1
|
Lee J, Cho Y. Comparative gene expression profiling reveals the mechanisms of axon regeneration. FEBS J 2020; 288:4786-4797. [PMID: 33248003 DOI: 10.1111/febs.15646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 01/03/2023]
Abstract
Axons are vulnerable to injury, potentially leading to degeneration or neuronal death. While neurons in the central nervous system fail to regenerate, neurons in the peripheral nervous system are known to regenerate. Since it has been shown that injury-response signal transduction is mediated by gene expression changes, expression profiling is a useful tool to understand the molecular mechanisms of regeneration. Axon regeneration is regulated by injury-responsive genes induced in both neurons and their surrounding non-neuronal cells. Thus, an experimental setup for the comparative analysis between regenerative and nonregenerative conditions is essential to identify ideal targets for the promotion of regeneration-associated genes and to understand the mechanisms of axon regeneration. Here, we review the original research that shows the key factors regulating axon regeneration, in particular by using comparative gene expression profiling in diverse systems.
Collapse
Affiliation(s)
- Jinyoung Lee
- Laboratory of Axon Regeneration & Degeneration, Department of Life Sciences, Korea University, Seoul, Korea
| | - Yongcheol Cho
- Laboratory of Axon Regeneration & Degeneration, Department of Life Sciences, Korea University, Seoul, Korea
| |
Collapse
|
2
|
Otero-Losada M, L C, Udovin L, Kobiec T, Toro-Urrego N, A KFR, Capani F. Long-Term Effects of Hypoxia-Reoxygenation on Thioredoxins in Rat Central Nervous System. Curr Pharm Des 2020; 25:4791-4798. [PMID: 31823698 DOI: 10.2174/1381612825666191211111926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Oxidative stress induced by the oxidative pathway dysregulation following ischemia/ reperfusion has been proposed as an important cause of neuronal death and brain damage. The proteins of the thioredoxin (Trx) family are crucial mediators of protein function regulating the intracellular hydrogen peroxide levels and redox-sensitive post-translational protein changes. AIM To analyze the expression and distribution of fourteen members of the Trx family, potentially essential for the regeneration upon long-term brain damage, in a perinatal hypoxia-ischemia rat model induced by common carotid artery ligation. METHODS The right common carotid artery (CCA) was exposed by an incision on the right side of the neck, isolated from nerve and vein, and permanently ligated. Sham-surgery rats underwent right CCA surgical exposure but no ligation. Euthanasia was administered to all rats at 30, 60, and 90 days of age. Protein expression and distribution of fourteen members of the Trx family and related proteins (Grx1, Grx2, Grx3, Grx5, Prx1, Prx2, Prx3, Prx4, Prx5, Prx6, Trx1, Trx2, TrxR1, TrxR2) was examined in the most hypoxia susceptible rat brain areas, namely, cerebellum, corpus striatum, and the hippocampus. RESULTS The thioredoxin proteins displayed a complex, cell-type, and tissue-specific expression pattern following ischemia/reperfusion. Even 60 days after ischemia/reperfusion, Western blot analysis showed a persistent expression of Trx1 and Grx2 in several brain areas. CONCLUSION The Trx family of proteins might contribute to long-term survival and recovery supporting their therapeutic use to curtail ischemic brain oxidative damage following an ischemia/reperfusion insult. Characterization of ischemia/reperfusion oxidative brain damage and analysis of the involved mechanisms are required to understand the underneath processes triggered by ischemia/reperfusion and to what extent and in what way thioredoxins contribute to recovery from brain hypoxic stress.
