1
|
Joo YK, Ramirez C, Kabeche L. A TRilogy of ATR's Non-Canonical Roles Throughout the Cell Cycle and Its Relation to Cancer. Cancers (Basel) 2024; 16:3536. [PMID: 39456630 PMCID: PMC11506335 DOI: 10.3390/cancers16203536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Ataxia Telangiectasia and Rad3-related protein (ATR) is an apical kinase of the DNA Damage Response (DDR) pathway responsible for detecting and resolving damaged DNA. Because cancer cells depend heavily on the DNA damage checkpoint for their unchecked proliferation and propagation, ATR has gained enormous popularity as a cancer therapy target in recent decades. Yet, ATR inhibitors have not been the silver bullets as anticipated, with clinical trials demonstrating toxicity and mixed efficacy. To investigate whether the toxicity and mixed efficacy of ATR inhibitors arise from their off-target effects related to ATR's multiple roles within and outside the DDR pathway, we have analyzed recently published studies on ATR's non-canonical roles. Recent studies have elucidated that ATR plays a wide role throughout the cell cycle that is separate from its function in the DDR. This includes maintaining nuclear membrane integrity, detecting mechanical forces, and promoting faithful chromosome segregation during mitosis. In this review, we summarize the canonical, DDR-related roles of ATR and also focus on the non-canonical, multifaceted roles of ATR throughout the cell cycle and their clinical relevance. Through this summary, we also address the need for re-assessing clinical strategies targeting ATR as a cancer therapy based on these newly discovered roles for ATR.
Collapse
Affiliation(s)
- Yoon Ki Joo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Carlos Ramirez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
2
|
Niu L, Yang S, Zhao X, Liu X, Si L, Wei M, Liu L, Cheng L, Qiao Y, Chen Z. Sericin inhibits MDA‑MB‑468 cell proliferation via the PI3K/Akt pathway in triple‑negative breast cancer. Mol Med Rep 2020; 23:140. [PMID: 33313947 PMCID: PMC7751468 DOI: 10.3892/mmr.2020.11779] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/25/2020] [Indexed: 11/28/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer characterized by an aggressive histology and poor prognosis, with limited treatment options in the clinic. In the present study, the effect of sericin, as an anti-cancer drug, on TNBC cell proliferation was investigated using a MTT assay, a colony formation assay and immunocytochemistry staining of Ki67. Results from the flow cytometry demonstrated that sericin induced G0/G1 cell cycle arrest and promoted cellular apoptosis. Cell cycle and apoptosis-related proteins were detected via western blot analysis. Immunocytochemistry staining identified that P21 was translocated into the nucleus. Additionally, several pathways were significantly enriched in TNBC based on the Gene Expression Omnibus database, with the most prominent pathway being the PI3K/Akt signaling pathway. In TNBC MDA-MB-468 cells, sericin suppressed the PI3K/Akt pathway. All these findings suggested that sericin served a critical role in suppressing TNBC cell proliferation, inducing cell cycle arrest and promoting cellular apoptosis. The results indicated that the underlying molecular mechanism was, at least partially, via the downregulation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Lin Niu
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Songhe Yang
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Xueying Zhao
- Department of Immunology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Xiaochao Liu
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Lina Si
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Meng Wei
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Lei Liu
- Department of Immunology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Luyang Cheng
- Department of Immunology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Yuebing Qiao
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Zhihong Chen
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
3
|
Murcia L, Clemente-Ruiz M, Pierre-Elies P, Royou A, Milán M. Selective Killing of RAS-Malignant Tissues by Exploiting Oncogene-Induced DNA Damage. Cell Rep 2020; 28:119-131.e4. [PMID: 31269434 DOI: 10.1016/j.celrep.2019.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/07/2019] [Accepted: 05/31/2019] [Indexed: 12/21/2022] Open
Abstract
Several oncogenes induce untimely entry into S phase and alter replication timing and progression, thereby generating replicative stress, a well-known source of genomic instability and a hallmark of cancer. Using an epithelial model in Drosophila, we show that the RAS oncogene, which triggers G1/S transition, induces DNA damage and, at the same time, silences the DNA damage response pathway. RAS compromises ATR-mediated phosphorylation of the histone variant H2Av and ATR-mediated cell-cycle arrest in G2 and blocks, through ERK, Dp53-dependent induction of cell death. We found that ERK is also activated in normal tissues by an exogenous source of damage and that this activation is necessary to dampen the pro-apoptotic role of Dp53. We exploit the pro-survival role of ERK activation upon endogenous and exogenous sources of DNA damage to present evidence that its genetic or chemical inhibition can be used as a therapeutic opportunity to selectively eliminate RAS-malignant tissues.
