1
|
Diensthuber RP, Hartmann FK, Kathmann D, Franz P, Tsiavaliaris G. Switch-2 determines Mg 2+ADP-release kinetics and fine-tunes the duty ratio of Dictyostelium class-1 myosins. Front Physiol 2024; 15:1393952. [PMID: 38887318 PMCID: PMC11181000 DOI: 10.3389/fphys.2024.1393952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/02/2024] [Indexed: 06/20/2024] Open
Abstract
Though myosins share a structurally conserved motor domain, single amino acid variations of active site elements, including the P-loop, switch-1 and switch-2, which act as nucleotide sensors, can substantially determine the kinetic signature of a myosin, i.e., to either perform fast movement or enable long-range transport and tension generation. Switch-2 essentially contributes to the ATP hydrolysis reaction and determines product release. With few exceptions, class-1 myosin harbor a tyrosine in the switch-2 consensus sequence DIYGFE, at a position where class-2 myosins and a selection of myosins from other classes have a substitution. Here, we addressed the role of the tyrosine in switch-2 of class-1 myosins as potential determinant of the duty ratio. We generated constitutively active motor domain constructs of two class-1 myosins from the social amoeba Dictyostelium discoideum, namely, Myo1E, a high duty ratio myosin and Myo1B, a low duty ratio myosin. In Myo1E we introduced mutation Y388F and in Myo1B mutation F387Y. The detailed functional characterization by steady-state and transient kinetic experiments, combined with in vitro motility and landing assays revealed an almost reciprocal relationship of a number of critical kinetic parameters and equilibrium constants between wild-type and mutants that dictate the lifetime of the strongly actin-attached states of myosin. The Y-to-F mutation increased the duty ratio of Moy1B by almost one order of magnitude, while the introduction of the phenylalanine in switch-2 of Myo1E transformed the myosin into a low duty ratio motor. These data together with structural considerations propose a role of switch-2 in fine-tuning ADP release through a mechanism, where the class-specific tyrosine together with surrounding residues contributes to the coordination of Mg2+ and ADP. Our results highlight the importance of conserved switch-2 residues in class-1 myosins for efficient chemo-mechanical coupling, revealing that switch-2 is important to adjust the duty ratio of the amoeboid class-1 myosins for performing movement, transport or gating functions.
Collapse
Affiliation(s)
| | | | | | | | - Georgios Tsiavaliaris
- Institute for Biophysical Chemistry, OE 4350, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Cox RM, Papoulas O, Shril S, Lee C, Gardner T, Battenhouse AM, Lee M, Drew K, McWhite CD, Yang D, Leggere JC, Durand D, Hildebrandt F, Wallingford JB, Marcotte EM. Ancient eukaryotic protein interactions illuminate modern genetic traits and disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595818. [PMID: 38853926 PMCID: PMC11160598 DOI: 10.1101/2024.05.26.595818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
All eukaryotes share a common ancestor from roughly 1.5 - 1.8 billion years ago, a single-celled, swimming microbe known as LECA, the Last Eukaryotic Common Ancestor. Nearly half of the genes in modern eukaryotes were present in LECA, and many current genetic diseases and traits stem from these ancient molecular systems. To better understand these systems, we compared genes across modern organisms and identified a core set of 10,092 shared protein-coding gene families likely present in LECA, a quarter of which are uncharacterized. We then integrated >26,000 mass spectrometry proteomics analyses from 31 species to infer how these proteins interact in higher-order complexes. The resulting interactome describes the biochemical organization of LECA, revealing both known and new assemblies. We analyzed these ancient protein interactions to find new human gene-disease relationships for bone density and congenital birth defects, demonstrating the value of ancestral protein interactions for guiding functional genetics today.
