1
|
Day CA, Langfald A, Lukes T, Middlebrook H, Vaughan KT, Daniels D, Hinchcliffe EH. Commitment to cytokinetic furrowing requires the coordinate activity of microtubules and Plk1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.612913. [PMID: 39345392 PMCID: PMC11429772 DOI: 10.1101/2024.09.16.612913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
At anaphase, spindle microtubules (MTs) position the cleavage furrow and trigger actomyosin assembly by localizing the small GTPase RhoA and the scaffolding protein anillin to a narrow band along the equatorial cortex [1-6]. Using vertebrate somatic cells we examined the temporal control of furrow assembly. Although its positioning commences at anaphase onset, furrow maturation is not complete until ∼10-11 min later. The maintenance of the RhoA/anillin scaffold initially requires continuous signaling from the spindle; loss of either MTs or polo-like kinase 1 (Plk1) activity prevents proper RhoA/anillin localization to the equator, thereby disrupting furrowing. However, we find that at ∼6 min post-anaphase, the cortex becomes "committed to furrowing"; loss of either MTs or Plk1 after this stage does not prevent eventual furrowing, even though at this point the contractile apparatus has not fully matured. Also at this stage, the RhoA/anillin scaffold at the equator becomes permanent. Surprisingly, concurrent loss of both MTs and Plk1 activity following the "commitment to furrowing" stage results in persistent, asymmetric "half-furrows", with only one cortical hemisphere retaining RhoA/anillin, and undergoing ingression. This phenotype is reminiscent of asymmetric furrows caused by a physical block between spindle and cortex [7-9], or by acentric spindle positioning [10-12]. The formation of these persistent "half-furrows" suggests a potential feedback mechanism between the spindle and the cortex that maintains cortical competency along the presumptive equatorial region prior to the "commitment to furrowing" stage of cytokinesis, thereby ensuring the eventual ingression of a symmetric cleavage furrow.
Collapse
|
2
|
Tong CS, Xǔ XJ, Wu M. Periodicity, mixed-mode oscillations, and multiple timescales in a phosphoinositide-Rho GTPase network. Cell Rep 2023; 42:112857. [PMID: 37494180 DOI: 10.1016/j.celrep.2023.112857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/01/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
While rhythmic contractile behavior is commonly observed at the cellular cortex, the primary focus has been on excitable or periodic events described by simple activator-delayed inhibitor mechanisms. We show that Rho GTPase activation in nocodazole-treated mitotic cells exhibits both simple oscillations and complex mixed-mode oscillations. Rho oscillations with a 20- to 30-s period are regulated by phosphatidylinositol (3,4,5)-trisphosphate (PIP3) via an activator-delayed inhibitor mechanism, while a slow reaction with period of minutes is regulated by phosphatidylinositol 4-kinase via an activator-substrate depletion mechanism. Conversion from simple to complex oscillations can be induced by modulating PIP3 metabolism or altering membrane contact site protein E-Syt1. PTEN depletion results in a period-doubling intermediate, which, like mixed-mode oscillations, is an intermediate state toward chaos. In sum, this system operates at the edge of chaos. Small changes in phosphoinositide metabolism can confer cells with the flexibility to rapidly enter ordered states with different periodicities.
Collapse
Affiliation(s)
- Chee San Tong
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - X J Xǔ
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Physics, Yale University, New Haven, CT 06511, USA
| | - Min Wu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
3
|
Warecki B, Tao L. Centralspindlin-mediated transport of RhoGEF positions the cleavage plane for cytokinesis. Sci Signal 2023; 16:eadh0601. [PMID: 37402224 PMCID: PMC10501416 DOI: 10.1126/scisignal.adh0601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Abstract
During cytokinesis, the cell membrane furrows inward along a cleavage plane. The positioning of the cleavage plane is critical to faithful cell division and is determined by the Rho guanine nucleotide exchange factor (RhoGEF)-mediated activation of the small guanosine triphosphatase RhoA and the conserved motor protein complex centralspindlin. Here, we explored whether and how centralspindlin mediates the positioning of RhoGEF. In dividing neuroblasts from Drosophila melanogaster, we observed that immediately before cleavage, first centralspindlin and then RhoGEF localized to the sites where cleavage subsequently initiated. Using in vitro assays with purified Drosophila proteins and stabilized microtubules, we found that centralspindlin directly transported RhoGEF as cargo along single microtubules and sequestered it at microtubule plus-ends for prolonged periods of time. In addition, the binding of RhoGEF to centralspindlin appeared to stimulate centralspindlin motor activity. Thus, the motor activity and microtubule association of centralspindlin can translocate RhoGEF to areas where microtubule plus-ends are abundant, such as at overlapping astral microtubules, to locally activate RhoA and accurately position the cleavage plane during cell division.
Collapse
Affiliation(s)
- Brandt Warecki
- Department of Biology, University of Hawai’i at Hilo, HI 96720, USA
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz; Santa Cruz, CA 95064, USA
| | - Li Tao
- Department of Biology, University of Hawai’i at Hilo, HI 96720, USA
| |
Collapse
|
4
|
Jansen KI, Iwanski MK, Burute M, Kapitein LC. A live-cell marker to visualize the dynamics of stable microtubules throughout the cell cycle. J Cell Biol 2023; 222:e202106105. [PMID: 36880745 PMCID: PMC9998657 DOI: 10.1083/jcb.202106105] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/08/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
The microtubule (MT) cytoskeleton underlies processes such as intracellular transport and cell division. Immunolabeling for posttranslational modifications of tubulin has revealed the presence of different MT subsets, which are believed to differ in stability and function. Whereas dynamic MTs can readily be studied using live-cell plus-end markers, the dynamics of stable MTs have remained obscure due to a lack of tools to directly visualize these MTs in living cells. Here, we present StableMARK (Stable Microtubule-Associated Rigor-Kinesin), a live-cell marker to visualize stable MTs with high spatiotemporal resolution. We demonstrate that a rigor mutant of Kinesin-1 selectively binds to stable MTs without affecting MT organization and organelle transport. These MTs are long-lived, undergo continuous remodeling, and often do not depolymerize upon laser-based severing. Using this marker, we could visualize the spatiotemporal regulation of MT stability before, during, and after cell division. Thus, this live-cell marker enables the exploration of different MT subsets and how they contribute to cellular organization and transport.
Collapse
Affiliation(s)
- Klara I. Jansen
- Department of Biology, Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Malina K. Iwanski
- Department of Biology, Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Mithila Burute
- Department of Biology, Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Lukas C. Kapitein
- Department of Biology, Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
5
|
Minor Kinases with Major Roles in Cytokinesis Regulation. Cells 2022; 11:cells11223639. [PMID: 36429067 PMCID: PMC9688779 DOI: 10.3390/cells11223639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Cytokinesis, the conclusive act of cell division, allows cytoplasmic organelles and chromosomes to be faithfully partitioned between two daughter cells. In animal organisms, its accurate regulation is a fundamental task for normal development and for preventing aneuploidy. Cytokinesis failures produce genetically unstable tetraploid cells and ultimately result in chromosome instability, a hallmark of cancer cells. In animal cells, the assembly and constriction of an actomyosin ring drive cleavage furrow ingression, resulting in the formation of a cytoplasmic intercellular bridge, which is severed during abscission, the final event of cytokinesis. Kinase-mediated phosphorylation is a crucial process to orchestrate the spatio-temporal regulation of the different stages of cytokinesis. Several kinases have been described in the literature, such as cyclin-dependent kinase, polo-like kinase 1, and Aurora B, regulating both furrow ingression and/or abscission. However, others exist, with well-established roles in cell-cycle progression but whose specific role in cytokinesis has been poorly investigated, leading to considering these kinases as "minor" actors in this process. Yet, they deserve additional attention, as they might disclose unexpected routes of cell division regulation. Here, we summarize the role of multifunctional kinases in cytokinesis with a special focus on those with a still scarcely defined function during cell cleavage. Moreover, we discuss their implication in cancer.
Collapse
|
6
|
Gerisch G, Prassler J, Ecke M. Patterning of the cell cortex and the localization of cleavage furrows in multi-nucleate cells. J Cell Sci 2022; 135:275044. [PMID: 35274133 PMCID: PMC9016623 DOI: 10.1242/jcs.259648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/07/2022] [Indexed: 12/03/2022] Open
Abstract
In multi-nucleate cells of Dictyostelium, cytokinesis is performed by unilateral cleavage furrows that ingress the large cells from their border. We use a septase (sepA)-null mutant with delayed cytokinesis to show that in anaphase a pattern is generated in the cell cortex of cortexillin and myosin II. In multi-nucleate cells, these proteins decorate the entire cell cortex except circular zones around the centrosomes. Unilateral cleavage furrows are initiated at spaces free of microtubule asters and invade the cells along trails of cortexillin and myosin II accumulation. Where these areas widen, the cleavage furrow may branch or expand. When two furrows meet, they fuse, thus separating portions of the multi-nucleate cell from each other. Unilateral furrows are distinguished from the contractile ring of a normal furrow by their expansion rather than constriction. This is particularly evident for expanding ring-shaped furrows that are formed in the centre of a large multi-nucleate cell. Our data suggest that the myosin II-enriched area in multi-nucleate cells is a contractile sheet that pulls on the unilateral furrows and, in that way, expands them. Summary: Multi-nucleate Dictyostelium cells divide by unilateral cleavage furrows that progress and expand according to a pattern of cortexillin and myosin II that is determined by microtubule asters at the spindle poles.