Collapse
Affiliation(s)
- Matilde Otero-Losada
- Institute of Cardiological Research, University of Buenos Aires, National Research Council, ININCA.UBA-CONICET, Buenos Aires, Argentina
| | - Canepa L
- Departamento de Biología, Universidad Argentina John Kennedy (UAJK), Buenos Aires, Argentina
| | - Lucas Udovin
- Institute of Cardiological Research, University of Buenos Aires, National Research Council, ININCA.UBA-CONICET, Buenos Aires, Argentina
| | - Tamara Kobiec
- Institute of Cardiological Research, University of Buenos Aires, National Research Council, ININCA.UBA-CONICET, Buenos Aires, Argentina.,Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Nicolás Toro-Urrego
- Institute of Cardiological Research, University of Buenos Aires, National Research Council, ININCA.UBA-CONICET, Buenos Aires, Argentina
| | - Kölliker-Frers Rodolfo A
- Institute of Cardiological Research, University of Buenos Aires, National Research Council, ININCA.UBA-CONICET, Buenos Aires, Argentina
| | - Francisco Capani
- Institute of Cardiological Research, University of Buenos Aires, National Research Council, ININCA.UBA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
3
|
Burstein SH. The chemistry, biology and pharmacology of the cyclopentenone prostaglandins. Prostaglandins Other Lipid Mediat 2020; 148:106408. [PMID: 31931079 DOI: 10.1016/j.prostaglandins.2020.106408] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/27/2019] [Accepted: 01/06/2020] [Indexed: 12/31/2022]
Abstract
The cyclopentenone prostaglandins (CyPGs) are a small group compounds that are a subset of the eicosanoid superfamily, which are metabolites of arachidonic acid as well as other polyunsaturated fatty acids. The CyPGs are defined by a structural feature, namely, a five-membered carbocyclic ring containing an alfa-beta unsaturated keto group. The two most studied members are PGA2 and 15d-PGJ2 (15-deoxy-Δ12,14-prostaglandin J2); other less studied members are PGA1, Δ12-PGJ2, and PGJ2. They are involved in a number of biological activities including the ability to resolve chronic inflammation and the growth and survival of cells, particularly those of cancerous or neurological origin. Also, they can activate the prostaglandin DP2 receptor as well as the ligand-dependent transcription factor PPAR-gamma. Their ability to promote the resolution of chronic inflammation makes it of particular interest to have a good understanding of their actions. Since their discovery, the literature on the CyPGs has greatly expanded both in size and in scope; these reports are covered in the current review.
Collapse
Affiliation(s)
- Sumner H Burstein
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, United States.
| |
Collapse
|
4
|
Thakor DK, Wang L, Benedict D, Kabatas S, Zafonte RD, Teng YD. Establishing an Organotypic System for Investigating Multimodal Neural Repair Effects of Human Mesenchymal Stromal Stem Cells. ACTA ACUST UNITED AC 2018; 47:e58. [PMID: 30021049 DOI: 10.1002/cpsc.58] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human mesenchymal stromal stem cells (hMSCs) hold regenerative medicine potential due to their availability, in vitro expansion readiness, and autologous feasibility. For neural repair, hMSCs show translational value in research on stroke, spinal cord injury (SCI), and traumatic brain injury. It is pivotal to establish multimodal in vitro systems to investigate molecular mechanisms underlying neural actions of hMSCs. Here, we describe a platform protocol on how to set up organotypic co-cultures of hMSCs (alone or polymer-scaffolded) with explanted adult rat dorsal root ganglia (DRGs) to determine neural injury and recovery events for designing implants to counteract neurotrauma sequelae. We emphasize in vitro hMSC propagation, polymer scaffolding, hMSC stemness maintenance, hMSC-DRG interaction profiling, and analytical formulas of neuroinflammation, trophic factor expression, DRG neurite outgrowth and tropic tracking, and in vivo verification of tailored implants in rodent models of SCI. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Devang K Thakor
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School/Spaulding Rehabilitation Hospital Network, Brigham and Women's Hospital, and Massachusetts General Hospital, Boston, Massachusetts.,Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, Massachusetts
| | - Lei Wang
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School/Spaulding Rehabilitation Hospital Network, Brigham and Women's Hospital, and Massachusetts General Hospital, Boston, Massachusetts.,Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, Massachusetts.,Department of Neurosurgery, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Darcy Benedict
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School/Spaulding Rehabilitation Hospital Network, Brigham and Women's Hospital, and Massachusetts General Hospital, Boston, Massachusetts.,Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, Massachusetts
| | - Serdar Kabatas
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School/Spaulding Rehabilitation Hospital Network, Brigham and Women's Hospital, and Massachusetts General Hospital, Boston, Massachusetts.,Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, Massachusetts.,Department of Neurosurgery, Taksim Education and Teaching Hospital, University of Healthsciences, Istanbul, Turkey
| | - Ross D Zafonte
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School/Spaulding Rehabilitation Hospital Network, Brigham and Women's Hospital, and Massachusetts General Hospital, Boston, Massachusetts
| | - Yang D Teng
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School/Spaulding Rehabilitation Hospital Network, Brigham and Women's Hospital, and Massachusetts General Hospital, Boston, Massachusetts.,Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, Massachusetts
| |
Collapse
|
5
|
Neuronal Damage Induced by Perinatal Asphyxia Is Attenuated by Postinjury Glutaredoxin-2 Administration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4162465. [PMID: 28706574 PMCID: PMC5494587 DOI: 10.1155/2017/4162465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/23/2017] [Indexed: 11/18/2022]
Abstract
The general disruption of redox signaling following an ischemia-reperfusion episode has been proposed as a crucial component in neuronal death and consequently brain damage. Thioredoxin (Trx) family proteins control redox reactions and ensure protein regulation via specific, oxidative posttranslational modifications as part of cellular signaling processes. Trx proteins function in the manifestation, progression, and recovery following hypoxic/ischemic damage. Here, we analyzed the neuroprotective effects of postinjury, exogenous administration of Grx2 and Trx1 in a neonatal hypoxia/ischemia model. P7 Sprague-Dawley rats were subjected to right common carotid ligation or sham surgery, followed by an exposure to nitrogen. 1 h later, animals were injected i.p. with saline solution, 10 mg/kg recombinant Grx2 or Trx1, and euthanized 72 h postinjury. Results showed that Grx2 administration, and to some extent Trx1, attenuated part of the neuronal damage associated with a perinatal hypoxic/ischemic damage, such as glutamate excitotoxicity, axonal integrity, and astrogliosis. Moreover, these treatments also prevented some of the consequences of the induced neural injury, such as the delay of neurobehavioral development. To our knowledge, this is the first study demonstrating neuroprotective effects of recombinant Trx proteins on the outcome of neonatal hypoxia/ischemia, implying clinical potential as neuroprotective agents that might counteract neonatal hypoxia/ischemia injury.