Collapse
Affiliation(s)
- Lada Murcia
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Marta Clemente-Ruiz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | | | - Anne Royou
- Institut Européen de Chimie et Biologie, 2, rue Robert Escarpit, 33607 Pessac, France
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10-12, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
4
|
Shuryak I. Modeling species richness and abundance of phytoplankton and zooplankton in radioactively contaminated water bodies. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 192:14-25. [PMID: 29883873 DOI: 10.1016/j.jenvrad.2018.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/04/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Water bodies polluted by the Mayak nuclear plant in Russia provide valuable information on multi-generation effects of radioactive contamination on freshwater organisms. For example, lake Karachay was probably the most radioactive lake in the world: its water contained ∼2 × 107 Bq/L of radionuclides and estimated dose rates to plankton exceeded 5 Gy/h. We performed quantitative modeling of radiation effects on phytoplankton and zooplankton species richness and abundance in Mayak-contaminated water bodies. Due to collinearity between radioactive contamination, water body size and salinity, we combined these variables into one (called HabitatFactors). We employed a customized machine learning approach, where synthetic noise variables acted as benchmarks of predictor performance. HabitatFactors was the only predictor that outperformed noise variables and, therefore, we used it for parametric modeling of plankton responses. Best-fit model predictions suggested 50% species richness reduction at HabitatFactors values corresponding to dose rates of 104-105 μGy/h for phytoplankton, and 103-104 μGy/h for zooplankton. Under conditions similar to those in lake Karachay, best-fit models predicted 81-98% species richness reductions for various taxa (Cyanobacteria, Bacillariophyta, Chlorophyta, Rotifera, Cladocera and Copepoda), ∼20-300-fold abundance reduction for total zooplankton, but no abundance reduction for phytoplankton. Rotifera was the only taxon whose fractional abundance increased with contamination level, reaching 100% in lake Karachay, but Rotifera species richness declined with contamination level, as in other taxa. Under severe radioactive and chemical contamination, one species of Cyanobacteria (Geitlerinema amphibium) dominated phytoplankton, and rotifers from the genus Brachionus dominated zooplankton. The modeling approaches proposed here are applicable to other radioecological data sets. The results provide quantitative information and easily interpretable model parameter estimates for the shapes and magnitudes of freshwater plankton responses to a wide range of radioactive contamination levels.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University, New York, NY, United States.
| |
Collapse
|
5
|
Shuryak I, Matrosova VY, Gaidamakova EK, Tkavc R, Grichenko O, Klimenkova P, Volpe RP, Daly MJ. Microbial cells can cooperate to resist high-level chronic ionizing radiation. PLoS One 2017; 12:e0189261. [PMID: 29261697 PMCID: PMC5738026 DOI: 10.1371/journal.pone.0189261] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/22/2017] [Indexed: 11/18/2022] Open
Abstract
Understanding chronic ionizing radiation (CIR) effects is of utmost importance to protecting human health and the environment. Diverse bacteria and fungi inhabiting extremely radioactive waste and disaster sites (e.g. Hanford, Chernobyl, Fukushima) represent new targets of CIR research. We show that many microorganisms can grow under intense gamma-CIR dose rates of 13–126 Gy/h, with fungi identified as a particularly CIR-resistant group of eukaryotes: among 145 phylogenetically diverse strains tested, 78 grew under 36 Gy/h. Importantly, we demonstrate that CIR resistance can depend on cell concentration and that certain resistant microbial cells protect their neighbors (not only conspecifics, but even radiosensitive species from a different phylum), from high-level CIR. We apply a mechanistically-motivated mathematical model of CIR effects, based on accumulation/removal kinetics of reactive oxygen species (ROS) and antioxidants, in bacteria (3 Escherichia coli strains and Deinococcus radiodurans) and in fungi (Candida parapsilosis, Kazachstania exigua, Pichia kudriavzevii, Rhodotorula lysinophila, Saccharomyces cerevisiae, and Trichosporon mucoides). We also show that correlations between responses to CIR and acute ionizing radiation (AIR) among studied microorganisms are weak. For example, in D. radiodurans, the best molecular correlate for CIR resistance is the antioxidant enzyme catalase, which is dispensable for AIR resistance; and numerous CIR-resistant fungi are not AIR-resistant. Our experimental findings and quantitative modeling thus demonstrate the importance of investigating CIR responses directly, rather than extrapolating from AIR. Protection of radiosensitive cell-types by radioresistant ones under high-level CIR is a potentially important new tool for bioremediation of radioactive sites and development of CIR-resistant microbiota as radioprotectors.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University, New York, NY, United States of America