Collapse
Affiliation(s)
- Günther Gerisch
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Jana Prassler
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Mary Ecke
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| |
Collapse
|
7
|
Yao B, Donoughe S, Michaux J, Munro E. Modulating RhoA effectors induces transitions to oscillatory and more wavelike RhoA dynamics in C. elegans zygotes. Mol Biol Cell 2022; 33:ar58. [PMID: 35138935 PMCID: PMC9265151 DOI: 10.1091/mbc.e21-11-0542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pulsatile RhoA dynamics underlie a wide range of cell and tissue behaviors. The circuits that produce these dynamics in different cells share common architectures based on fast positive and delayed negative feedback through F-actin, but they can produce very different spatiotemporal patterns of RhoA activity. However, the underlying causes of this variation remain poorly understood. Here we asked how this variation could arise through modulation of actin network dynamics downstream of active RhoA in early C. elegans embryos. We find that perturbing two RhoA effectors - formin and anillin - induce transitions from non-recurrent focal pulses to either large noisy oscillatory pulses (formin depletion) or noisy oscillatory waves (anillin depletion). In both cases these transitions could be explained by changes in local F-actin levels and depletion dynamics, leading to changes in spatial and temporal patterns of RhoA inhibition. However, the underlying mechanisms for F-actin depletion are distinct, with different dependencies on myosin II activity. Thus, modulating actomyosin network dynamics could shape the spatiotemporal dynamics of RhoA activity for different physiological or morphogenetic functions. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].
Collapse
Affiliation(s)
- Baixue Yao
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637.,Committee on Cell Biology, University of Chicago, Chicago, IL 60637
| | - Seth Donoughe
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637.,Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637
| | | | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637.,Committee on Cell Biology, University of Chicago, Chicago, IL 60637.,Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637.,Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637
| |
Collapse
|
8
|
Longhini KM, Glotzer M. Aurora A and cortical flows promote polarization and cytokinesis by inducing asymmetric ECT-2 accumulation. eLife 2022; 11:83992. [PMID: 36533896 PMCID: PMC9799973 DOI: 10.7554/elife.83992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
In the early Caenorhabditis elegans embryo, cell polarization and cytokinesis are interrelated yet distinct processes. Here, we sought to understand a poorly understood aspect of cleavage furrow positioning. Early C. elegans embryos deficient in the cytokinetic regulator centralspindlin form furrows, due to an inhibitory activity that depends on aster positioning relative to the polar cortices. Here, we show polar relaxation is associated with depletion of cortical ECT-2, a RhoGEF, specifically at the posterior cortex. Asymmetric ECT-2 accumulation requires intact centrosomes, Aurora A (AIR-1), and myosin-dependent cortical flows. Within a localization competent ECT-2 fragment, we identified three putative phospho-acceptor sites in the PH domain of ECT-2 that render ECT-2 responsive to inhibition by AIR-1. During both polarization and cytokinesis, our results suggest that centrosomal AIR-1 breaks symmetry via ECT-2 phosphorylation; this local inhibition of ECT-2 is amplified by myosin-driven flows that generate regional ECT-2 asymmetry. Together, these mechanisms cooperate to induce polarized assembly of cortical myosin, contributing to both embryo polarization and cytokinesis.
Collapse
Affiliation(s)
- Katrina M Longhini
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
| |
Collapse
|
9
|
Thomas A, Gallaud E, Pascal A, Serre L, Arnal I, Richard-Parpaillon L, Savoian MS, Giet R. Peripheral astral microtubules ensure asymmetric furrow positioning in neural stem cells. Cell Rep 2021; 37:109895. [PMID: 34706235 DOI: 10.1016/j.celrep.2021.109895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/26/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
Neuroblast division is characterized by asymmetric positioning of the cleavage furrow, resulting in a large difference in size between the future daughter cells. In animal cells, furrow placement and assembly are governed by centralspindlin that accumulates at the equatorial cell cortex of the future cleavage site and at the spindle midzone. In neuroblasts, these two centralspindlin populations are spatially and temporally separated. A leading pool is located at the basal cleavage site and a second pool accumulates at the midzone before traveling to the cleavage site. The cortical centralspindlin population requires peripheral astral microtubules and the chromosome passenger complex for efficient recruitment. Loss of this pool does not prevent cytokinesis but enhances centralspindlin signaling at the midzone, leading to equatorial furrow repositioning and decreased size asymmetry. These data show that basal furrow positioning in neuroblasts results from a competition between different centralspindlin pools in which the cortical pool is dominant.
Collapse
Affiliation(s)
- Alexandre Thomas
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR17 6290, 35000 Rennes, France
| | - Emmanuel Gallaud
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR17 6290, 35000 Rennes, France
| | - Aude Pascal
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR17 6290, 35000 Rennes, France
| | - Laurence Serre
- Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences (GIN), Université Grenoble Alpes, 38000 Grenoble, France
| | - Isabelle Arnal
- Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences (GIN), Université Grenoble Alpes, 38000 Grenoble, France
| | - Laurent Richard-Parpaillon
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR17 6290, 35000 Rennes, France
| | - Matthew Scott Savoian
- School of Fundamental Sciences, Massey University, 4410 Palmerston North, New Zealand
| | - Régis Giet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR17 6290, 35000 Rennes, France.
| |
Collapse
|
10
|
Mani N, Jiang S, Neary AE, Wijeratne SS, Subramanian R. Differential regulation of single microtubules and bundles by a three-protein module. Nat Chem Biol 2021; 17:964-974. [PMID: 34083810 PMCID: PMC8387365 DOI: 10.1038/s41589-021-00800-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
A remarkable feature of the microtubule cytoskeleton is co-existence of sub-populations having different dynamic properties. A prominent example is the anaphase spindle, where stable antiparallel bundles exist alongside dynamic microtubules and provide spatial cues for cytokinesis. How are dynamics of spatially proximal arrays differentially regulated? We reconstitute a minimal system of three midzone proteins: microtubule-crosslinker PRC1, and its interactors CLASP1 and Kif4A, proteins that promote and suppress microtubule elongation, respectively. We find their collective activity promotes elongation of single microtubules, while simultaneously stalling polymerization of crosslinked bundles. This differentiation arises from (i) Strong rescue activity of CLASP1, which overcomes weaker effects of Kif4A on single microtubules, (ii) Lower microtubule and PRC1-binding affinity of CLASP1, which permit dominance of Kif4A at overlaps. In addition to canonical mechanisms where antagonistic regulators set microtubule lengths, our findings illuminate design principles by which collective regulator activity creates microenvironments of arrays with distinct dynamic properties.
Collapse
Affiliation(s)
- Nandini Mani
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Shuo Jiang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Alex E Neary
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Sithara S Wijeratne
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA. .,Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Abstract
During anaphase, a microtubule-containing structure called the midzone forms between the segregating chromosomes. The midzone is composed of an antiparallel array of microtubules and numerous microtubule-associated proteins that contribute to midzone formation and function. In many cells, the midzone is an important source of signals that specify the location of contractile ring assembly and constriction. The midzone also contributes to the events of anaphase by generating forces that impact chromosome segregation and spindle elongation; some midzone components contribute to both processes. The results of recent experiments have increased our understanding of the importance of the midzone, a microtubule array that has often been overlooked. This Journal of Cell Science at a Glance article will review, and illustrate on the accompanying poster, the organization, formation and dynamics of the midzone, and discuss open questions for future research.
Collapse
Affiliation(s)
- Patricia Wadsworth
- Department of Biology, Morrill Science Center, University of Massachusetts, 611 N. Pleasant Street, Amherst 01003, USA
| |
Collapse
|
12
|
Michaud A, Swider ZT, Landino J, Leda M, Miller AL, von Dassow G, Goryachev AB, Bement WM. Cortical excitability and cell division. Curr Biol 2021; 31:R553-R559. [PMID: 34033789 PMCID: PMC8358936 DOI: 10.1016/j.cub.2021.02.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
As the interface between the cell and its environment, the cell cortex must be able to respond to a variety of external stimuli. This is made possible in part by cortical excitability, a behavior driven by coupled positive and negative feedback loops that generate propagating waves of actin assembly in the cell cortex. Cortical excitability is best known for promoting cell protrusion and allowing the interpretation of and response to chemoattractant gradients in migrating cells. It has recently become apparent, however, that cortical excitability is involved in the response of the cortex to internal signals from the cell-cycle regulatory machinery and the spindle during cell division. Two overlapping functions have been ascribed to cortical excitability in cell division: control of cell division plane placement, and amplification of the activity of the small GTPase Rho at the equatorial cortex during cytokinesis. Here, we propose that cortical excitability explains several important yet poorly understood features of signaling during cell division. We also consider the potential advantages that arise from the use of cortical excitability as a signaling mechanism to regulate cortical dynamics in cell division.