Collapse
Affiliation(s)
- Rachael M Cox
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ophelia Papoulas
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Chanjae Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tynan Gardner
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Anna M Battenhouse
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Muyoung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kevin Drew
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Claire D McWhite
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - David Yang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Janelle C Leggere
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Dannie Durand
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Avenue Pittsburgh, PA 15213, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - John B Wallingford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
3
|
Analysis of Plasmodium falciparum myosin B ATPase activity and structure in complex with the calmodulin-like domain of its light chain MLC-B. J Biol Chem 2022; 298:102634. [PMID: 36273584 PMCID: PMC9692044 DOI: 10.1016/j.jbc.2022.102634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
Abstract
Myosin B (MyoB) is a class 14 myosin expressed in all invasive stages of the malaria parasite, Plasmodium falciparum. It is not associated with the glideosome complex that drives motility and invasion of host cells. During red blood cell invasion, MyoB remains at the apical tip of the merozoite but is no longer observed once invasion is completed. MyoB is not essential for parasite survival, but when it is knocked out, merozoites are delayed in the initial stages of red blood cell invasion, giving rise to a growth defect that correlates with reduced invasion success. Therefore, further characterization is needed to understand how MyoB contributes to parasite invasion. Here, we have expressed and purified functional MyoB with the help of parasite-specific chaperones Hsp90 and Unc45, characterized its binding to actin and its known light chain MLC-B using biochemical and biophysical methods and determined its low-resolution structure in solution using small angle X-ray scattering. In addition to MLC-B, we found that four other putative regulatory light chains bind to the MyoB IQ2 motif in vitro. The purified recombinant MyoB adopted the overall shape of a myosin, exhibited actin-activated ATPase activity, and moved actin filaments in vitro. Additionally, we determined that the ADP release rate was faster than the ATP turnover number, and thus, does not appear to be rate limiting. This, together with the observed high affinity to actin and the specific localization of MyoB, may point toward a role in tethering and/or force sensing during early stages of invasion.
Collapse
|
4
|
Brzeska H, Bagnoli M, Korn ED, Titus MA. Dictyostelium myosin 1F and myosin 1E inhibit actin waves in a lipid-binding-dependent and motor-independent manner. Cytoskeleton (Hoboken) 2021; 77:295-302. [PMID: 32734648 DOI: 10.1002/cm.21627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/23/2022]
Abstract
Actin waves are F-actin-rich entities traveling on the ventral plasma membrane by the treadmilling mechanism. Actin waves were first discovered and are best characterized in Dictyostelium. Class I myosins are unconventional monomeric myosins that bind lipids through their tails. Dictyostelium has seven class I myosins, six of these have tails (Myo1A-F) while one has a very short tail (Myo1K), and three of them (Myo1D, Myo1E and Myo1F) bind PIP3 with high affinity. Localization of five Dictyostelium Class I myosins synchronizes with localization and propagation of actin waves. Myo1B and Myo1C colocalize with actin in actin waves, whereas Myo1D, E and F localize to the PIP3-rich region surrounded by actin waves. Here, we studied the effect of overexpression of the three PIP3 specific Class I myosins on actin waves. We found that ectopic expression of the short-tail Myo1F inhibits wave formation, short-tail Myo1E has similar but weaker inhibitory effect, but long-tail Myo1D does not affect waves. A study of Myo1F mutants shows that its membrane-binding site is absolutely required for wave inhibition, but the head portion is not. The results suggest that PIP3 specificity and the presence of two membrane-binding sites are required for inhibition of actin waves, and that inhibition may be caused by crosslinking of PIP3 heads groups.
Collapse
Affiliation(s)
- Hanna Brzeska
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Bagnoli
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Edward D Korn
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Margaret A Titus
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Yang Y, Li D, Chao X, Singh SP, Thomason P, Yan Y, Dong M, Li L, Insall RH, Cai H. Leep1 interacts with PIP3 and the Scar/WAVE complex to regulate cell migration and macropinocytosis. J Cell Biol 2021; 220:212090. [PMID: 33978708 PMCID: PMC8127007 DOI: 10.1083/jcb.202010096] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/23/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022] Open
Abstract
Polarity is essential for diverse functions in many cell types. Establishing polarity requires targeting a network of specific signaling and cytoskeleton molecules to different subregions of the cell, yet the full complement of polarity regulators and how their activities are integrated over space and time to form morphologically and functionally distinct domains remain to be uncovered. Here, by using the model system Dictyostelium and exploiting the characteristic chemoattractant-stimulated translocation of polarly distributed molecules, we developed a proteomic screening approach, through which we identified a leucine-rich repeat domain–containing protein we named Leep1 as a novel polarity regulator. We combined imaging, biochemical, and phenotypic analyses to demonstrate that Leep1 localizes selectively at the leading edge of cells by binding to PIP3, where it modulates pseudopod and macropinocytic cup dynamics by negatively regulating the Scar/WAVE complex. The spatiotemporal coordination of PIP3 signaling, Leep1, and the Scar/WAVE complex provides a cellular mechanism for organizing protrusive structures at the leading edge.