- * E-mail:
| | - Vera Y. Matrosova
- Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Elena K. Gaidamakova
- Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Rok Tkavc
- Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Olga Grichenko
- Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Polina Klimenkova
- Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Robert P. Volpe
- Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Michael J. Daly
- Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, United States of America
| |
Collapse
|
6
|
Toyota K, Williams TD, Sato T, Tatarazako N, Iguchi T. Comparative ovarian microarray analysis of juvenile hormone-responsive genes in water fleaDaphnia magna: potential targets for toxicity. J Appl Toxicol 2016; 37:374-381. [DOI: 10.1002/jat.3368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Kenji Toyota
- School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies); Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences; Okazaki Aichi 444-8787 Japan
| | | | - Tomomi Sato
- Graduate School of Nanobioscience; Yokohama City University; Yokohama 236-0027 Japan
| | - Norihisa Tatarazako
- Environmental Quality Measurement Section, Research Center for Environmental Risk; National Institute for Environmental Studies; Ibaraki 305-8506 Japan
| | - Taisen Iguchi
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies); Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences; Okazaki Aichi 444-8787 Japan
- Graduate School of Nanobioscience; Yokohama City University; Yokohama 236-0027 Japan
| |
Collapse
|
7
|
Effects of ionizing radiation on embryos of the tardigrade Milnesium cf. tardigradum at different stages of development. PLoS One 2013; 8:e72098. [PMID: 24039737 PMCID: PMC3765152 DOI: 10.1371/journal.pone.0072098] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 07/07/2013] [Indexed: 11/19/2022] Open
Abstract
Tardigrades represent one of the most desiccation and radiation tolerant animals on Earth, and several studies have documented their tolerance in the adult stage. Studies on tolerance during embryological stages are rare, but differential effects of desiccation and freezing on different developmental stages have been reported, as well as dose-dependent effect of gamma irradiation on tardigrade embryos. Here, we report a study evaluating the tolerance of eggs from the eutardigrade Milnesium cf. tardigradum to three doses of gamma radiation (50, 200 and 500 Gy) at the early, middle, and late stage of development. We found that embryos of the middle and late developmental stages were tolerant to all doses, while eggs in the early developmental stage were tolerant only to a dose of 50 Gy, and showed a declining survival with higher dose. We also observed a delay in development of irradiated eggs, suggesting that periods of DNA repair might have taken place after irradiation induced damage. The delay was independent of dose for eggs irradiated in the middle and late stage, possibly indicating a fixed developmental schedule for repair after induced damage. These results show that the tolerance to radiation in tardigrade eggs changes in the course of their development. The mechanisms behind this pattern are unknown, but may relate to changes in mitotic activities over the embryogenesis and/or to activation of response mechanisms to damaged DNA in the course of development.
Collapse
|
8
|
Patil M, Pabla N, Dong Z. Checkpoint kinase 1 in DNA damage response and cell cycle regulation. Cell Mol Life Sci 2013; 70:4009-21. [PMID: 23508805 DOI: 10.1007/s00018-013-1307-3] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/28/2013] [Accepted: 02/18/2013] [Indexed: 12/19/2022]
Abstract
Originally identified as a mediator of DNA damage response (DDR), checkpoint kinase 1 (Chk1) has a broader role in checkpoint activation in DDR and normal cell cycle regulation. Chk1 activation involves phosphorylation at conserved sites. However, recent work has identified a splice variant of Chk1, which may regulate Chk1 in both DDR and normal cell cycle via molecular interaction. Upon activation, Chk1 phosphorylates a variety of substrate proteins, resulting in the activation of DNA damage checkpoints, cell cycle arrest, DNA repair, and/or cell death. Chk1 and its related signaling may be an effective therapeutic target in diseases such as cancer.