Collapse
Affiliation(s)
- Ani Michaud
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, USA; Center for Quantitative Cell Imaging, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Zachary T Swider
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, USA; Center for Quantitative Cell Imaging, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Jennifer Landino
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann Arbor, 5264 Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Marcin Leda
- Centre for Synthetic and Systems Biology, University of Edinburgh, 2.03 C.H. Waddington Building, King's Buildings, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann Arbor, 5264 Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - George von Dassow
- Oregon Institute of Marine Biology, University of Oregon, 63466 Boat Basin Road, Charleston, OR 97420, USA
| | - Andrew B Goryachev
- Centre for Synthetic and Systems Biology, University of Edinburgh, 2.03 C.H. Waddington Building, King's Buildings, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - William M Bement
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, USA; Center for Quantitative Cell Imaging, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, USA; Department of Integrative Biology, University of Wisconsin-Madison, 1117 West Johnson Street, Madison, WI 53706, USA.
| |
Collapse
|
13
|
Chapa-Y-Lazo B, Hamanaka M, Wray A, Balasubramanian MK, Mishima M. Polar relaxation by dynein-mediated removal of cortical myosin II. J Cell Biol 2021; 219:151836. [PMID: 32497213 PMCID: PMC7401816 DOI: 10.1083/jcb.201903080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 02/03/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Nearly six decades ago, Lewis Wolpert proposed the relaxation of the polar cell cortex by the radial arrays of astral microtubules as a mechanism for cleavage furrow induction. While this mechanism has remained controversial, recent work has provided evidence for polar relaxation by astral microtubules, although its molecular mechanisms remain elusive. Here, using C. elegans embryos, we show that polar relaxation is achieved through dynein-mediated removal of myosin II from the polar cortexes. Mutants that position centrosomes closer to the polar cortex accelerated furrow induction, whereas suppression of dynein activity delayed furrowing. We show that dynein-mediated removal of myosin II from the polar cortexes triggers a bidirectional cortical flow toward the cell equator, which induces the assembly of the actomyosin contractile ring. These results provide a molecular mechanism for the aster-dependent polar relaxation, which works in parallel with equatorial stimulation to promote robust cytokinesis.
Collapse
Affiliation(s)
- Bernardo Chapa-Y-Lazo
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| | - Motonari Hamanaka
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK.,Hokkaido University, Sapporo, Japan
| | - Alexander Wray
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK.,University of Nottingham, Nottingham, UK
| | - Mohan K Balasubramanian
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| | - Masanori Mishima
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| |
Collapse
|
14
|
Schneid S, Wolff F, Buchner K, Bertram N, Baygün S, Barbosa P, Mangal S, Zanin E. The BRCT domains of ECT2 have distinct functions during cytokinesis. Cell Rep 2021; 34:108805. [PMID: 33657383 DOI: 10.1016/j.celrep.2021.108805] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 12/18/2020] [Accepted: 02/08/2021] [Indexed: 12/28/2022] Open
Abstract
During cell division, the guanine nucleotide exchange factor (GEF) ECT2 activates RhoA in a narrow zone at the cell equator in anaphase. ECT2 consists of three BRCT domains (BRCT0, 1, and 2), a catalytic GEF, and a pleckstrin homology (PH) domain. How the conserved BRCT domains spatially and temporally control ECT2 activity remains unclear. We reveal that each BRCT domain makes distinct contributions to the ECT2 function. We find that BRCT0 contributes to, and BRCT1 is essential for, ECT2 activation in anaphase. BRCT2 integrates two functions: GEF inhibition and RACGAP1 binding, which together limit ECT2 activity to a narrow zone at the cell equator. BRCT2-dependent control of active RhoA zone dimension functions in addition to the inhibitory signal of the astral microtubules. Our analysis provides detailed mechanistic insights into how ECT2 activity is regulated and how that regulation ensures, together with other signaling pathways, successful cell division.
Collapse
Affiliation(s)
- Sandra Schneid
- Department Biology II, Ludwig-Maximilians University, Planegg-Martinsried, Munich 82152, Germany
| | - Friederike Wolff
- Department Biology II, Ludwig-Maximilians University, Planegg-Martinsried, Munich 82152, Germany
| | - Kristina Buchner
- Department Biology II, Ludwig-Maximilians University, Planegg-Martinsried, Munich 82152, Germany
| | - Nils Bertram
- Department Biology II, Ludwig-Maximilians University, Planegg-Martinsried, Munich 82152, Germany
| | - Seren Baygün
- Department Biology II, Ludwig-Maximilians University, Planegg-Martinsried, Munich 82152, Germany
| | - Pedro Barbosa
- Department Biology II, Ludwig-Maximilians University, Planegg-Martinsried, Munich 82152, Germany
| | - Sriyash Mangal
- Department Biology II, Ludwig-Maximilians University, Planegg-Martinsried, Munich 82152, Germany
| | - Esther Zanin
- Department Biology II, Ludwig-Maximilians University, Planegg-Martinsried, Munich 82152, Germany.
| |
Collapse
|
15
|
Pal D, Ellis A, Sepúlveda-Ramírez SP, Salgado T, Terrazas I, Reyes G, De La Rosa R, Henson JH, Shuster CB. Rac and Arp2/3-Nucleated Actin Networks Antagonize Rho During Mitotic and Meiotic Cleavages. Front Cell Dev Biol 2020; 8:591141. [PMID: 33282870 PMCID: PMC7705106 DOI: 10.3389/fcell.2020.591141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 12/01/2022] Open
Abstract
In motile cells, the activities of the different Rho family GTPases are spatially segregated within the cell, and during cytokinesis there is evidence that this may also be the case. But while Rho’s role as the central organizer for contractile ring assembly is well established, the role of Rac and the branched actin networks it promotes is less well understood. To characterize the contributions of these proteins during cytokinesis, we manipulated Rac and Arp2/3 activity during mitosis and meiosis in sea urchin embryos and sea star oocytes. While neither Rac nor Arp2/3 were essential for early embryonic divisions, loss of either Rac or Arp2/3 activity resulted in polar body defects. Expression of activated Rac resulted in cytokinesis failure as early as the first division, and in oocytes, activated Rac suppressed both the Rho wave that traverses the oocyte prior to polar body extrusion as well as polar body formation itself. However, the inhibitory effect of Rac on cytokinesis, polar body formation and the Rho wave could be suppressed by effector-binding mutations or direct inhibition of Arp2/3. Together, these results suggest that Rac- and Arp2/3 mediated actin networks may directly antagonize Rho signaling, thus providing a potential mechanism to explain why Arp2/3-nucleated branched actin networks must be suppressed at the cell equator for successful cytokinesis.
Collapse
Affiliation(s)
- Debadrita Pal
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Andrea Ellis
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | | | - Torey Salgado
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Isabella Terrazas
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Gabriela Reyes
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Richard De La Rosa
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - John H Henson
- Department of Biology, Dickinson College, Carlisle, PA, United States
| | - Charles B Shuster
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
16
|
Gubieda AG, Packer JR, Squires I, Martin J, Rodriguez J. Going with the flow: insights from Caenorhabditis elegans zygote polarization. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190555. [PMID: 32829680 PMCID: PMC7482210 DOI: 10.1098/rstb.2019.0555] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Cell polarity is the asymmetric distribution of cellular components along a defined axis. Polarity relies on complex signalling networks between conserved patterning proteins, including the PAR (partitioning defective) proteins, which become segregated in response to upstream symmetry breaking cues. Although the mechanisms that drive the asymmetric localization of these proteins are dependent upon cell type and context, in many cases the regulation of actomyosin cytoskeleton dynamics is central to the transport, recruitment and/or stabilization of these polarity effectors into defined subcellular domains. The transport or advection of PAR proteins by an actomyosin flow was first observed in the Caenorhabditis elegans zygote more than a decade ago. Since then a multifaceted approach, using molecular methods, high-throughput screens, and biophysical and computational models, has revealed further aspects of this flow and how polarity regulators respond to and modulate it. Here, we review recent findings on the interplay between actomyosin flow and the PAR patterning networks in the polarization of the C. elegans zygote. We also discuss how these discoveries and developed methods are shaping our understanding of other flow-dependent polarizing systems. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
| | | | | | | | - Josana Rodriguez
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
17
|
Beaudet D, Pham N, Skaik N, Piekny A. Importin binding mediates the intramolecular regulation of anillin during cytokinesis. Mol Biol Cell 2020; 31:1124-1139. [PMID: 32238082 PMCID: PMC7353161 DOI: 10.1091/mbc.e20-01-0006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cytokinesis occurs by the ingression of an actomyosin ring that cleaves a cell into two daughters. This process is tightly controlled to avoid aneuploidy, and we previously showed that active Ran coordinates ring positioning with chromatin. Active Ran is high around chromatin, and forms an inverse gradient to cargo-bound importins. We found that the ring component anillin contains a nuclear localization signal (NLS) that binds to importin and is required for its function during cytokinesis. Here we reveal the mechanism whereby importin binding favors a conformation required for anillin's recruitment to the equatorial cortex. Active RhoA binds to the RhoA-binding domain causing an increase in accessibility of the nearby C2 domain containing the NLS. Importin binding subsequently stabilizes a conformation that favors interactions for cortical recruitment. In addition to revealing a novel mechanism for the importin-mediated regulation of a cortical protein, we also show how importin binding positively regulates protein function.
