSan DiegoUnited States
| | - Kyle J Gaulton
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
| | - Maike Sander
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Sanford Consortium for Regenerative MedicineSan DiegoUnited States
| |
Collapse
|
28
|
Bhagavatula S, Knust E. A putative stem-loop structure in Drosophila crumbs is required for mRNA localisation in epithelia and germline cells. J Cell Sci 2021; 134:224086. [PMID: 33310910 DOI: 10.1242/jcs.236497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/30/2020] [Indexed: 01/02/2023] Open
Abstract
Crumbs (Crb) is an evolutionarily conserved transmembrane protein localised to the apical membrane of epithelial cells. Loss or mislocalisation of Crb is often associated with disruption of apicobasal cell polarity. crb mRNA is also apically enriched in epithelial cells, and, as shown here, accumulates in the oocyte of developing egg chambers. We narrowed down the localisation element (LE) of crb mRNA to 47 nucleotides, which form a putative stem-loop structure that may be recognised by Egalitarian (Egl). Mutations in conserved nucleotides abrogate apical transport. crb mRNA enrichment in the oocyte is affected in egl mutant egg chambers. A CRISPR-based genomic deletion of the crb locus that includes the LE disrupts asymmetric crb mRNA localisation in epithelia and prevents its accumulation in the oocyte during early stages of oogenesis, but does not affect Crb protein localisation in embryonic and follicular epithelia. However, flies lacking the LE show ectopic Crb protein expression in the nurse cells. These data suggest an additional role for the Drosophila 3'-UTR in regulating translation in a tissue-specific manner.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Srija Bhagavatula
- Max-Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Elisabeth Knust
- Max-Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
29
|
Li M, Fang W, Wang B, Du Y, Hou Y, Chen L, Cui S, Li Y, Yan X. A novel dual-site ICT/AIE fluorescent probe for detecting hypochlorite and polarity in living cells. NEW J CHEM 2021. [DOI: 10.1039/d1nj03558d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel dual-site fluorescent probe (CTPA) was rationally designed and synthesized for the detection of hypochlorite (ClO−) and polarity.
Collapse
Affiliation(s)
- Mingrui Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Wangwang Fang
- Shaoxing Xingxin New Material Co., Ltd, Zhejiang 312369, P. R. China
| | - Bowei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, P. R. China
- Zhejiang Shaoxing Institute of Tianjin University, Shaoxing, Zhejiang, China
| | - Yuchao Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Yuqing Hou
- Zhejiang Lonsen Group Co., Ltd, Zhejiang 312300, P. R. China
| | - Ligong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, P. R. China
- Zhejiang Shaoxing Institute of Tianjin University, Shaoxing, Zhejiang, China
| | - Siqian Cui
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, P. R. China
| | - Xilong Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, P. R. China
- Zhejiang Shaoxing Institute of Tianjin University, Shaoxing, Zhejiang, China
| |
Collapse
|
30
|
Buck TM, Vos RM, Alves CH, Wijnholds J. AAV- CRB2 protects against vision loss in an inducible CRB1 retinitis pigmentosa mouse model. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 20:423-441. [PMID: 33575434 PMCID: PMC7848734 DOI: 10.1016/j.omtm.2020.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/21/2020] [Indexed: 01/31/2023]
Abstract
Loss of Crumbs homolog 1 (CRB1) or CRB2 proteins in Müller cells or photoreceptors in the mouse retina results in a CRB dose-dependent retinal phenotype. In this study, we present a novel Müller cell-specific Crb1KOCrb2LowMGC retinitis pigmentosa mouse model (complete loss of CRB1 and reduced levels of CRB2 specifically in Müller cells). The Crb double mutant mice showed deficits in electroretinography, optokinetic head tracking, and retinal morphology. Exposure of retinas to low levels of dl-α-aminoadipate acid induced gliosis and retinal disorganization in Crb1KOCrb2LowMGC retinas but not in wild-type or Crb1-deficient retinas. Crb1KOCrb2LowMGC mice showed a substantial decrease in inner/outer photoreceptor segment length and optokinetic head-tracking response. Intravitreal application of rAAV vectors expressing human CRB2 (hCRB2) in Müller cells of Crb1KOCrb2LowMGC mice subsequently exposed to low levels of dl-α-aminoadipate acid prevented loss of vision, whereas recombinant adeno-associated viral (rAAV) vectors expressing human CRB1 (hCRB1) did not. Both rAAV vectors partially protected the morphology of the retina. The results suggest that hCRB expression in Müller cells is vital for control of retinal cell adhesion at the outer limiting membrane, and that the rAAV-cytomegalovirus (CMV)-hCRB2 vector is more potent than rAAV-minimal CMV (CMVmin)-hCRB1 in protection against loss of vision.