Collapse
|
6
|
Barbosa DJ, Capela JP, de Lourdes Bastos M, Carvalho F. In vitro models for neurotoxicology research. Toxicol Res (Camb) 2015; 4:801-842. [DOI: 10.1039/c4tx00043a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The nervous system has a highly complex organization, including many cell types with multiple functions, with an intricate anatomy and unique structural and functional characteristics; the study of its (dys)functionality following exposure to xenobiotics, neurotoxicology, constitutes an important issue in neurosciences.
Collapse
Affiliation(s)
- Daniel José Barbosa
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - João Paulo Capela
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Maria de Lourdes Bastos
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Félix Carvalho
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| |
Collapse
|
7
|
Zamburlin P, Ruffinatti FA, Gilardino A, Farcito S, Parrini M, Lovisolo D. Calcium signals and FGF-2 induced neurite growth in cultured parasympathetic neurons: spatial localization and mechanisms of activation. Pflugers Arch 2013; 465:1355-70. [PMID: 23529843 DOI: 10.1007/s00424-013-1257-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 11/28/2022]
Abstract
The growth of neuritic processes in developing neurons is tightly controlled by a wide set of extracellular cues that act by initiating downstream signaling cascades, where calcium signals play a major role. Here we analyze the calcium dependence of the neurite growth promoted by basic fibroblast growth factor (bFGF or FGF-2) in chick embryonic ciliary ganglion neurons, taking advantage of dissociated, organotypic, and compartmentalized cultures. We report that signals at both the growth cone and the soma are involved in the promotion of neurite growth by the factor. Blocking calcium influx through L- and N-type voltage-dependent calcium channels and transient receptor potential canonical (TRPC) channels reduces, while release from intracellular stores does not significantly affect, the growth of neuritic processes. Simultaneous recordings of calcium signals elicited by FGF-2 at the soma and at the growth cone show that the factor activates different patterns of responses in the two compartments: steady and sustained responses at the former, oscillations at the latter. At the soma, both voltage-dependent channel and TRPC blockers strongly affect steady-state levels. At the growth cone, the changes in the oscillatory pattern are more complex; therefore, we used a tool based on wavelet analysis to obtain a quantitative evaluation of the effects of the two classes of blockers. We report that the oscillatory behavior at the growth cone is dramatically affected by all the blockers, pointing to a role for calcium influx through the two classes of channels in the generation of signals at the leading edge of the elongating neurites.