Collapse
Affiliation(s)
- Yihong Yang
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dong Li
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiaoting Chao
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shashi P Singh
- Cancer Research UK Beatson Institute, Glasgow, UK.,University of Glasgow Institute of Cancer Sciences, Glasgow, UK
| | - Peter Thomason
- Cancer Research UK Beatson Institute, Glasgow, UK.,University of Glasgow Institute of Cancer Sciences, Glasgow, UK
| | - Yonghong Yan
- National Institute of Biological Sciences, Beijing, China
| | - Mengqiu Dong
- National Institute of Biological Sciences, Beijing, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Robert H Insall
- Cancer Research UK Beatson Institute, Glasgow, UK.,University of Glasgow Institute of Cancer Sciences, Glasgow, UK
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Myosin XVI in the Nervous System. Cells 2020; 9:cells9081903. [PMID: 32824179 PMCID: PMC7464383 DOI: 10.3390/cells9081903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
The myosin family is a large inventory of actin-associated motor proteins that participate in a diverse array of cellular functions. Several myosin classes are expressed in neural cells and play important roles in neural functioning. A recently discovered member of the myosin superfamily, the vertebrate-specific myosin XVI (Myo16) class is expressed predominantly in neural tissues and appears to be involved in the development and proper functioning of the nervous system. Accordingly, the alterations of MYO16 has been linked to neurological disorders. Although the role of Myo16 as a generic actin-associated motor is still enigmatic, the N-, and C-terminal extensions that flank the motor domain seem to confer unique structural features and versatile interactions to the protein. Recent biochemical and physiological examinations portray Myo16 as a signal transduction element that integrates cell signaling pathways to actin cytoskeleton reorganization. This review discusses the current knowledge of the structure-function relation of Myo16. In light of its prevalent localization, the emphasis is laid on the neural aspects.
Collapse
|
7
|
Undefeated-Changing the phenamacril scaffold is not enough to beat resistant Fusarium. PLoS One 2020; 15:e0235568. [PMID: 32598376 PMCID: PMC7323951 DOI: 10.1371/journal.pone.0235568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/17/2020] [Indexed: 11/19/2022] Open
Abstract
Filamentous fungi belonging to the genus Fusarium are notorious plant-pathogens that infect, damage and contaminate a wide variety of important crops. Phenamacril is the first member of a novel class of single-site acting cyanoacrylate fungicides which has proven highly effective against important members of the genus Fusarium. However, the recent emergence of field-resistant strains exhibiting qualitative resistance poses a major obstacle for the continued use of phenamacril. In this study, we synthesized novel cyanoacrylate compounds based on the phenamacril-scaffold to test their growth-inhibitory potential against wild-type Fusarium and phenamacril-resistant strains. Our findings show that most chemical modifications to the phenamacril-scaffold are associated with almost complete loss of fungicidal activity and in vitro inhibition of myosin motor domain ATPase activity.
Collapse
|
8
|
Cavalier-Smith T, Chao EEY. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). PROTOPLASMA 2020. [PMID: 31900730 DOI: 10.1007/s00709-019-01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.
Collapse
Affiliation(s)
| | - Ema E-Yung Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
9
|
Cavalier-Smith T, Chao EEY. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). PROTOPLASMA 2020; 257:621-753. [PMID: 31900730 PMCID: PMC7203096 DOI: 10.1007/s00709-019-01442-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/19/2019] [Indexed: 05/02/2023]
Abstract
Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.
Collapse
Affiliation(s)
| | - Ema E-Yung Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
10
|
Brzeska H, Gonzalez J, Korn ED, Titus MA. Basic-hydrophobic sites are localized in conserved positions inside and outside of PH domains and affect localization of Dictyostelium myosin 1s. Mol Biol Cell 2020; 31:101-117. [PMID: 31774725 PMCID: PMC6960411 DOI: 10.1091/mbc.e19-08-0475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 11/21/2022] Open
Abstract
Myosin 1s have critical roles in linking membranes to the actin cytoskeleton via direct binding to acidic lipids. Lipid binding may occur through PIP3/PIP2-specific PH domains or nonspecific ionic interactions involving basic-hydrophobic (BH) sites but the mechanism of myosin 1s distinctive lipid targeting is poorly understood. Now we show that PH domains occur in all Dictyostelium myosin 1s and that the BH sites of Myo1A, B, C, D, and F are in conserved positions near the β3/β4 loops of their PH domains. In spite of these shared lipid-binding sites, we observe significant differences in myosin 1s highly dynamic localizations. All myosin 1s except Myo1A are present in macropinocytic structures but only Myo1B and Myo1C are enriched at the edges of macropinocytic cups and associate with the actin in actin waves. In contrast, Myo1D, E, and F are enclosed by the actin wave. Mutations of BH sites affect localization of all Dictyostelium myosin 1s. Notably, mutation of the BH site located within the PH domains of PIP3-specific Myo1D and Myo1F completely eradicates membrane binding. Thus, BH sites are important determinants of motor targeting and may have a similar role in the localization of other myosin 1s.