Collapse
Affiliation(s)
- Thilo M Buck
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, the Netherlands
| | - Rogier M Vos
- Netherlands Institute of Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, the Netherlands
| | - C Henrique Alves
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, the Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, the Netherlands.,Netherlands Institute of Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, the Netherlands
| |
Collapse
|
31
|
Hao Y, Zhou Y, Yu Y, Zheng M, Weng K, Kou Z, Liang J, Zhang Q, Tang X, Xu P, Link BA, Yao K, Zou J. Interplay of MPP5a with Rab11 synergistically builds epithelial apical polarity and zonula adherens. Development 2020; 147:dev184457. [PMID: 33060129 DOI: 10.1242/dev.184457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/09/2020] [Indexed: 11/20/2022]
Abstract
Adherens junction remodeling regulated by apical polarity proteins constitutes a major driving force for tissue morphogenesis, although the precise mechanism remains inconclusive. Here, we report that, in zebrafish, the Crumbs complex component MPP5a interacts with small GTPase Rab11 in Golgi to transport cadherin and Crumbs components synergistically to the apical domain, thus establishing apical epithelial polarity and adherens junctions. In contrast, Par complex recruited by MPP5a is incapable of interacting with Rab11 but might assemble cytoskeleton to facilitate cadherin exocytosis. In accordance, dysfunction of MPP5a induces an invasive migration of epithelial cells. This adherens junction remodeling pattern is frequently observed in zebrafish lens epithelial cells and neuroepithelial cells. The data identify an unrecognized MPP5a-Rab11 complex and describe its essential role in guiding apical polarization and zonula adherens formation in epithelial cells.
Collapse
Affiliation(s)
- Yumei Hao
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yao Zhou
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yinhui Yu
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Mingjie Zheng
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Kechao Weng
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ziqi Kou
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiancheng Liang
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qian Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Xiajing Tang
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Pinglong Xu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou 310058, China
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou 310058, China
| |
Collapse
|
32
|
Chytła A, Gajdzik-Nowak W, Olszewska P, Biernatowska A, Sikorski AF, Czogalla A. Not Just Another Scaffolding Protein Family: The Multifaceted MPPs. Molecules 2020; 25:molecules25214954. [PMID: 33114686 PMCID: PMC7662862 DOI: 10.3390/molecules25214954] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 01/03/2023] Open
Abstract
Membrane palmitoylated proteins (MPPs) are a subfamily of a larger group of multidomain proteins, namely, membrane-associated guanylate kinases (MAGUKs). The ubiquitous expression and multidomain structure of MPPs provide the ability to form diverse protein complexes at the cell membranes, which are involved in a wide range of cellular processes, including establishing the proper cell structure, polarity and cell adhesion. The formation of MPP-dependent complexes in various cell types seems to be based on similar principles, but involves members of different protein groups, such as 4.1-ezrin-radixin-moesin (FERM) domain-containing proteins, polarity proteins or other MAGUKs, showing their multifaceted nature. In this review, we discuss the function of the MPP family in the formation of multiple protein complexes. Notably, we depict their significant role for cell physiology, as the loss of interactions between proteins involved in the complex has a variety of negative consequences. Moreover, based on recent studies concerning the mechanism of membrane raft formation, we shed new light on a possible role played by MPPs in lateral membrane organization.
Collapse
Affiliation(s)
- Agnieszka Chytła
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
| | - Weronika Gajdzik-Nowak
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
| | - Paulina Olszewska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
| | - Agnieszka Biernatowska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
| | - Aleksander F. Sikorski
- Research and Development Center, Regional Specialist Hospital, Kamieńskiego 73a, 51-154 Wroclaw, Poland;
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
- Correspondence: ; Tel.: +48-71375-6356
| |
Collapse
|
33
|
Arefin B, Parvin F, Bahrampour S, Stadler CB, Thor S. Drosophila Neuroblast Selection Is Gated by Notch, Snail, SoxB, and EMT Gene Interplay. Cell Rep 2020; 29:3636-3651.e3. [PMID: 31825841 DOI: 10.1016/j.celrep.2019.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/20/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
In the developing Drosophila central nervous system (CNS), neural progenitor (neuroblast [NB]) selection is gated by lateral inhibition, controlled by Notch signaling and proneural genes. However, proneural mutants still generate many NBs, indicating the existence of additional proneural genes. Moreover, recent studies reveal involvement of key epithelial-mesenchymal transition (EMT) genes in NB selection, but the regulatory interplay between Notch signaling and the EMT machinery is unclear. We find that SoxNeuro (SoxB family) and worniu (Snail family) are integrated with the Notch pathway, and constitute the missing proneural genes. Notch signaling, the proneural, SoxNeuro, and worniu genes regulate key EMT genes to orchestrate the NB selection process. Hence, we uncover an expanded lateral inhibition network for NB selection and demonstrate its link to key players in the EMT machinery. The evolutionary conservation of the genes involved suggests that the Notch-SoxB-Snail-EMT network may control neural progenitor selection in many other systems.