Collapse
Affiliation(s)
- Mallikarjun Patil
- Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd., Augusta, GA, 30912, USA
| | | | | |
Collapse
|
9
|
Lee EM, Trinh TTB, Shim HJ, Park SY, Nguyen TTT, Kim MJ, Song YH. Drosophila Claspin is required for the G2 arrest that is induced by DNA replication stress but not by DNA double-strand breaks. DNA Repair (Amst) 2012; 11:741-52. [PMID: 22796626 DOI: 10.1016/j.dnarep.2012.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/31/2012] [Accepted: 06/22/2012] [Indexed: 01/24/2023]
Abstract
ATR and Chk1 are protein kinases that perform major roles in the DNA replication checkpoint that delays entry into mitosis in response to DNA replication stress by hydroxyurea (HU) treatment. They are also activated by ionizing radiation (IR) that induces DNA double-strand breaks. Studies in human tissue culture and Xenopus egg extracts identified Claspin as a mediator that increased the activity of ATR toward Chk1. Because the in vivo functions of Claspin are not known, we generated Drosophila lines that each contained a mutated Claspin gene. Similar to the Drosophila mei-41/ATR and grp/Chk1 mutants, embryos of the Claspin mutant showed defects in checkpoint activation, which normally occurs in early embryogenesis in response to incomplete DNA replication. Additionally, Claspin mutant larvae were defective in G2 arrest after HU treatment; however, the defects were less severe than those of the mei-41/ATR and grp/Chk1 mutants. In contrast, IR-induced G2 arrest, which was severely defective in mei-41/ATR and grp/Chk1 mutants, occurred normally in the Claspin mutant. We also found that Claspin was phosphorylated in response to HU and IR treatment and a hyperphosphorylated form of Claspin was generated only after HU treatment in mei-41/ATR-dependent and tefu/ATM-independent way. In summary, our data suggest that Drosophila Claspin is required for the G2 arrest that is induced by DNA replication stress but not by DNA double-strand breaks, and this difference is probably due to distinct phosphorylation statuses.
Collapse
Affiliation(s)
- Eun-Mi Lee
- Ilsong Institute of Life Science, Hallym University, Anyang, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
10
|
Studying cell cycle checkpoints using Drosophila cultured cells. Methods Mol Biol 2012; 782:59-73. [PMID: 21870285 DOI: 10.1007/978-1-61779-273-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Drosophila cell lines are valuable tools to study a number of cellular processes, including DNA damage responses and cell cycle checkpoint control. Using an in vitro system instead of a whole organism has two main advantages: it saves time and simple and effective molecular techniques are available. It has been shown that Drosophila cells, similarly to mammalian cells, display cell cycle checkpoint pathways required to survive DNA damaging events (de Vries et al. 2005, Journal of Cell Science 118, 1833-1842; Bae et al. 1995, Experimental Cell Research 217, 541-545). Moreover, a number of proteins involved in checkpoint and cell cycle control in mammals are highly conserved among different species, including Drosophila (de Vries et al. 2005, Journal of Cell Science 118, 1833-1842; Bae et al. 1995, Experimental Cell Research 217, 541-545; LaRocque et al. 2007, Genetics 175, 1023-1033; Sibon et al. 1999, Current Biology 9, 302-312; Purdy et al. 2005, Journal of Cell Science 118, 3305-3315). Because of straightforward and highly efficient methods to downregulate specific transcripts in Drosophila cells, these cells are an excellent system for genome-wide RNA interference (RNAi) screens. Thus, the following methods, assays and techniques: Drosophila cell culture, RNAi, introducing DNA damaging events, determination of cell cycle arrest, and determination of cell cycle distributions described here may well be applied to identifying new players in checkpoint mechanisms and will be helpful to investigate the function of these new players in detail. Results obtained with studies using in vitro systems can subsequently be extended to studies in the complete organism as described in the chapters provided by the Su laboratory and the Takada laboratory.
Collapse
|
11
|
Abstract
Anti-cancer therapy is largely comprised of radiation, surgery, and chemotherapy treatments. Although a single mode of therapy can be effective in treating certain types of cancer, none presents a cure. Multi-modal therapy, the use of two or more agents in combination (e.g., radiation and chemotherapy together), shows potential for a more effective treatment of cancer. The challenge then is identifying effective therapy combinations. In this chapter, we describe the use of Drosophila as a whole animal in vivo model to screen for small molecules that effectively combine with ionizing radiation to kill checkpoint mutants preferentially over wild-type. The differential use of wild-type and checkpoint mutants has the potential to identify molecules that act in a genotype-specific manner to eradicate checkpoint mutant tissues when combined with radiation, while sparing wild-type tissues.