Collapse
Affiliation(s)
- P Zamburlin
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Munemasa Y, Kitaoka Y. Molecular mechanisms of retinal ganglion cell degeneration in glaucoma and future prospects for cell body and axonal protection. Front Cell Neurosci 2013; 6:60. [PMID: 23316132 PMCID: PMC3540394 DOI: 10.3389/fncel.2012.00060] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/06/2012] [Indexed: 12/20/2022] Open
Abstract
Glaucoma, which affects more than 70 million people worldwide, is a heterogeneous group of disorders with a resultant common denominator; optic neuropathy, eventually leading to irreversible blindness. The clinical manifestations of primary open-angle glaucoma (POAG), the most common subtype of glaucoma, include excavation of the optic disc and progressive loss of visual field. Axonal degeneration of retinal ganglion cells (RGCs) and apoptotic death of their cell bodies are observed in glaucoma, in which the reduction of intraocular pressure (IOP) is known to slow progression of the disease. A pattern of localized retinal nerve fiber layer (RNFL) defects in glaucoma patients indicates that axonal degeneration may precede RGC body death in this condition. The mechanisms of degeneration of neuronal cell bodies and their axons may differ. In this review, we addressed the molecular mechanisms of cell body death and axonal degeneration in glaucoma and proposed axonal protection in addition to cell body protection. The concept of axonal protection may become a new therapeutic strategy to prevent further axonal degeneration or revive dying axons in patients with preperimetric glaucoma. Further study will be needed to clarify whether the combination therapy of axonal protection and cell body protection will have greater protective effects in early or progressive glaucomatous optic neuropathy (GON).
Collapse
Affiliation(s)
- Yasunari Munemasa
- Department of Ophthalmology, St. Marianna University School of Medicine Kawasaki, Kanagawa, Japan
| | | |
Collapse
|
9
|
Kitaoka Y, Munemasa Y, Hayashi Y, Kuribayashi J, Koseki N, Kojima K, Kumai T, Ueno S. Axonal protection by 17β-estradiol through thioredoxin-1 in tumor necrosis factor-induced optic neuropathy. Endocrinology 2011; 152:2775-85. [PMID: 21586560 DOI: 10.1210/en.2011-0046] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Axonal degeneration often leads to the death of neuronal cell bodies. Previous studies demonstrated the substantial protective role of 17β-estradiol (E2) in several types of neuron. However, most studies examined cell body protection, and the role of 17β-E2 in axonal degeneration of retinal ganglion cells (RGC) remains unclear. In this study, we showed the presence of thioredoxin-1 (Trx1) in the optic nerve axons and found that the levels of Trx1 protein were significantly decreased in isolated RGC and the optic nerve after intravitreal injection of TNF, which was shown previously to induce optic nerve degeneration and subsequent loss of RGC. These changes were concomitant with disorganization of the microtubules with neurofilament accumulation, which were blocked by 17β-E2 implantation. 17β-E2 treatment also totally abolished TNF-induced decreases in Trx1 protein levels in isolated RGC and the optic nerve. The induction of Trx1 by 17β-E2 in the optic nerve was significantly inhibited by simultaneous injection of Trx1 small interfering RNA (siRNA) with TNF. Up-regulation of Trx1 by 17β-E2 in RGC-5 cells was prevented by Trx1 siRNA treatment. 17β-E2 significantly prevented TNF-induced axonal loss, and this axonal-protective effect was inhibited by intravitreal injection of Trx1 siRNA. This finding was also supported by the quantification of microtubules and neurofilaments. These results suggest that a Trx1 decrease in RGC bodies and their axons may be associated with TNF-induced optic nerve axonal degeneration. Axonal protection by 17β-E2 may be related to its regulatory effect on Trx1 induction.
Collapse
Affiliation(s)
- Yasushi Kitaoka
- Department of Ophthalmology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Yan Y, Sun HH, Mackinnon SE, Johnson PJ. Evaluation of peripheral nerve regeneration via in vivo serial transcutaneous imaging using transgenic Thy1-YFP mice. Exp Neurol 2011; 232:7-14. [PMID: 21763310 DOI: 10.1016/j.expneurol.2011.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/23/2011] [Accepted: 06/23/2011] [Indexed: 12/28/2022]
Abstract
This study uses the saphenous nerve crush model in Thy1-YFP mice and serial transcutaneous imaging to evaluate the rate of nerve regeneration under various FK-506 (tacrolimus) dosing regimens and in the presence of transgenic overexpression of glial cell line-derived neurotrophic factor (GDNF). Thy1-YFP transgenic mice received saphenous nerve crush and were monitored for axonal regeneration via transcutaneous imaging for 7 days. Group A received no FK-506. Groups B and C received FK-506 at 2 or 0.5 mg/kg/day, starting three days before injury (preload). Groups D and E received FK-506 at 2 or 0.5 mg/kg/day, starting on the day of injury. Group F consisted of double transgenic mice with central overexpression of GDNF by CNS astrocytes (GFAP-GDNF/Thy1-YFP). Length and rate of axonal regeneration were measured and calculated over time. Regardless of concentration, FK-506 preload (Groups B and C) improved length and rate of axonal outgrowth compared with controls (Group A) and no preload (Groups D and E). Surprisingly, central overexpression of GDNF (GFAP-GDNF) delayed and stunted axonal outgrowth. Saphenous nerve crush in Thy1-YFP mice represents a viable model for timely evaluation of therapeutic strategies affecting the rate of nerve regeneration. FK-506 administered three days prior to injury accelerates axonal regeneration beyond injury conditioned regeneration alone and may serve as a reliable positive control for the model. GDNF overexpression in the CNS impedes early axonal outgrowth.