Collapse
Affiliation(s)
- Badrul Arefin
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Farjana Parvin
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Shahrzad Bahrampour
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Caroline Bivik Stadler
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden; School of Biomedical Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
34
|
Zebrafish Crb1, Localizing Uniquely to the Cell Membranes around Cone Photoreceptor Axonemes, Alleviates Light Damage to Photoreceptors and Modulates Cones' Light Responsiveness. J Neurosci 2020; 40:7065-7079. [PMID: 32817065 DOI: 10.1523/jneurosci.0497-20.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/26/2020] [Accepted: 07/22/2020] [Indexed: 11/21/2022] Open
Abstract
The crumbs (crb) apical polarity genes are essential for the development and functions of epithelia. Adult zebrafish retinal neuroepithelium expresses three crb genes (crb1, crb2a, and crb2b); however, it is unknown whether and how Crb1 differs from other Crb proteins in expression, localization, and functions. Here, we show that, unlike zebrafish Crb2a and Crb2b as well as mammalian Crb1 and Crb2, zebrafish Crb1 does not localize to the subapical regions of photoreceptors and Müller glial cells; rather, it localizes to a small region of cone outer segments: the cell membranes surrounding the axonemes. Moreover, zebrafish Crb1 is not required for retinal morphogenesis and photoreceptor patterning. Interestingly, Crb1 promotes rod survival under strong white light irradiation in a previously unreported non--cell-autonomous fashion; in addition, Crb1 delays UV and blue cones' chromatin condensation caused by UV light irradiation. Finally, Crb1 plays a role in cones' responsiveness to light through an arrestin-translocation-independent mechanism. The localization of Crb1 and its functions do not differ between male and female fish. We conclude that zebrafish Crb1 has diverged from other vertebrate Crb proteins, representing a neofunctionalization in Crb biology during evolution.SIGNIFICANCE STATEMENT Apicobasal polarity of epithelia is an important property that underlies the morphogenesis and functions of epithelial tissues. Epithelial apicobasal polarity is controlled by many polarity genes, including the crb genes. In vertebrates, multiple crb genes have been identified, but the differences in their expression patterns and functions are not fully understood. Here, we report a novel subcellular localization of zebrafish Crb1 in retinal cone photoreceptors and evidence for its new functions in photoreceptor maintenance and light responsiveness. This study expands our understanding of the biology of the crb genes in epithelia, including retinal neuroepithelium.
Collapse
|
35
|
Raghuraman BK, Hebbar S, Kumar M, Moon H, Henry I, Knust E, Shevchenko A. Absolute Quantification of Proteins in the Eye of Drosophila melanogaster. Proteomics 2020; 20:e1900049. [PMID: 32663363 DOI: 10.1002/pmic.201900049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/29/2020] [Indexed: 01/26/2023]
Abstract
Absolute (molar) quantification of proteins determines their molar ratios in complexes, networks, and metabolic pathways. MS Western workflow is employed to determine molar abundances of proteins potentially critical for morphogenesis and phototransduction (PT) in eyes of Drosophila melanogaster using a single chimeric 264 kDa protein standard that covers, in total, 197 peptides from 43 proteins. The majority of proteins are independently quantified with two to four proteotypic peptides with the coefficient of variation of less than 15%, better than 1000-fold dynamic range and sub-femtomole sensitivity. Here, the molar abundance of proteins of the PT machinery and of the rhabdomere, the photosensitive organelle, is determined in eyes of wild-type flies as well as in crumbs (crb) mutant eyes, which exhibit perturbed rhabdomere morphogenesis.
Collapse
Affiliation(s)
- Bharath Kumar Raghuraman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Sarita Hebbar
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Mukesh Kumar
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - HongKee Moon
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany.,Centre for Systems Biology Dresden, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Ian Henry
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany.,Centre for Systems Biology Dresden, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| |
Collapse
|
36
|
Boon N, Wijnholds J, Pellissier LP. Research Models and Gene Augmentation Therapy for CRB1 Retinal Dystrophies. Front Neurosci 2020; 14:860. [PMID: 32922261 PMCID: PMC7456964 DOI: 10.3389/fnins.2020.00860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are inherited degenerative retinal dystrophies with vision loss that ultimately lead to blindness. Several genes have been shown to be involved in early onset retinal dystrophies, including CRB1 and RPE65. Gene therapy recently became available for young RP patients with variations in the RPE65 gene. Current research programs test adeno-associated viral gene augmentation or editing therapy vectors on various disease models mimicking the disease in patients. These include several animal and emerging human-derived models, such as human-induced pluripotent stem cell (hiPSC)-derived retinal organoids or hiPSC-derived retinal pigment epithelium (RPE), and human donor retinal explants. Variations in the CRB1 gene are a major cause for early onset autosomal recessive RP with patients suffering from visual impairment before their adolescence and for LCA with newborns experiencing severe visual impairment within the first months of life. These patients cannot benefit yet from an available gene therapy treatment. In this review, we will discuss the recent advances, advantages and disadvantages of different CRB1 human and animal retinal degeneration models. In addition, we will describe novel therapeutic tools that have been developed, which could potentially be used for retinal gene augmentation therapy for RP patients with variations in the CRB1 gene.