Collapse
Affiliation(s)
- Daniel Beaudet
- Department of Bioengineering, McGill University, Montreal, QC, Canada, H3A 0G4
| | - Nhat Pham
- Department of Biology, Concordia University, Montreal, QC, Canada, H4B 1R6
| | - Noha Skaik
- Department of Biology, Concordia University, Montreal, QC, Canada, H4B 1R6
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada, H4B 1R6
| |
Collapse
|
18
|
Moon HM, Hippenmeyer S, Luo L, Wynshaw-Boris A. LIS1 determines cleavage plane positioning by regulating actomyosin-mediated cell membrane contractility. eLife 2020; 9:51512. [PMID: 32159512 PMCID: PMC7112955 DOI: 10.7554/elife.51512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/10/2020] [Indexed: 11/16/2022] Open
Abstract
Heterozygous loss of human PAFAH1B1 (coding for LIS1) results in the disruption of neurogenesis and neuronal migration via dysregulation of microtubule (MT) stability and dynein motor function/localization that alters mitotic spindle orientation, chromosomal segregation, and nuclear migration. Recently, human- induced pluripotent stem cell (iPSC) models revealed an important role for LIS1 in controlling the length of terminal cell divisions of outer radial glial (oRG) progenitors, suggesting cellular functions of LIS1 in regulating neural progenitor cell (NPC) daughter cell separation. Here, we examined the late mitotic stages NPCs in vivo and mouse embryonic fibroblasts (MEFs) in vitro from Pafah1b1-deficient mutants. Pafah1b1-deficient neocortical NPCs and MEFs similarly exhibited cleavage plane displacement with mislocalization of furrow-associated markers, associated with actomyosin dysfunction and cell membrane hyper-contractility. Thus, it suggests LIS1 acts as a key molecular link connecting MTs/dynein and actomyosin, ensuring that cell membrane contractility is tightly controlled to execute proper daughter cell separation.
Collapse
Affiliation(s)
- Hyang Mi Moon
- Department of Pediatrics, Institute for Human Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
| | - Simon Hippenmeyer
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, United States
| | - Liqun Luo
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, United States
| | - Anthony Wynshaw-Boris
- Department of Pediatrics, Institute for Human Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States.,Department of Genetics and Genome Sciences, Case Western Reserve University, School of Medicine, Cleveland, United States
| |
Collapse
|
19
|
Abstract
The Ran pathway has a well-described function in nucleocytoplasmic transport, where active Ran dissociates importin/karyopherin-bound cargo containing a nuclear localization signal (NLS) in the nucleus. As cells enter mitosis, the nuclear envelope breaks down and a gradient of active Ran forms where levels are highest near chromatin. This gradient plays a crucial role in regulating mitotic spindle assembly, where active Ran binds to and releases importins from NLS-containing spindle assembly factors. An emerging theme is that the Ran gradient also regulates the actomyosin cortex for processes including polar body extrusion during meiosis, and cytokinesis. For these events, active Ran could play an inhibitory role, where importin-binding may help promote or stabilize a conformation or interaction that favours the recruitment and function of cortical regulators. For either spindle assembly or cortical polarity, the gradient of active Ran determines the extent of importin-binding, the effects of which could vary for different proteins.
Collapse
Affiliation(s)
- Imge Ozugergin
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
20
|
Fang J, Lerit DA. Drosophila pericentrin-like protein promotes the formation of primordial germ cells. Genesis 2019; 58:e23347. [PMID: 31774613 DOI: 10.1002/dvg.23347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/01/2019] [Accepted: 11/09/2019] [Indexed: 11/12/2022]
Abstract
Primordial germ cells (PGCs) are the precursors to the adult germline stem cells that are set aside early during embryogenesis and specified through the inheritance of the germ plasm, which contains the mRNAs and proteins that function as the germline fate determinants. In Drosophila melanogaster, formation of the PGCs requires the microtubule and actin cytoskeletal networks to actively segregate the germ plasm from the soma and physically construct the pole buds (PBs) that protrude from the posterior cortex. Of emerging importance is the central role of centrosomes in the coordination of microtubule dynamics and actin organization to promote PGC development. We previously identified a requirement for the centrosome protein Centrosomin (Cnn) in PGC formation. Cnn interacts directly with Pericentrin-like protein (PLP) to form a centrosome scaffold structure required for pericentriolar material recruitment and organization. In this study, we identify a role for PLP at several discrete steps during PGC development. We find PLP functions in segregating the germ plasm from the soma by regulating microtubule organization and centrosome separation. These activities further contribute to promoting PB protrusion and facilitating the distribution of germ plasm in proliferating PGCs.
Collapse
Affiliation(s)
- Junnan Fang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Dorothy A Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
21
|
Abstract
The active form of the small GTPase RhoA is necessary and sufficient for formation of a cytokinetic furrow in animal cells. Despite the conceptual simplicity of the process, the molecular mechanisms that control it are intricate and involve redundancy at multiple levels. Here, we discuss our current knowledge of the mechanisms underlying spatiotemporal regulation of RhoA during cytokinesis by upstream activators. The direct upstream activator, the RhoGEF Ect2, requires activation due to autoinhibition. Ect2 is primarily activated by the centralspindlin complex, which contains numerous domains that regulate its subcellular localization, oligomeric state, and Ect2 activation. We review the functions of these domains and how centralspindlin is regulated to ensure correctly timed, equatorial RhoA activation. Highlighting recent evidence, we propose that although centralspindlin does not always prominently accumulate on the plasma membrane, it is the site where it promotes RhoA activation during cytokinesis.
Collapse
|
22
|
Verma V, Mogilner A, Maresca TJ. Classical and Emerging Regulatory Mechanisms of Cytokinesis in Animal Cells. BIOLOGY 2019; 8:biology8030055. [PMID: 31357447 PMCID: PMC6784142 DOI: 10.3390/biology8030055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/05/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
The primary goal of cytokinesis is to produce two daughter cells, each having a full set of chromosomes. To achieve this, cells assemble a dynamic structure between segregated sister chromatids called the contractile ring, which is made up of filamentous actin, myosin-II, and other regulatory proteins. Constriction of the actomyosin ring generates a cleavage furrow that divides the cytoplasm to produce two daughter cells. Decades of research have identified key regulators and underlying molecular mechanisms; however, many fundamental questions remain unanswered and are still being actively investigated. This review summarizes the key findings, computational modeling, and recent advances in understanding of the molecular mechanisms that control the formation of the cleavage furrow and cytokinesis.
Collapse
Affiliation(s)
- Vikash Verma
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA.
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
- Department of Biology, New York University, New York, NY 10012, USA
| | - Thomas J Maresca
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
23
|
Fegaras E, Forer A. Precocious cleavage furrows simultaneously move and ingress when kinetochore microtubules are depolymerized in Mesostoma ehrenbergii spermatocytes. PROTOPLASMA 2018; 255:1401-1411. [PMID: 29564559 DOI: 10.1007/s00709-018-1239-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
A "precocious" cleavage furrow develops and ingresses during early prometaphase in Mesostoma ehrenbergii spermatocytes (Forer and Pickett-Heaps Eur J Cell Biol 89:607-618, 2010). In response to chromosome movements which regularly occur during prometaphase and that alter the balance of chromosomes in the two half-spindles, the precocious furrow shifts its position along the cell, moving 2-3 μm towards the half cell with fewer chromosomes (Ferraro-Gideon et al. Cell Biol Int 37:892-898, 2013). This process continues until proper segregation is achieved and the cell enters anaphase with the cleavage furrow again in the middle of the cell. At anaphase, the furrow recommences ingression. Spindle microtubules (MTs) are implicated in various furrow positioning models, and our experiments studied the responses of the precocious furrows to the absence of spindle MTs. We depolymerized spindle MTs during prometaphase using various concentrations of nocodazole (NOC) and colcemid. The expected result is that the furrow should regress and chromosomes remain in the midzone of the cell (Cassimeris et al. J Cell Sci 96:9-15, 1990). Instead, the furrows commenced ingression and all three bivalent chromosomes moved to one pole while the univalent chromosomes, that usually reside at the two poles, either remained at their poles or moved to the opposite pole along with the bivalents, as described elsewhere (Fegaras and Forer 2018). The microtubules were completely depolymerized by the drugs, as indicated by immunofluorescence staining of treated cells (Fegaras and Forer 2018), and in the absence of microtubules, the furrows often ingressed (in 33/61 cells) at a rate similar to normal anaphase ingression (~ 1 μm/min), while often simultaneously moving toward one pole. Thus, these results indicate that in the absence of anaphase and of spindle microtubules, cleavage furrows resume ingression.
Collapse
Affiliation(s)
- Eleni Fegaras
- Department of Biology, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - Arthur Forer
- Department of Biology, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
24
|
Khaliullin RN, Green RA, Shi LZ, Gomez-Cavazos JS, Berns MW, Desai A, Oegema K. A positive-feedback-based mechanism for constriction rate acceleration during cytokinesis in Caenorhabditis elegans. eLife 2018; 7:36073. [PMID: 29963981 PMCID: PMC6063732 DOI: 10.7554/elife.36073] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/01/2018] [Indexed: 12/23/2022] Open
Abstract
To ensure timely cytokinesis, the equatorial actomyosin contractile ring constricts at a relatively constant rate despite its progressively decreasing size. Thus, the per-unit-length constriction rate increases as ring perimeter decreases. To understand this acceleration, we monitored cortical surface and ring component dynamics during the first cytokinesis of the Caenorhabditis elegans embryo. We found that, per unit length, the amount of ring components (myosin, anillin) and the constriction rate increase with parallel exponential kinetics. Quantitative analysis of cortical flow indicated that the cortex within the ring is compressed along the axis perpendicular to the ring, and the per-unit-length rate of cortical compression increases during constriction in proportion to ring myosin. We propose that positive feedback between ring myosin and compression-driven flow of cortex into the ring drives an exponential increase in the per-unit-length amount of ring myosin to maintain a high ring constriction rate and support this proposal with an analytical mathematical model.