Collapse
Affiliation(s)
- Mara Gladstone
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA.
| | | |
Collapse
|
12
|
Chen Y, Caldwell JM, Pereira E, Baker RW, Sanchez Y. ATRMec1 phosphorylation-independent activation of Chk1 in vivo. J Biol Chem 2008; 284:182-190. [PMID: 18984588 DOI: 10.1074/jbc.m806530200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conserved protein kinase Chk1 is a player in the defense against DNA damage and replication blocks. The current model is that after DNA damage or replication blocks, ATR(Mec1) phosphorylates Chk1 on the non-catalytic C-terminal domain. However, the mechanism of activation of Chk1 and the function of the Chk1 C terminus in vivo remains largely unknown. In this study we used an in vivo assay to examine the role of the C terminus of Chk1 in the response to DNA damage and replication blocks. The conserved ATR(Mec1) phosphorylation sites were essential for the checkpoint response to DNA damage and replication blocks in vivo; that is, that mutation of the sites caused lethality when DNA replication was stalled by hydroxyurea. Despite this, loss of the ATR(Mec1) phosphorylation sites did not change the kinase activity of Chk1 in vitro. Furthermore, a single amino acid substitution at an invariant leucine in a conserved domain of the non-catalytic C terminus restored viability to cells expressing the ATR(Mec1) phosphorylation site-mutated protein and relieved the requirement of an upstream mediator for Chk1 activation. Our findings show that a single amino acid substitution in the C terminus, which could lead to an allosteric change in Chk1, allows it to bypass the requirement of the conserved ATR(Mec1) phosphorylation sites for checkpoint function.
Collapse
Affiliation(s)
- Yinhuai Chen
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire 03755 and Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524
| | - Julie M Caldwell
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire 03755 and Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524
| | - Elizabeth Pereira
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire 03755 and Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524
| | - Robert W Baker
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire 03755 and Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524
| | - Yolanda Sanchez
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire 03755 and Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524.
| |
Collapse
|
13
|
Royou A, McCusker D, Kellogg DR, Sullivan W. Grapes(Chk1) prevents nuclear CDK1 activation by delaying cyclin B nuclear accumulation. ACTA ACUST UNITED AC 2008; 183:63-75. [PMID: 18824564 PMCID: PMC2557043 DOI: 10.1083/jcb.200801153] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Entry into mitosis is characterized by a dramatic remodeling of nuclear and cytoplasmic compartments. These changes are driven by cyclin-dependent kinase 1 (CDK1) activity, yet how cytoplasmic and nuclear CDK1 activities are coordinated is unclear. We injected cyclin B (CycB) into Drosophila melanogaster embryos during interphase of syncytial cycles and monitored effects on cytoplasmic and nuclear mitotic events. In untreated embryos or embryos arrested in interphase with a protein synthesis inhibitor, injection of CycB accelerates nuclear envelope breakdown and mitotic remodeling of the cytoskeleton. Upon activation of the Grapes(checkpoint kinase 1) (Grp(Chk1))-dependent S-phase checkpoint, increased levels of CycB drives cytoplasmic but not nuclear mitotic events. Grp(Chk1) prevents nuclear CDK1 activation by delaying CycB nuclear accumulation through Wee1-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Anne Royou
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| | | | | | | |
Collapse
|
14
|
Rickmyre JL, Dasgupta S, Ooi DLY, Keel J, Lee E, Kirschner MW, Waddell S, Lee LA. TheDrosophilahomolog ofMCPH1,a human microcephaly gene, is required for genomic stability in the early embryo. J Cell Sci 2007; 120:3565-77. [PMID: 17895362 DOI: 10.1242/jcs.016626] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mutation of human microcephalin (MCPH1) causes autosomal recessive primary microcephaly, a developmental disorder characterized by reduced brain size. We identified mcph1, the Drosophila homolog of MCPH1, in a genetic screen for regulators of S-M cycles in the early embryo. Embryos of null mcph1 female flies undergo mitotic arrest with barrel-shaped spindles lacking centrosomes. Mutation of Chk2 suppresses these defects, indicating that they occur secondary to a previously described Chk2-mediated response to mitotic entry with unreplicated or damaged DNA. mcph1 embryos exhibit genomic instability as evidenced by frequent chromatin bridging in anaphase. In contrast to studies of human MCPH1, the ATR/Chk1-mediated DNA checkpoint is intact in Drosophila mcph1 mutants. Components of this checkpoint, however, appear to cooperate with MCPH1 to regulate embryonic cell cycles in a manner independent of Cdk1 phosphorylation. We propose a model in which MCPH1 coordinates the S-M transition in fly embryos: in the absence of mcph1, premature chromosome condensation results in mitotic entry with unreplicated DNA, genomic instability, and Chk2-mediated mitotic arrest. Finally, brains of mcph1 adult male flies have defects in mushroom body structure, suggesting an evolutionarily conserved role for MCPH1 in brain development.