Collapse
Affiliation(s)
- Nanda Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands.,The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Lucie P Pellissier
- Biology and Bioinformatics of Signalling Systems, Physiologie de la Reproduction et des Comportements INRAE UMR 0085, CNRS UMR 7247, Université de Tours, IFCE, Nouzilly, France
| |
Collapse
|
37
|
Jossin Y. Molecular mechanisms of cell polarity in a range of model systems and in migrating neurons. Mol Cell Neurosci 2020; 106:103503. [PMID: 32485296 DOI: 10.1016/j.mcn.2020.103503] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 05/23/2020] [Indexed: 01/09/2023] Open
Abstract
Cell polarity is defined as the asymmetric distribution of cellular components along an axis. Most cells, from the simplest single-cell organisms to highly specialized mammalian cells, are polarized and use similar mechanisms to generate and maintain polarity. Cell polarity is important for cells to migrate, form tissues, and coordinate activities. During development of the mammalian cerebral cortex, cell polarity is essential for neurogenesis and for the migration of newborn but as-yet undifferentiated neurons. These oriented migrations include both the radial migration of excitatory projection neurons and the tangential migration of inhibitory interneurons. In this review, I will first describe the development of the cerebral cortex, as revealed at the cellular level. I will then define the core molecular mechanisms - the Par/Crb/Scrib polarity complexes, small GTPases, the actin and microtubule cytoskeletons, and phosphoinositides/PI3K signaling - that are required for asymmetric cell division, apico-basal and front-rear polarity in model systems, including C elegans zygote, Drosophila embryos and cultured mammalian cells. As I go through each core mechanism I will explain what is known about its importance in radial and tangential migration in the developing mammalian cerebral cortex.
Collapse
Affiliation(s)
- Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
38
|
Krahn MP. Phospholipids of the Plasma Membrane - Regulators or Consequence of Cell Polarity? Front Cell Dev Biol 2020; 8:277. [PMID: 32411703 PMCID: PMC7198698 DOI: 10.3389/fcell.2020.00277] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Cell polarity is a key feature of many eukaryotic cells, including neurons, epithelia, endothelia and asymmetrically dividing stem cells. Apart from the specific localization of proteins to distinct domains of the plasma membrane, most of these cells exhibit an asymmetric distribution of phospholipids within the plasma membrane too. Notably, research over the last years has revealed that many known conserved regulators of apical-basal polarity in epithelial cells are capable of binding to phospholipids, which in turn regulate the localization and to some extent the function of these proteins. Conversely, phospholipid-modifying enzymes are recruited and controlled by polarity regulators, demonstrating an elaborated balance between asymmetrically localized proteins and phospholipids, which are enriched in certain (micro)domains of the plasma membrane. In this review, we will focus on our current understanding of apical-basal polarity and the implication of phospholipids within the plasma membrane during the cell polarization of epithelia and migrating cells.
Collapse
Affiliation(s)
- Michael P. Krahn
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Münster, Germany
| |
Collapse
|
39
|
Tait CM, Chinnaiya K, Manning E, Murtaza M, Ashton JP, Furley N, Hill CJ, Alves CH, Wijnholds J, Erdmann KS, Furley A, Rashbass P, Das RM, Storey KG, Placzek M. Crumbs2 mediates ventricular layer remodelling to form the spinal cord central canal. PLoS Biol 2020; 18:e3000470. [PMID: 32150534 PMCID: PMC7108746 DOI: 10.1371/journal.pbio.3000470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/31/2020] [Accepted: 02/18/2020] [Indexed: 11/27/2022] Open
Abstract
In the spinal cord, the central canal forms through a poorly understood process termed dorsal collapse that involves attrition and remodelling of pseudostratified ventricular layer (VL) cells. Here, we use mouse and chick models to show that dorsal ventricular layer (dVL) cells adjacent to dorsal midline Nestin(+) radial glia (dmNes+RG) down-regulate apical polarity proteins, including Crumbs2 (CRB2) and delaminate in a stepwise manner; live imaging shows that as one cell delaminates, the next cell ratchets up, the dmNes+RG endfoot ratchets down, and the process repeats. We show that dmNes+RG secrete a factor that promotes loss of cell polarity and delamination. This activity is mimicked by a secreted variant of Crumbs2 (CRB2S) which is specifically expressed by dmNes+RG. In cultured MDCK cells, CRB2S associates with apical membranes and decreases cell cohesion. Analysis of Crb2F/F/Nestin-Cre+/- mice, and targeted reduction of Crb2/CRB2S in slice cultures reveal essential roles for transmembrane CRB2 (CRB2TM) and CRB2S on VL cells and dmNes+RG, respectively. We propose a model in which a CRB2S-CRB2TM interaction promotes the progressive attrition of the dVL without loss of overall VL integrity. This novel mechanism may operate more widely to promote orderly progenitor delamination.