Collapse
Affiliation(s)
- Renat N Khaliullin
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States
| | - Rebecca A Green
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States
| | - Linda Z Shi
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, San Diego, United States
| | - J Sebastian Gomez-Cavazos
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States
| | - Michael W Berns
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, San Diego, United States
| | - Arshad Desai
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States
| | - Karen Oegema
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States
| |
Collapse
|
25
|
Mangal S, Sacher J, Kim T, Osório DS, Motegi F, Carvalho AX, Oegema K, Zanin E. TPXL-1 activates Aurora A to clear contractile ring components from the polar cortex during cytokinesis. J Cell Biol 2018; 217:837-848. [PMID: 29311228 PMCID: PMC5839786 DOI: 10.1083/jcb.201706021] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/13/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023] Open
Abstract
During cytokinesis, a signal from the central spindle that forms between the separating anaphase chromosomes promotes the accumulation of contractile ring components at the cell equator, while a signal from the centrosomal microtubule asters inhibits accumulation of contractile ring components at the cell poles. However, the molecular identity of the inhibitory signal has remained unknown. To identify molecular components of the aster-based inhibitory signal, we developed a means to monitor the removal of contractile ring proteins from the polar cortex after anaphase onset. Using this assay, we show that polar clearing is an active process that requires activation of Aurora A kinase by TPXL-1. TPXL-1 concentrates on astral microtubules coincident with polar clearing in anaphase, and its ability to recruit Aurora A and activate its kinase activity are essential for clearing. In summary, our data identify Aurora A kinase as an aster-based inhibitory signal that restricts contractile ring components to the cell equator during cytokinesis.
Collapse
Affiliation(s)
- Sriyash Mangal
- Center for Integrated Protein Science, Department Biology II, Ludwig-Maximilians University Munich, Planegg-Martinsried, Germany
| | - Jennifer Sacher
- Center for Integrated Protein Science, Department Biology II, Ludwig-Maximilians University Munich, Planegg-Martinsried, Germany
| | - Taekyung Kim
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA
| | - Daniel Sampaio Osório
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Fumio Motegi
- Research Link, National University of Singapore, Singapore
| | - Ana Xavier Carvalho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Karen Oegema
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA
| | - Esther Zanin
- Center for Integrated Protein Science, Department Biology II, Ludwig-Maximilians University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
26
|
Abstract
SUMMARYCell division-cytokinesis-involves large-scale rearrangements of the entire cell. Primarily driven by cytoskeletal proteins, cytokinesis also depends on topological rearrangements of the plasma membrane, which are coordinated with nuclear division in both space and time. Despite the fundamental nature of the process, different types of eukaryotic cells show variations in both the structural mechanisms of cytokinesis and the regulatory controls. In animal cells and fungi, a contractile actomyosin-based structure plays a central, albeit flexible, role. Here, the underlying molecular mechanisms are summarized and integrated and common themes are highlighted.
Collapse
Affiliation(s)
- Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
27
|
Ferreli C, Lai C, August S, Buggy Y, Kumar P, Brownlow N, Parker P, Friedmann PS, Ardern-Jones M, Pickard C, Healy E. STAT4 expression and activation is increased during mitosis in vitro and in vivo in skin- and mucosa-derived cell types: implications in neoplastic and inflammatory skin diseases. J Eur Acad Dermatol Venereol 2017; 31:1663-1673. [PMID: 28516569 DOI: 10.1111/jdv.14342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/19/2017] [Indexed: 02/11/2024]
Abstract
BACKGROUND The signal transducer and activator of transcription-4 (STAT4/Stat4) is a transcription factor known to convey signals from interleukin-12, interleukin-23, and interferon-alpha/beta to the nucleus, resulting in activation of dendritic cells, T-helper cell differentiation and production of interferon-gamma. OBJECTIVE To demonstrate a novel role for STAT4 in cell mitosis. RESULTS Phosphoserine STAT4 (pSerSTAT4) is increased in cells undergoing mitosis and is distributed throughout the cytoplasm during this stage of the cell cycle, whilst phosphotyrosine STAT4 (pTyrSTAT4) is confined to the chromosomal compartment. This distinct pattern of pSerSTAT4 during mitosis is seen in vitro in human keratinocytes and in other cell types. This is also present in vivo in cells undergoing mitosis in normal skin, psoriasis and squamous cell carcinoma. Inhibition of STAT4 phosphorylation by lisofylline and depletion of STAT4 by RNA interference results in a delay in progression of mitosis and leads to a reduction in cells completing cytokinesis. CONCLUSION Our data demonstrate that STAT4 plays a role in enabling the normal and timely division of cells undergoing mitosis.
Collapse
Affiliation(s)
- C Ferreli
- Dermatopharmacology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
- Dermatology Unit, Department of Medical Sciences, Public Health University of Cagliari, Cagliari, Italy
| | - C Lai
- Dermatopharmacology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
- Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton, Hampshire, UK
| | - S August
- Dermatopharmacology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
- Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton, Hampshire, UK
| | - Y Buggy
- Dermatopharmacology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - P Kumar
- Dermatopharmacology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - N Brownlow
- London Research Institute, Lincoln's Inn Fields, London, UK
| | - P Parker
- London Research Institute, Lincoln's Inn Fields, London, UK
| | - P S Friedmann
- Dermatopharmacology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
- Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton, Hampshire, UK
| | - M Ardern-Jones
- Dermatopharmacology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
- Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton, Hampshire, UK
| | - C Pickard
- Dermatopharmacology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - E Healy
- Dermatopharmacology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
- Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton, Hampshire, UK
| |
Collapse
|
28
|
Price KL, Rose LS. LET-99 functions in the astral furrowing pathway, where it is required for myosin enrichment in the contractile ring. Mol Biol Cell 2017; 28:2360-2373. [PMID: 28701343 PMCID: PMC5576900 DOI: 10.1091/mbc.e16-12-0874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/16/2017] [Accepted: 06/27/2017] [Indexed: 11/11/2022] Open
Abstract
LET-99 is required for furrowing during cytokinesis in both symmetrically and asymmetrically dividing cells. This function is distinct from the role of LET-99 in spindle positioning with Gα signaling. LET-99 is localized to the furrow, where it acts to promote myosin enrichment. The anaphase spindle determines the position of the cytokinesis furrow, such that the contractile ring assembles in an equatorial zone between the two spindle poles. Contractile ring formation is mediated by RhoA activation at the equator by the centralspindlin complex and midzone microtubules. Astral microtubules also inhibit RhoA accumulation at the poles. In the Caenorhabditis elegans one-cell embryo, the astral microtubule–dependent pathway requires anillin, NOP-1, and LET-99. LET-99 is well characterized for generating the asymmetric cortical localization of the Gα-dependent force-generating complex that positions the spindle during asymmetric division. However, whether the role of LET-99 in cytokinesis is specific to asymmetric division and whether it acts through Gα to promote furrowing are unclear. Here we show that LET-99 contributes to furrowing in both asymmetrically and symmetrically dividing cells, independent of its function in spindle positioning and Gα regulation. LET-99 acts in a pathway parallel to anillin and is required for myosin enrichment into the contractile ring. These and other results suggest a positive feedback model in which LET-99 localizes to the presumptive cleavage furrow in response to the spindle and myosin. Once positioned there, LET-99 enhances myosin accumulation to promote furrowing in both symmetrically and asymmetrically dividing cells.
Collapse
Affiliation(s)
- Kari L Price
- Department of Molecular and Cellular Biology and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Program, University of California, Davis, Davis, CA 95616
| | - Lesilee S Rose
- Department of Molecular and Cellular Biology and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Program, University of California, Davis, Davis, CA 95616
| |
Collapse
|
29
|
Thieleke-Matos C, Osório DS, Carvalho AX, Morais-de-Sá E. Emerging Mechanisms and Roles for Asymmetric Cytokinesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:297-345. [PMID: 28526136 DOI: 10.1016/bs.ircmb.2017.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cytokinesis completes cell division by physically separating the contents of the mother cell between the two daughter cells. This event requires the highly coordinated reorganization of the cytoskeleton within a precise window of time to ensure faithful genomic segregation. In addition, recent progress in the field highlighted the importance of cytokinesis in providing particularly important cues in the context of multicellular tissues. The organization of the cytokinetic machinery and the asymmetric localization or inheritance of the midbody remnants is critical to define the spatial distribution of mechanical and biochemical signals. After a brief overview of the conserved steps of animal cytokinesis, we review the mechanisms controlling polarized cytokinesis focusing on the challenges of epithelial cytokinesis. Finally, we discuss the significance of these asymmetries in defining embryonic body axes, determining cell fate, and ensuring the correct propagation of epithelial organization during proliferation.