Collapse
Affiliation(s)
- Jamie L Rickmyre
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, U-4200 MRBIII, 465 21st Avenue South, Nashville, TN 37232-8240, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Identification of genes differentially expressed during larval molting and metamorphosis of Helicoverpa armigera. BMC DEVELOPMENTAL BIOLOGY 2007; 7:73. [PMID: 17588272 PMCID: PMC1925068 DOI: 10.1186/1471-213x-7-73] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 06/25/2007] [Indexed: 12/25/2022]
Abstract
BACKGROUND Larval molting and metamorphosis are important physiological processes in the life cycle of the holometabolous insect. We used suppression subtractive hybridization (SSH) to identify genes differentially expressed during larval molting and metamorphosis. RESULTS We performed SSH between tissues from a variety of developmental stages, including molting 5th and feeding 6th instar larvae, metamorphically committed and feeding 5th instar larvae, and feeding 5th instar and metamorphically committed larvae. One hundred expressed sequence tags (ESTs) were identified and included 73 putative genes with similarity to known genes, and 27 unknown ESTs. SSH results were further characterized by dot blot, Northern blot, and RT-PCR. The expression levels of eleven genes were found to change during larval molting or metamorphosis, suggesting a functional role during these processes. CONCLUSION These results provide a new set of genes expressed specifically during larval molt or metamorphosis that are candidates for further studies into the regulatory mechanisms of those stage-specific genes during larval molt and metamorphosis.
Collapse
|
16
|
Garcia K, Duncan T, Su TT. Analysis of the cell division cycle in Drosophila. Methods 2007; 41:198-205. [PMID: 17189862 DOI: 10.1016/j.ymeth.2006.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2006] [Indexed: 01/12/2023] Open
Abstract
Drosophila melanogaster presents in an unparalleled opportunity to study the regulation of the cell division cycle in the context of cellular differentiation, growth regulation and the development of a multicellular organism. The complexity of Drosophila cell cycles and the large number of techniques available can, however, be overwhelming. We aim to provide here (1) an overview of cell cycle regulation and techniques in Drosophila and (2) a detailed description of techniques we recently used to study embryonic mitoses.
Collapse
Affiliation(s)
- Kristin Garcia
- MCD Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | | | | |
Collapse
|
17
|
Jaklevic B, Uyetake L, Lemstra W, Chang J, Leary W, Edwards A, Vidwans S, Sibon O, Tin Su T. Contribution of growth and cell cycle checkpoints to radiation survival in Drosophila. Genetics 2006; 174:1963-72. [PMID: 17028317 PMCID: PMC1698627 DOI: 10.1534/genetics.106.064477] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell cycle checkpoints contribute to survival after exposure to ionizing radiation (IR) by arresting the cell cycle and permitting repair. As such, yeast and mammalian cells lacking checkpoints are more sensitive to killing by IR. We reported previously that Drosophila larvae mutant for grp (encoding a homolog of Chk1) survive IR as well as wild type despite being deficient in cell cycle checkpoints. This discrepancy could be due to differences either among species or between unicellular and multicellular systems. Here, we provide evidence that Grapes is needed for survival of Drosophila S2 cells after exposure to similar doses of IR, suggesting that multicellular organisms may utilize checkpoint-independent mechanisms to survive irradiation. The dispensability of checkpoints in multicellular organisms could be due to replacement of damaged cells by regeneration through increased nutritional uptake and compensatory proliferation. In support of this idea, we find that inhibition of nutritional uptake (by starvation or onset of pupariation) or inhibition of growth factor signaling and downstream targets (by mutations in cdk4, chico, or dmyc) reduced the radiation survival of larvae. Further, some of these treatments are more detrimental for grp mutants, suggesting that the need for compensatory proliferation is greater for checkpoint mutants. The difference in survival of grp and wild-type larvae allowed us to screen for small molecules that act as genotype-specific radiation sensitizers in a multicellular context. A pilot screen of a small molecule library from the National Cancer Institute yielded known and approved radio-sensitizing anticancer drugs. Since radiation is a common treatment option for human cancers, we propose that Drosophila may be used as an in vivo screening tool for genotype-specific drugs that enhance the effect of radiation therapy.
Collapse
Affiliation(s)
- Burnley Jaklevic
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309-0347, USA
| | | | | | | | | | | | | | | | | |
Collapse
|