Collapse
Affiliation(s)
- Christine M Tait
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Kavitha Chinnaiya
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Elizabeth Manning
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Mariyam Murtaza
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - John-Paul Ashton
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Nicholas Furley
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Chris J Hill
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - C Henrique Alves
- Department of Ophthalmology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Kai S Erdmann
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Andrew Furley
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Penny Rashbass
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Raman M Das
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Kate G Storey
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Marysia Placzek
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
40
|
The extracellular and intracellular regions of Crb2a play distinct roles in guiding the formation of the apical zonula adherens. Biomed Pharmacother 2020; 125:109942. [PMID: 32044715 DOI: 10.1016/j.biopha.2020.109942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 11/22/2022] Open
Abstract
The transmembrane protein Crumbs (Crb), a key regulator of apical polarity, has a known involvement in establishment of the apical zonula adherens in epithelia, although the precise mechanism remains elusive. The zonula adherens are required to maintain the integrity and orderly arrangement of epithelia. Loss of the zonula adherens leads to morphogenetic defects in the tissues derived from epithelium. In this study, we revealed that the intracellular tail of Crb2a promoted the apical distribution of adherens junctions (AJs) in zebrafish retinal and lens epithelia, but caused assembly into unstable punctum adherens-like adhesion plaques. The extracellular region of Crb2a guided the transformation of AJs from the punctum adherens into stable zonula adherens. Accordingly, a truncated form of Crb2a lacking the extracellular region (Crb2aΔEX) could only partially rescue the retinal patterning defects in crb2a null mutant zebrafish (crb2am289). By contrast, constitutive over-expression of Crb2aΔEX disrupted the integrity of the outer limiting membrane in photoreceptors, which is derived from the zonula adherens of the retinal neuroepithelium. This study demonstrated that both the extracellular region and the intracellular tail of Crb2a are required to guide the formation of the apical zonula adherens.
Collapse
|
41
|
Kujawski S, Crespo C, Luz M, Yuan M, Winkler S, Knust E. Loss of Crb2b-lf leads to anterior segment defects in old zebrafish. Biol Open 2020; 9:bio047555. [PMID: 31988089 PMCID: PMC7044448 DOI: 10.1242/bio.047555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/09/2020] [Indexed: 12/02/2022] Open
Abstract
Defects in the retina or the anterior segment of the eye lead to compromised vision and affect millions of people. Understanding how these ocular structures develop and are maintained is therefore of paramount importance. The maintenance of proper vision depends, among other factors, on the function of genes controlling apico-basal polarity. In fact, mutations in polarity genes are linked to retinal degeneration in several species, including human. Here we describe a novel zebrafish crb2b allele (crb2be40 ), which specifically affects the crb2b long isoform. crb2be40 mutants are viable and display normal ocular development. However, old crb2be40 mutant fish develop multiple defects in structures of the anterior segment, which includes the cornea, the iris and the lens. Phenotypes are characterised by smaller pupils due to expansion of the iris and tissues of the iridocorneal angle, an increased number of corneal stromal keratocytes, an abnormal corneal endothelium and an expanded lens capsule. These findings illustrate a novel role for crb2b in the maintenance of the anterior segment and hence add an important function to this polarity regulator, which may be conserved in other vertebrates including humans.