Collapse
Affiliation(s)
- C Thieleke-Matos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cell Division and Genomic stability, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - D S Osório
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cytoskeletal Dynamics, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - A X Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cytoskeletal Dynamics, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - E Morais-de-Sá
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cell Division and Genomic stability, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
30
|
He L, Chen W, Wu PH, Jimenez A, Wong BS, San A, Konstantopoulos K, Wirtz D. Local 3D matrix confinement determines division axis through cell shape. Oncotarget 2016; 7:6994-7011. [PMID: 26515603 PMCID: PMC4872764 DOI: 10.18632/oncotarget.5848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/03/2015] [Indexed: 12/24/2022] Open
Abstract
How the division axis is determined in mammalian cells embedded in three-dimensional (3D) matrices remains elusive, despite that many types of cells divide in 3D environments. Cells on two-dimensional (2D) substrates typically round up completely to divide. Here, we show that in 3D collagen matrices, mammalian cells such as HT1080 human fibrosarcoma and MDA-MB-231 breast cancer cells exhibit division modes distinct from their Counterparts on 2D substrates, with a markedly higher fraction of cells remaining highly elongated through mitosis in 3D matrices. The long axis of elongated mitotic cells accurately predicts the division axis, independently of matrix density and cell-matrix interactions. This 3D-specific elongated division mode is determined by the local confinement produced by the matrix and the ability of cells to protrude and locally remodel the matrix via β1 integrin. Elongated division is readily recapitulated using collagen-coated microfabricated channels. Cells depleted of β1 integrin still divide in the elongated mode in microchannels, suggesting that 3D confinement is sufficient to induce the elongated cell-division phenotype.
Collapse
Affiliation(s)
- Lijuan He
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Weitong Chen
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Angela Jimenez
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Bin Sheng Wong
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Angela San
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Departments of Oncology and Pathology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Departments of Oncology and Pathology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
31
|
Ye AA, Torabi J, Maresca TJ. Aurora A Kinase Amplifies a Midzone Phosphorylation Gradient to Promote High-Fidelity Cytokinesis. THE BIOLOGICAL BULLETIN 2016; 231:61-72. [PMID: 27638695 PMCID: PMC5360107 DOI: 10.1086/689591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
During cytokinesis, aurora B kinase (ABK) relocalizes from centromeres to the spindle midzone, where it is thought to provide a spatial cue for cytokinesis. While global ABK inhibition in Drosophila S2 cells results in macro- and multi-nucleated large cells, mislocalization of midzone ABK (mABK) by depletion of Subito (Drosophila MKLP2) does not cause notable cytokinesis defects. Subito depletion was, therefore, used to investigate the contribution of other molecules and redundant pathways to cytokinesis in the absence of mABK. Inhibiting potential polar relaxation pathways via removal of centrosomes (CNN RNAi) or a kinetochore-based phosphatase gradient (Sds22 RNAi) did not result in cytokinesis defects on their own or in combination with loss of mABK. Disruption of aurora A kinase (AAK) activity resulted in midzone assembly defects, but did not significantly affect contractile ring positioning or cytokinesis. Live-cell imaging of a Förster resonance energy transfer (FRET)-based aurora kinase phosphorylation sensor revealed that midzone substrates were less phosphorylated in AAK-inhibited cells, despite the fact that midzone levels of active phosphorylated ABK (pABK) were normal. Interestingly, in the absence of mABK, an increased number of binucleated cells were observed following AAK inhibition. The data suggest that equatorial stimulation rather than polar relaxation mechanisms is the major determinant of contractile ring positioning and high-fidelity cytokinesis in Drosophila S2 cells. Furthermore, we propose that equatorial stimulation is mediated primarily by the delivery of factors to the cortex by noncentrosomal microtubules (MTs), as well as a midzone-derived phosphorylation gradient that is amplified by the concerted activities of mABK and a soluble pool of AAK.
Collapse
Affiliation(s)
- Anna A Ye
- Biology Department, and Molecular and Cellular Biology Graduate Group, University of Massachusetts, Amherst, Massachusetts, 01003
| | | | - Thomas J Maresca
- Biology Department, and Molecular and Cellular Biology Graduate Group, University of Massachusetts, Amherst, Massachusetts, 01003
| |
Collapse
|
32
|
Sherlekar A, Rikhy R. Syndapin promotes pseudocleavage furrow formation by actin organization in the syncytial Drosophila embryo. Mol Biol Cell 2016; 27:2064-79. [PMID: 27146115 PMCID: PMC4927280 DOI: 10.1091/mbc.e15-09-0656] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/26/2016] [Indexed: 12/03/2022] Open
Abstract
F-BAR domain–containing proteins link the actin cytoskeleton to the membrane during membrane remodeling. Syndapin associates with the pseudocleavage furrow membrane and is essential for furrow morphology, actin organization, and extension downstream of initiation factor RhoGEF2. Coordinated membrane and cytoskeletal remodeling activities are required for membrane extension in processes such as cytokinesis and syncytial nuclear division cycles in Drosophila. Pseudocleavage furrow membranes in the syncytial Drosophila blastoderm embryo show rapid extension and retraction regulated by actin-remodeling proteins. The F-BAR domain protein Syndapin (Synd) is involved in membrane tubulation, endocytosis, and, uniquely, in F-actin stability. Here we report a role for Synd in actin-regulated pseudocleavage furrow formation. Synd localized to these furrows, and its loss resulted in short, disorganized furrows. Synd presence was important for the recruitment of the septin Peanut and distribution of Diaphanous and F-actin at furrows. Synd and Peanut were both absent in furrow-initiation mutants of RhoGEF2 and Diaphanous and in furrow-progression mutants of Anillin. Synd overexpression in rhogef2 mutants reversed its furrow-extension phenotypes, Peanut and Diaphanous recruitment, and F-actin organization. We conclude that Synd plays an important role in pseudocleavage furrow extension, and this role is also likely to be crucial in cleavage furrow formation during cell division.
Collapse
Affiliation(s)
- Aparna Sherlekar
- Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| | - Richa Rikhy
- Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| |
Collapse
|
33
|
Mishima M. Centralspindlin in Rappaport’s cleavage signaling. Semin Cell Dev Biol 2016; 53:45-56. [DOI: 10.1016/j.semcdb.2016.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/02/2016] [Indexed: 02/07/2023]
|
34
|
Uehara R, Kamasaki T, Hiruma S, Poser I, Yoda K, Yajima J, Gerlich DW, Goshima G. Augmin shapes the anaphase spindle for efficient cytokinetic furrow ingression and abscission. Mol Biol Cell 2016; 27:812-27. [PMID: 26764096 PMCID: PMC4803307 DOI: 10.1091/mbc.e15-02-0101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 11/11/2022] Open
Abstract
During anaphase, distinct populations of microtubules (MTs) form by either centrosome-dependent or augmin-dependent nucleation. It remains largely unknown whether these different MT populations contribute distinct functions to cytokinesis. Here we show that augmin-dependent MTs are required for the progression of both furrow ingression and abscission. Augmin depletion reduced the accumulation of anillin, a contractile ring regulator at the cell equator, yet centrosomal MTs were sufficient to mediate RhoA activation at the furrow. This defect in contractile ring organization, combined with incomplete spindle pole separation during anaphase, led to impaired furrow ingression. During the late stages of cytokinesis, astral MTs formed bundles in the intercellular bridge, but these failed to assemble a focused midbody structure and did not establish tight linkage to the plasma membrane, resulting in furrow regression. Thus augmin-dependent acentrosomal MTs and centrosomal MTs contribute to nonredundant targeting mechanisms of different cytokinesis factors, which are required for the formation of a functional contractile ring and midbody.
Collapse
Affiliation(s)
- Ryota Uehara
- Creative Research Institution, Hokkaido University, Sapporo 001-0021, Japan Department of Life Sciences, School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Tomoko Kamasaki
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Shota Hiruma
- Creative Research Institution, Hokkaido University, Sapporo 001-0021, Japan
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Kinya Yoda
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Junichiro Yajima
- Department of Life Sciences, School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter Campus, 1030 Vienna, Austria
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
35
|
Rodrigues NTL, Lekomtsev S, Jananji S, Kriston-Vizi J, Hickson GRX, Baum B. Kinetochore-localized PP1-Sds22 couples chromosome segregation to polar relaxation. Nature 2015; 524:489-92. [PMID: 26168397 DOI: 10.1038/nature14496] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/16/2015] [Indexed: 02/06/2023]
Abstract
Cell division requires the precise coordination of chromosome segregation and cytokinesis. This coordination is achieved by the recruitment of an actomyosin regulator, Ect2, to overlapping microtubules at the centre of the elongating anaphase spindle. Ect2 then signals to the overlying cortex to promote the assembly and constriction of an actomyosin ring between segregating chromosomes. Here, by studying division in proliferating Drosophila and human cells, we demonstrate the existence of a second, parallel signalling pathway, which triggers the relaxation of the polar cell cortex at mid anaphase. This is independent of furrow formation, centrosomes and microtubules and, instead, depends on PP1 phosphatase and its regulatory subunit Sds22 (refs 2, 3). As separating chromosomes move towards the polar cortex at mid anaphase, kinetochore-localized PP1-Sds22 helps to break cortical symmetry by inducing the dephosphorylation and inactivation of ezrin/radixin/moesin proteins at cell poles. This promotes local softening of the cortex, facilitating anaphase elongation and orderly cell division. In summary, this identifies a conserved kinetochore-based phosphatase signal and substrate, which function together to link anaphase chromosome movements to cortical polarization, thereby coupling chromosome segregation to cell division.