Collapse
Affiliation(s)
- Ying Yan
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8238, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
11
|
Electrophilic eicosanoids: Signaling and targets. Chem Biol Interact 2011; 192:96-100. [DOI: 10.1016/j.cbi.2010.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/29/2010] [Accepted: 10/14/2010] [Indexed: 01/10/2023]
|
12
|
Raivich G. Transcribing the path to neurological recovery-From early signals through transcription factors to downstream effectors of successful regeneration. Ann Anat 2011; 193:248-58. [PMID: 21501955 DOI: 10.1016/j.aanat.2011.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/16/2011] [Accepted: 01/19/2011] [Indexed: 11/29/2022]
Abstract
The peripheral nervous system is known to regenerate comparatively well and this ability is mirrored in the de novo expression or upregulation of a wide variety of molecules involved in axonal outgrowth starting with transcription factors, but also including growth-stimulating substances, guidance and cell adhesion molecules, intracellular signaling enzymes and proteins involved in regulating cell-surface cytoskeletal interactions. Recent studies using pharmacological agents, and global as well as neuron-selective gene inactivation techniques have shed light on those endogenous molecules that play a non-redundant role in mediating regenerative axonal outgrowth in vivo. The aim of the current review is to sketch the sequence of molecular events from early sensors of injury to transcription factors to downstream effectors that cooperate in successful regeneration and functional recovery.
Collapse
Affiliation(s)
- Gennadij Raivich
- Perinatal Brain Repair Group, Department of Obstetrics and Gynaecology, University College London, 86-96 Chenies Mews, London, UK.
| |
Collapse
|
13
|
Lamoureux PL, O'Toole MR, Heidemann SR, Miller KE. Slowing of axonal regeneration is correlated with increased axonal viscosity during aging. BMC Neurosci 2010; 11:140. [PMID: 20973997 PMCID: PMC2975647 DOI: 10.1186/1471-2202-11-140] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 10/25/2010] [Indexed: 12/13/2022] Open
Abstract
Background As we age, the speed of axonal regeneration declines. At the biophysical level, why this occurs is not well understood. Results To investigate we first measured the rate of axonal elongation of sensory neurons cultured from neonatal and adult rats. We found that neonatal axons grew 40% faster than adult axons (11.5 µm/hour vs. 8.2 µm/hour). To determine how the mechanical properties of axons change during maturation, we used force calibrated towing needles to measure the viscosity (stiffness) and strength of substrate adhesion of neonatal and adult sensory axons. We found no significant difference in the strength of adhesions, but did find that adult axons were 3 times intrinsically stiffer than neonatal axons. Conclusions Taken together, our results suggest decreasing axonal stiffness may be part of an effective strategy to accelerate the regeneration of axons in the adult peripheral nervous system.
Collapse
Affiliation(s)
- Phillip L Lamoureux
- Department of Zoology, Michigan State University, East Lansing, MI 48824-1115, USA
| | | | | | | |
Collapse
|
14
|
Gumy LF, Tan CL, Fawcett JW. The role of local protein synthesis and degradation in axon regeneration. Exp Neurol 2009; 223:28-37. [PMID: 19520073 PMCID: PMC2864402 DOI: 10.1016/j.expneurol.2009.06.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/02/2009] [Accepted: 06/02/2009] [Indexed: 11/26/2022]
Abstract
In axotomised regenerating axons, the first step toward successful regeneration is the formation of a growth cone. This requires a variety of dynamic morphological and biochemical changes in the axon, including the appearance of many new cytoskeletal, cell surface and signalling molecules. These changes suggest the activation of coordinated complex cellular processes. A recent development has been the demonstration that the regenerative ability of some axons depends on their capacity to locally synthesise new proteins and degrade others at the injury site autonomously from the cell body. There are also events involving the degradation of cytoskeletal and other molecules, and activation of signalling pathways, with axotomy-induced calcium changes probably being an initiating event. A future challenge will be to understand how this complex network of processes interacts in order to find therapeutic ways of promoting the regeneration of CNS axons.
Collapse
Affiliation(s)
| | | | - James W. Fawcett
- Corresponding author. Cambridge Centre for Brain Repair, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK. Fax: +44 1223 331174.
| |
Collapse
|