Collapse
Affiliation(s)
- Satu Kujawski
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Cátia Crespo
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Marta Luz
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Michaela Yuan
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
42
|
Sidor C, Stevens TJ, Jin L, Boulanger J, Röper K. Rho-Kinase Planar Polarization at Tissue Boundaries Depends on Phospho-regulation of Membrane Residence Time. Dev Cell 2020; 52:364-378.e7. [PMID: 31902655 PMCID: PMC7008249 DOI: 10.1016/j.devcel.2019.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 10/24/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022]
Abstract
The myosin II activator Rho-kinase (Rok) is planar polarized at the tissue boundary of the Drosophila embryonic salivary gland placode through a negative regulation by the apical polarity protein Crumbs that is anisotropically localized at the boundary. However, in inner cells of the placode, both Crumbs and Rok are isotropically enriched at junctions. We propose that modulation of Rok membrane residence time by Crumbs’ downstream effectors can reconcile both behaviors. Using FRAP combined with in silico simulations, we find that the lower membrane dissociation rate (koff) of Rok at the tissue boundary with low Crumbs explains this boundary-specific effect. The S/T kinase Pak1, recruited by Crumbs and Cdc42, negatively affects Rok membrane association in vivo and in vitro can phosphorylate Rok near the pleckstrin homology (PH) domain that mediates membrane association. These data reveal an important mechanism of the modulation of Rok membrane residence time via affecting the koff that may be widely employed during tissue morphogenesis. Rho-kinase is planar polarized at tissue boundaries, complementary to Crumbs Crumbs and downstream Pak1 modulate Rok residence time by affecting koff Pak1 can phosphorylate Rok near the PH and Rho-binding domains Rok phosphorylation affects residence time and allows polarization at boundaries
Collapse
Affiliation(s)
- Clara Sidor
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK.
| | - Tim J Stevens
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Li Jin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Jérôme Boulanger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Katja Röper
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
43
|
Crumbs proteins regulate layered retinal vascular development required for vision. Biochem Biophys Res Commun 2020; 521:939-946. [DOI: 10.1016/j.bbrc.2019.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/02/2019] [Indexed: 12/26/2022]
|
44
|
Kraut RS, Knust E. Changes in endolysosomal organization define a pre-degenerative state in the crumbs mutant Drosophila retina. PLoS One 2019; 14:e0220220. [PMID: 31834921 PMCID: PMC6910688 DOI: 10.1371/journal.pone.0220220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/24/2019] [Indexed: 01/06/2023] Open
Abstract
Mutations in the epithelial polarity gene crumbs (crb) lead to retinal degeneration in Drosophila and in humans. The overall morphology of the retina and its deterioration in Drosophila crb mutants has been well-characterized, but the cell biological origin of the degeneration is not well understood. Degenerative conditions in the retina and elsewhere in the nervous system often involve defects in degradative intracellular trafficking pathways. So far, however, effects of crb on the endolysosomal system, or on the spatial organization of these compartments in photoreceptor cells have not been described. We therefore asked whether photoreceptors in crb mutants exhibit alterations in endolysosomal compartments under pre-degenerative conditions, where the retina is still morphologically intact. Data presented here show that, already well before the onset of degeneration, Arl8, Rab7, and Atg8-carrying endolysosomal and autophagosomal compartments undergo changes in morphology and positioning with respect to each other in crb mutant retinas. We propose that these changes may be early signs of the degeneration-prone condition in crb retinas.
Collapse
Affiliation(s)
- Rachel S. Kraut
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse, Dresden, Germany
- * E-mail:
| | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse, Dresden, Germany
| |
Collapse
|
45
|
Tan J, Zhang X, Xiao W, Liu X, Li C, Guo Y, Xiong W, Li Y. N3ICD with the transmembrane domain can effectively inhibit EMT by correcting the position of tight/adherens junctions. Cell Adh Migr 2019; 13:203-218. [PMID: 31096822 PMCID: PMC6550553 DOI: 10.1080/19336918.2019.1619958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/22/2019] [Accepted: 05/10/2019] [Indexed: 02/05/2023] Open
Abstract
EMT allows a polarized epithelium to lose epithelial integrity and acquire mesenchymal characteristics. Previously, we found that overexpression of the intracellular domain of Notch3 (N3ICD) can inhibit EMT in breast cancer cells. In this study, we aimed to elucidate the influence of N3ICD or N3ICD combined with the transmembrane domain (TD+N3ICD) on the expression and distribution of TJs/AJs and polar molecules. We found that although N3ICD can upregulate the expression levels of the above-mentioned molecules, TD+N3ICD can inhibit EMT more effectively than N3ICD alone. TD+N3ICD overexpression upregulated the expression of endogenous full-length Notch3 and contributed to correcting the position of TJs/AJs molecules and better acinar structures formation. Co-immunoprecipitation results showed that the upregulated endogenous full-length Notch3 could physically interact with E-ca in MDA-MB-231/pCMV-(TD+N3ICD) cells. Collectively, our data indicate that overexpression of TD+N3ICD can effectively inhibit EMT, resulting in better positioning of TJs/AJs molecules and cell-cell adhesion in breast cancer cells. Abbreviations: EMT: Epithelial-mesenchymal transition; TJs: Tight junctions; AJs: Adherens junctions; aPKC: Atypical protein kinase C; Crb: Crumbs; Lgl: Lethal (2) giant larvae; LLGL2: lethal giant larvae homolog 2; PAR: Partitioning defective; PATJ: Pals1-associated TJ protein.