Collapse
Affiliation(s)
- Nelio T L Rodrigues
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Sergey Lekomtsev
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Silvana Jananji
- Sainte-Justine Hospital Research Center, Montréal, Québec H3T 1C5, Canada
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Gilles R X Hickson
- Sainte-Justine Hospital Research Center, Montréal, Québec H3T 1C5, Canada.,Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.,Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK.,CelTisPhyBio Labex, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
36
|
Abstract
Cell division ends with the physical separation of the two daughter cells, a process known as cytokinesis. This final event ensures that nuclear and cytoplasmic contents are accurately partitioned between the two nascent cells. Cytokinesis is one of the most dramatic changes in cell shape and requires an extensive reorganization of the cell's cytoskeleton. Here, we describe the cytoskeletal structures, factors, and signaling pathways that orchestrate this robust and yet highly dynamic process in animal cells. Finally, we discuss possible future directions in this growing area of cell division research and its implications in human diseases, including cancer.
Collapse
Affiliation(s)
- Pier Paolo D'Avino
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari c/o Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, 00185 Roma, Italy
| | - Mark Petronczki
- Cell Division and Aneuploidy Laboratory, Cancer Research UK-London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| |
Collapse
|
37
|
Nakayama Y, Saito Y, Soeda S, Iwamoto E, Ogawa S, Yamagishi N, Kuga T, Yamaguchi N. Genistein induces cytokinesis failure through RhoA delocalization and anaphase chromosome bridging. J Cell Biochem 2014; 115:763-71. [PMID: 24453048 DOI: 10.1002/jcb.24720] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 11/12/2013] [Indexed: 01/01/2023]
Abstract
Genistein, an isoflavone abundantly present in soybeans, possesses anticancer properties and induces growth inhibition including cell cycle arrest and apoptosis. Although abnormal cell division, such as defects in chromosome segregation and spindle formation, and polyploidization have been described, the mechanisms underlying the induction of abnormal cell division are unknown. In this study, we examined the effect of genistein on cell division in cells that are synchronized in M phase, since genistein treatment delays mitotic entry in asynchronous cells. HeLa S3 cells were arrested at the G2 phase and subsequently released into the M phase in presence of genistein. Immunofluorescence staining showed that genistein treatment delays M phase progression. Time-lapse analysis revealed that the delay occurs until anaphase onset. In addition, genistein treatment induces cleavage furrow regression, resulting in the generation of binucleated cells. Central spindle formation, which is essential for cytokinesis, is partially disrupted in genistein-treated cells. Moreover, aberrant chromosome segregation, such as a chromosome bridge and lagging chromosome, occurs through progression of cytokinesis. RhoA, which plays a role in the assembly and constriction of an actomyosin contractile ring, is delocalized from the cortex of the ingressing cleavage furrow. These results suggest that genistein treatment induces binucleated cell formation through cleavage furrow regression, which is accompanied by chromosome bridge formation and RhoA delocalization. Our results provide the mechanism that underlies genistein-induced polyploidization, which may be involved in genistein-induced growth inhibition.
Collapse
Affiliation(s)
- Yuji Nakayama
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan; Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Conway JRW, Carragher NO, Timpson P. Developments in preclinical cancer imaging: innovating the discovery of therapeutics. Nat Rev Cancer 2014; 14:314-28. [PMID: 24739578 DOI: 10.1038/nrc3724] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Integrating biological imaging into early stages of the drug discovery process can provide invaluable readouts of drug activity within complex disease settings, such as cancer. Iterating this approach from initial lead compound identification in vitro to proof-of-principle in vivo analysis represents a key challenge in the drug discovery field. By embracing more complex and informative models in drug discovery, imaging can improve the fidelity and statistical robustness of preclinical cancer studies. In this Review, we highlight how combining advanced imaging with three-dimensional systems and intravital mouse models can provide more informative and disease-relevant platforms for cancer drug discovery.
Collapse
Affiliation(s)
- James R W Conway
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre Sydney, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Sydney, Australia
| | - Neil O Carragher
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Paul Timpson
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre Sydney, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Sydney, Australia
| |
Collapse
|
39
|
van Oostende Triplet C, Jaramillo Garcia M, Haji Bik H, Beaudet D, Piekny A. Anillin interacts with microtubules and is part of the astral pathway that defines cortical domains. J Cell Sci 2014; 127:3699-710. [DOI: 10.1242/jcs.147504] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cytokinesis occurs by the ingression of an actomyosin ring that separates the cell into two daughter cells. The mitotic spindle, comprised of astral and central spindle microtubules, couples contractile ring ingression with DNA segregation. Cues from the central spindle activate RhoA, the upstream regulator of the contractile ring. However, additional cues from the astral microtubules also reinforce the localization of active RhoA. Using human cells, we show that astral and central spindle microtubules independently control the localization of contractile proteins during cytokinesis. Astral microtubules restrict the accumulation and localization of contractile proteins during mitosis, while the central spindle forms a discrete ring by directing RhoA activation in the equatorial plane. Anillin stabilizes the contractile ring during cytokinesis. We show that human anillin interacts with astral microtubules, which is competed by its cortical recruitment by active RhoA. Anillin restricts the localization of myosin at the equatorial cortex, and NuMA (part of the microtubule-tethering complex that regulates spindle position) at the polar cortex. The sequestration of anillin by astral microtubules may alter the organization of cortical proteins to polarize cells for cytokinesis.
Collapse
|
40
|
Akhshi TK, Wernike D, Piekny A. Microtubules and actin crosstalk in cell migration and division. Cytoskeleton (Hoboken) 2013; 71:1-23. [DOI: 10.1002/cm.21150] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 12/22/2022]
Affiliation(s)
| | - Denise Wernike
- Department of Biology; Concordia University; Montreal Quebec Canada
| | - Alisa Piekny
- Department of Biology; Concordia University; Montreal Quebec Canada
| |
Collapse
|
41
|
Bailey M, Conway L, Gramlich MW, Hawkins TL, Ross JL. Modern methods to interrogate microtubule dynamics. Integr Biol (Camb) 2013; 5:1324-33. [PMID: 24061278 DOI: 10.1039/c3ib40124c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microtubules are essential protein filaments required to organize and rearrange the interior of the cell. They must be stiff with mechanical integrity to support the structure of the cell. Yet, they must also be dynamic to enable rearrangements of the cell during cell division and development. This dynamic nature is inherent to microtubules and comes about through the hydrolysis of chemical energy stored in guanosine triphosphate (GTP). Dynamic instability has been studied with a number of microscopy techniques both in cells and in reconstituted systems. In this article, we review the techniques used to examine microtubule dynamic instability and highlight future avenues and still open questions about this vital and fascinating activity.
Collapse
Affiliation(s)
- Megan Bailey
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 01003, USA
| | | | | | | | | |
Collapse
|
42
|
Zanin E, Desai A, Poser I, Toyoda Y, Andree C, Moebius C, Bickle M, Conradt B, Piekny A, Oegema K. A conserved RhoGAP limits M phase contractility and coordinates with microtubule asters to confine RhoA during cytokinesis. Dev Cell 2013; 26:496-510. [PMID: 24012485 DOI: 10.1016/j.devcel.2013.08.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 05/22/2013] [Accepted: 08/07/2013] [Indexed: 12/27/2022]
Abstract
During animal cell cytokinesis, the spindle directs contractile ring assembly by activating RhoA in a narrow equatorial zone. Rapid GTPase activating protein (GAP)-mediated inactivation (RhoA flux) is proposed to limit RhoA zone dimensions. Testing the significance of RhoA flux has been hampered by the fact that the GAP targeting RhoA is not known. Here, we identify M phase GAP (MP-GAP) as the primary GAP targeting RhoA during mitosis and cytokinesis. MP-GAP inhibition caused excessive RhoA activation in M phase, leading to the uncontrolled formation of large cortical protrusions and late cytokinesis failure. RhoA zone width was broadened by attenuation of the centrosomal asters but was not affected by MP-GAP inhibition alone. Simultaneous aster attenuation and MP-GAP inhibition led to RhoA accumulation around the entire cell periphery. These results identify the major GAP restraining RhoA during cell division and delineate the relative contributions of RhoA flux and centrosomal asters in controlling RhoA zone dimensions.
Collapse
Affiliation(s)
- Esther Zanin
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA; Center for Integrated Protein Science CIPSM, Department Biology II, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lawrence EJ, Mandato CA. Mitochondria localize to the cleavage furrow in mammalian cytokinesis. PLoS One 2013; 8:e72886. [PMID: 23991162 PMCID: PMC3749163 DOI: 10.1371/journal.pone.0072886] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/21/2013] [Indexed: 01/08/2023] Open
Abstract
Mitochondria are dynamic organelles with multiple cellular functions, including ATP production, calcium buffering, and lipid biosynthesis. Several studies have shown that mitochondrial positioning is regulated by the cytoskeleton during cell division in several eukaryotic systems. However, the distribution of mitochondria during mammalian cytokinesis and whether the distribution is regulated by the cytoskeleton has not been examined. Using live spinning disk confocal microscopy and quantitative analysis of mitochondrial fluorescence intensity, we demonstrate that mitochondria are recruited to the cleavage furrow during cytokinesis in HeLa cells. After anaphase onset, the mitochondria are recruited towards the site of cleavage furrow formation, where they remain enriched as the furrow ingresses and until cytokinesis completion. Furthermore, we show that recruitment of mitochondria to the furrow occurs in multiple mammalian cells lines as well as in monopolar, bipolar, and multipolar divisions, suggesting that the mechanism of recruitment is conserved and robust. Using inhibitors of cytoskeleton dynamics, we show that the microtubule cytoskeleton, but not actin, is required to transport mitochondria to the cleavage furrow. Thus, mitochondria are specifically recruited to the cleavage furrow in a microtubule-dependent manner during mammalian cytokinesis. Two possible reasons for this could be to localize mitochondrial function to the furrow to facilitate cytokinesis and / or ensure accurate mitochondrial inheritance.