Collapse
Affiliation(s)
- Junyu Tan
- The central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xixun Zhang
- The central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Wenjun Xiao
- The central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xiong Liu
- The central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Chun Li
- The central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yuxian Guo
- The central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Wei Xiong
- The central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yaochen Li
- The central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
- CONTACT Yaochen Li The central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
46
|
Quinn PM, Wijnholds J. Retinogenesis of the Human Fetal Retina: An Apical Polarity Perspective. Genes (Basel) 2019; 10:E987. [PMID: 31795518 PMCID: PMC6947654 DOI: 10.3390/genes10120987] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
The Crumbs complex has prominent roles in the control of apical cell polarity, in the coupling of cell density sensing to downstream cell signaling pathways, and in regulating junctional structures and cell adhesion. The Crumbs complex acts as a conductor orchestrating multiple downstream signaling pathways in epithelial and neuronal tissue development. These pathways lead to the regulation of cell size, cell fate, cell self-renewal, proliferation, differentiation, migration, mitosis, and apoptosis. In retinogenesis, these are all pivotal processes with important roles for the Crumbs complex to maintain proper spatiotemporal cell processes. Loss of Crumbs function in the retina results in loss of the stratified appearance resulting in retinal degeneration and loss of visual function. In this review, we begin by discussing the physiology of vision. We continue by outlining the processes of retinogenesis and how well this is recapitulated between the human fetal retina and human embryonic stem cell (ESC) or induced pluripotent stem cell (iPSC)-derived retinal organoids. Additionally, we discuss the functionality of in utero and preterm human fetal retina and the current level of functionality as detected in human stem cell-derived organoids. We discuss the roles of apical-basal cell polarity in retinogenesis with a focus on Leber congenital amaurosis which leads to blindness shortly after birth. Finally, we discuss Crumbs homolog (CRB)-based gene augmentation.
Collapse
Affiliation(s)
- Peter M.J. Quinn
- Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
47
|
Lattner J, Leng W, Knust E, Brankatschk M, Flores-Benitez D. Crumbs organizes the transport machinery by regulating apical levels of PI(4,5)P 2 in Drosophila. eLife 2019; 8:e50900. [PMID: 31697234 PMCID: PMC6881148 DOI: 10.7554/elife.50900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
An efficient vectorial intracellular transport machinery depends on a well-established apico-basal polarity and is a prerequisite for the function of secretory epithelia. Despite extensive knowledge on individual trafficking pathways, little is known about the mechanisms coordinating their temporal and spatial regulation. Here, we report that the polarity protein Crumbs is essential for apical plasma membrane phospholipid-homeostasis and efficient apical secretion. Through recruiting βHeavy-Spectrin and MyosinV to the apical membrane, Crumbs maintains the Rab6-, Rab11- and Rab30-dependent trafficking and regulates the lipid phosphatases Pten and Ocrl. Crumbs knock-down results in increased apical levels of PI(4,5)P2 and formation of a novel, Moesin- and PI(4,5)P2-enriched apical membrane sac containing microvilli-like structures. Our results identify Crumbs as an essential hub required to maintain the organization of the apical membrane and the physiological activity of the larval salivary gland.
Collapse
Affiliation(s)
- Johanna Lattner
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Weihua Leng
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Elisabeth Knust
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Marko Brankatschk
- The Biotechnological Center of the TU Dresden (BIOTEC)DresdenGermany
| | - David Flores-Benitez
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| |
Collapse
|
48
|
Carney KR, Bryan CD, Gordon HB, Kwan KM. LongAxis: A MATLAB-based program for 3D quantitative analysis of epithelial cell shape and orientation. Dev Biol 2019; 458:1-11. [PMID: 31589834 DOI: 10.1016/j.ydbio.2019.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/13/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
Abstract
Epithelial morphogenesis, a fundamental aspect of development, generates 3-dimensional tissue structures crucial for organ function. Underlying morphogenetic mechanisms are, in many cases, poorly understood, but mutations that perturb organ development can affect epithelial cell shape and orientation - difficult features to quantify in three dimensions. The basic structure of the eye is established via epithelial morphogenesis: in the embryonic optic cup, the retinal progenitor epithelium enwraps the lens. We previously found that loss of the extracellular matrix protein laminin-alpha1 (lama1) led to mislocalization of apical polarity markers and apparent misorientation of retinal progenitors. We sought to visualize and quantify this phenotype, and determine whether loss of the apical polarity determinant pard3 might rescue the phenotype. To this end, we developed LongAxis, a MATLAB-based program optimized for the retinal progenitor neuroepithelium. LongAxis facilitates 3-dimensional cell segmentation, visualization, and quantification of cell orientation and morphology. Using LongAxis, we find that retinal progenitors in the lama1-/- optic cup are misoriented and slightly less elongated. In the lama1;MZpard3 double mutant, cells are still misoriented, but larger. Therefore, loss of pard3 does not rescue loss of lama1, and in fact uncovers a novel cell size phenotype. LongAxis enables population-level visualization and quantification of retinal progenitor cell orientation and morphology. These results underscore the importance of visualizing and quantifying cell orientation and shape in three dimensions within the retina.