Collapse
Affiliation(s)
| | - Craig A. Mandato
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
44
|
Lee KY, Davies T, Mishima M. Cytokinesis microtubule organisers at a glance. J Cell Sci 2013; 125:3495-500. [PMID: 22991411 DOI: 10.1242/jcs.094672] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Kian-Yong Lee
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
45
|
White EA, Glotzer M. Centralspindlin: at the heart of cytokinesis. Cytoskeleton (Hoboken) 2012; 69:882-92. [PMID: 22927365 PMCID: PMC3821549 DOI: 10.1002/cm.21065] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/15/2012] [Accepted: 08/20/2012] [Indexed: 12/14/2022]
Abstract
The final step in the cell cycle is the formation of two genetically identical daughter cells by cytokinesis. At the heart of cytokinesis in animal cells is the centralspindlin complex which is composed of two proteins, a kinesin-like protein, Mitotic kinesin-like protein 1, and a Rho GTPase activating protein (RhoGAP), CYK-4. Through its targeted localization to a narrow region of antiparallel microtubule overlap immediately following chromosome segregation, centralspindlin initiates central spindle assembly. Centralspindlin has several critical functions during cell division including positioning of the division plane, regulation of Rho family GTPases, as well as midbody assembly and abscission. In this review, we will examine the biochemistry of centralspindlin and its multiple functions during cell division. Remarkably, several of its critical functions are somewhat unexpected. Although endowed with motor domains, centralspindlin has an important role in generating stable, antiparallel microtubule bundles. Although it contains a Rho family GAP domain, it has a central role in the activation of RhoA during cytokinesis. Finally, centralspindlin functions as a motor protein complex, as a scaffold protein for key regulators of abscission and as a conventional RhoGAP. Because of these diverse functions, centralspindlin lies at the heart of the cytokinetic mechanism.
Collapse
Affiliation(s)
- Erin A. White
- Department of Molecular Genetics and Cell Biology, University of
Chicago, CLSC 901, 920 E. 58th St. Chicago, IL 60637
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of
Chicago, CLSC 901, 920 E. 58th St. Chicago, IL 60637
| |
Collapse
|
46
|
Jordan SN, Canman JC. Rho GTPases in animal cell cytokinesis: an occupation by the one percent. Cytoskeleton (Hoboken) 2012; 69:919-30. [PMID: 23047851 DOI: 10.1002/cm.21071] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 12/17/2022]
Abstract
Rho GTPases are molecular switches that elicit distinct effects on the actomyosin cytoskeleton to accurately promote cytokinesis. Although they represent less than 1% of the human genome, Rho GTPases exert disproportionate control over cell division. Crucial to this master regulatory role is their localized occupation of specific domains of the cell to ensure the assembly of a contractile ring at the proper time and place. RhoA occupies the division plane and is the central positive Rho family regulator of cytokinesis. Rac1 is a negative regulator of cytokinesis and is inactivated within the division plane while active Rac1 occupies the cell poles. Cdc42 regulation during cytokinesis is less studied, but thus far a clear role has only been shown during polar body emission. Here we review what is known about the function of Rho family GTPases during cell division, as well as their upstream regulators and known downstream cytokinetic effectors.
Collapse
Affiliation(s)
- Shawn N Jordan
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
47
|
Argiros H, Henson L, Holguin C, Foe V, Shuster CB. Centralspindlin and chromosomal passenger complex behavior during normal and Rappaport furrow specification in echinoderm embryos. Cytoskeleton (Hoboken) 2012; 69:840-53. [PMID: 22887753 DOI: 10.1002/cm.21061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 07/28/2012] [Accepted: 07/31/2012] [Indexed: 01/25/2023]
Abstract
The chromosomal passenger (CPC) and Centralspindlin complexes are essential for organizing the anaphase central spindle and providing cues that position the cytokinetic furrow between daughter nuclei. However, echinoderm zygotes are also capable of forming "Rappaport furrows" between asters positioned back-to-back without intervening chromosomes. To understand how these complexes contribute to normal and Rappaport furrow formation, we studied the localization patterns of Survivin and mitotic-kinesin-like-protein1 (MKLP1), members respectively of the CPC and the Centralspindlin complex, and the effect of CPC inhibition on cleavage in mono- and binucleate echinoderm zygotes. In zygotes, Survivin initially localized to metaphase chromosomes, upon anaphase onset relocalized to the central spindle and then, together with MKLP1 spread towards the equatorial cortex in an Aurora-dependent manner. Inhibition of Aurora kinase activity resulted in disruption of central spindle organization and furrow regression, although astral microtubule elongation and furrow initiation were normal. In binucleate cells containing two parallel spindles MKLP1 and Survivin localized to the plane of the former metaphase plate, but were not observed in the secondary cleavage plane formed between unrelated spindle poles, except when chromosomes were abnormally present there. However, the secondary furrow was sensitive to Aurora inhibition, indicating that Aurora kinase may still contribute to furrow ingression without chromosomes nearby. Our results provide insights that reconcile classic micromanipulation studies with current molecular understanding of furrow specification in animal cells.
Collapse
Affiliation(s)
- Haroula Argiros
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
Cytokinesis is the process by which mitotic cells physically split in two following chromosome segregation. Dividing animal cells first ingress a cytokinetic furrow and then separate the plasma membrane by abscission. The general cytological events and several conserved molecular factors involved in cytokinesis have been known for many years. However, recent progress in microscopy, chemical genetics, biochemical reconstitution and biophysical methodology has tremendously increased our understanding of the underlying molecular mechanisms. We discuss how recent insights have led to refined models of the distinct steps of animal cell cytokinesis, including anaphase spindle reorganization, division plane specification, actomyosin ring assembly and contraction, and abscission. We highlight how molecular signalling pathways coordinate the individual events to ensure faithful partitioning of the genome to emerging daughter cells.
Collapse
|
49
|
Rombouts K, Mello T, Liotta F, Galli A, Caligiuri A, Annunziato F, Pinzani M. MARCKS actin-binding capacity mediates actin filament assembly during mitosis in human hepatic stellate cells. Am J Physiol Cell Physiol 2012; 303:C357-67. [PMID: 22555845 DOI: 10.1152/ajpcell.00093.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cross-linking between the actin cytoskeleton and plasma membrane actin-binding proteins is a key interaction responsible for the mechanical properties of the mitotic cell. Little is known about the identity, the localization, and the function of actin filament-binding proteins during mitosis in human hepatic stellate cells (hHSC). The aim of the present study was to identify and analyze the cross talk between actin and myristoylated alanine-rich kinase C substrate (MARCKS), an important PKC substrate and actin filament-binding protein, during mitosis in primary hHSC. Confocal analysis and chromosomal fraction analysis of mitotic hHSC demonstrated that phosphorylated (P)-MARCKS displays distinct phase-dependent localizations, accumulates at the perichromosomal layer, and is a centrosomal protein belonging to the chromosomal cytosolic fraction. Aurora B kinase (AUBK), an important mitotic regulator, β-actin, and P-MARCKS concentrate at the cytokinetic midbody during cleavage furrow formation. This localization is critical since MARCKS-depletion in hHSC is characterized by a significant loss in cytosolic actin filaments and cortical β-actin that induces cell cycle inhibition and dislocation of AUBK. A depletion of AUBK in hHSC affects cell cycle, resulting in multinucleation. Quantitative live cell imaging demonstrates that the actin filament-binding capacity of MARCKS is key to regulate mitosis since the cell cycle inhibitory effect in MARCKS-depleted cells caused abnormal cell morphology and an aberrant cytokinesis, resulting in a significant increase in cell cycle time. These findings implicate that MARCKS, an important PKC substrate, is essential for proper cytokinesis and that MARCKS and its partner actin are key mitotic regulators during cell cycle in hHSC.
Collapse
Affiliation(s)
- Krista Rombouts
- Department of Internal Medicine, University of Florence, Italy.
| | | | | | | | | | | | | |
Collapse
|
50
|
Biomechanical regulation of contractility: spatial control and dynamics. Trends Cell Biol 2011; 22:61-81. [PMID: 22119497 DOI: 10.1016/j.tcb.2011.10.001] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/28/2011] [Accepted: 10/13/2011] [Indexed: 11/21/2022]
Abstract
Cells are active materials; they can change shape using internal energy to build contractile networks of actin filaments and myosin motors. Contractility of the actomyosin cortex is tightly regulated in space and time to orchestrate cell shape changes. Conserved biochemical pathways regulate actomyosin networks in subcellular domains which drive cell shape changes. Actomyosin networks display complex dynamics, such as flows and pulses, which participate in myosin distribution and provide a more realistic description of the spatial distribution and evolution of forces during morphogenesis. Such dynamics are influenced by the mechanical properties of actomyosin networks. Moreover, actomyosin can self-organize and respond to mechanical stimuli through multiple types of biomechanical feedback. In this review we propose a framework encapsulating spatiotemporal regulation of contractility from established pathways with the dynamics and mechanics of actomyosin networks. Through the comparison of cytokinesis, cell migration and epithelial morphogenesis, we delineate emergent properties of contractile activity, including self-organization, adaptability and robustness.
Collapse
|