Collapse
Affiliation(s)
- Keith R Carney
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Chase D Bryan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Hannah B Gordon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
49
|
New insights into apical-basal polarization in epithelia. Curr Opin Cell Biol 2019; 62:1-8. [PMID: 31505411 DOI: 10.1016/j.ceb.2019.07.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 11/21/2022]
Abstract
The establishment of an apical-basal axis of polarity is essential for the organization and functioning of epithelial cells. Polarization of epithelial cells is orchestrated by a network of conserved polarity regulators that establish opposing cortical domains through mutually antagonistic interactions and positive feedback loops. While our understanding is still far from complete, the molecular details behind these interactions continue to be worked out. Here, we highlight recent findings on the mechanisms that control the activity and localization of apical-basal polarity regulators, including oligomerization and higher-order complex formation, auto-inhibitory interactions, and electrostatic interactions with the plasma membrane.
Collapse
|
50
|
Quinn PM, Mulder AA, Henrique Alves C, Desrosiers M, de Vries SI, Klooster J, Dalkara D, Koster AJ, Jost CR, Wijnholds J. Loss of CRB2 in Müller glial cells modifies a CRB1-associated retinitis pigmentosa phenotype into a Leber congenital amaurosis phenotype. Hum Mol Genet 2019; 28:105-123. [PMID: 30239717 DOI: 10.1093/hmg/ddy337] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/17/2018] [Indexed: 11/14/2022] Open
Abstract
Variations in the human Crumbs homolog-1 (CRB1) gene lead to an array of retinal dystrophies including early onset of retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) in children. To investigate the physiological roles of CRB1 and CRB2 in retinal Müller glial cells (MGCs), we analysed mouse retinas lacking both proteins in MGC. The peripheral retina showed a faster progression of dystrophy than the central retina. The central retina showed retinal folds, disruptions at the outer limiting membrane, protrusion of photoreceptor nuclei into the inner and outer segment layers and ingression of photoreceptor nuclei into the photoreceptor synaptic layer. The peripheral retina showed a complete loss of the photoreceptor synapse layer, intermingling of photoreceptor nuclei within the inner nuclear layer and ectopic photoreceptor cells in the ganglion cell layer. Electroretinography showed severe attenuation of the scotopic a-wave at 1 month of age with responses below detection levels at 3 months of age. The double knockout mouse retinas mimicked a phenotype equivalent to a clinical LCA phenotype due to loss of CRB1. Localization of CRB1 and CRB2 in non-human primate (NHP) retinas was analyzed at the ultrastructural level. We found that NHP CRB1 and CRB2 proteins localized to the subapical region adjacent to adherens junctions at the outer limiting membrane in MGC and photoreceptors. Our data suggest that loss of CRB2 in MGC aggravates the CRB1-associated RP-like phenotype towards an LCA-like phenotype.
Collapse
Affiliation(s)
- Peter M Quinn
- Department of Ophthalmology, Leiden University Medical Center, RC Leiden, The Netherlands
| | - Aat A Mulder
- Department of Cell & Chemical Biology, Leiden University Medical Center (LUMC), RC Leiden, The Netherlands
| | - C Henrique Alves
- Department of Ophthalmology, Leiden University Medical Center, RC Leiden, The Netherlands
| | - Mélissa Desrosiers
- Department of Therapeutics, Institut de la Vision, Sorbonne Universités, UPMC Univ Paris, UMR_S INSERM, CNRS, UMR, Paris, France
| | - Sharon I de Vries
- Department of Axonal Signaling, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), BA Amsterdam, The Netherlands
| | - Jan Klooster
- Department of Retina Signal Processing, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), BA Amsterdam, The Netherlands
| | - Deniz Dalkara
- Department of Therapeutics, Institut de la Vision, Sorbonne Universités, UPMC Univ Paris, UMR_S INSERM, CNRS, UMR, Paris, France
| | - Abraham J Koster
- Department of Cell & Chemical Biology, Leiden University Medical Center (LUMC), RC Leiden, The Netherlands
| | - Carolina R Jost
- Department of Cell & Chemical Biology, Leiden University Medical Center (LUMC), RC Leiden, The Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, RC Leiden, The Netherlands.,The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, BA Amsterdam, The Netherlands
| |
Collapse
|