Collapse
Affiliation(s)
- Hanna Brzeska
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jesus Gonzalez
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Edward D. Korn
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Margaret A. Titus
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
11
|
Unconventional Myosins: How Regulation Meets Function. Int J Mol Sci 2019; 21:ijms21010067. [PMID: 31861842 PMCID: PMC6981383 DOI: 10.3390/ijms21010067] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 01/24/2023] Open
Abstract
Unconventional myosins are multi-potent molecular motors that are assigned important roles in fundamental cellular processes. Depending on their mechano-enzymatic properties and structural features, myosins fulfil their roles by acting as cargo transporters along the actin cytoskeleton, molecular anchors or tension sensors. In order to perform such a wide range of roles and modes of action, myosins need to be under tight regulation in time and space. This is achieved at multiple levels through diverse regulatory mechanisms: the alternative splicing of various isoforms, the interaction with their binding partners, their phosphorylation, their applied load and the composition of their local environment, such as ions and lipids. This review summarizes our current knowledge of how unconventional myosins are regulated, how these regulatory mechanisms can adapt to the specific features of a myosin and how they can converge with each other in order to ensure the required tight control of their function.
Collapse
|
12
|
Barger SR, Gauthier NC, Krendel M. Squeezing in a Meal: Myosin Functions in Phagocytosis. Trends Cell Biol 2019; 30:157-167. [PMID: 31836280 DOI: 10.1016/j.tcb.2019.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022]
Abstract
Phagocytosis is a receptor-mediated, actin-dependent process of internalization of large extracellular particles, such as pathogens or apoptotic cells. Engulfment of phagocytic targets requires the activity of myosins, actin-dependent molecular motors, which perform a variety of functions at distinct steps during phagocytosis. By applying force to actin filaments, the plasma membrane, and intracellular proteins and organelles, myosins can generate contractility, directly regulate actin assembly to ensure proper phagocytic internalization, and translocate phagosomes or other cargo to appropriate cellular locations. Recent studies using engineered microenvironments and phagocytic targets have demonstrated how altering the actomyosin cytoskeleton affects phagocytic behavior. Here, we discuss how studies using genetic and biochemical manipulation of myosins, force measurement techniques, and live-cell imaging have advanced our understanding of how specific myosins function at individual steps of phagocytosis.
Collapse
Affiliation(s)
- Sarah R Barger
- Cell and Developmental Biology Department, State University of New York Upstate Medical University, Syracuse, NY, USA
| | | | - Mira Krendel
- Cell and Developmental Biology Department, State University of New York Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
13
|
Abstract
The interactions of cytoskeletal actin filaments with myosin family motors are essential for the integrity and function of eukaryotic cells. They support a wide range of force-dependent functions. These include mechano-transduction, directed transcellular transport processes, barrier functions, cytokinesis, and cell migration. Despite the indispensable role of tropomyosins in the generation and maintenance of discrete actomyosin-based structures, the contribution of individual cytoskeletal tropomyosin isoforms to the structural and functional diversification of the actin cytoskeleton remains a work in progress. Here, we review processes that contribute to the dynamic sorting and targeted distribution of tropomyosin isoforms in the formation of discrete actomyosin-based structures in animal cells and their effects on actin-based motility and contractility.
Collapse
|
14
|
Wollenberg RD, Taft MH, Giese S, Thiel C, Balázs Z, Giese H, Manstein DJ, Sondergaard TE. Phenamacril is a reversible and noncompetitive inhibitor of Fusarium class I myosin. J Biol Chem 2019; 294:1328-1337. [PMID: 30504222 PMCID: PMC6349130 DOI: 10.1074/jbc.ra118.005408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/01/2018] [Indexed: 01/03/2023] Open
Abstract
The cyanoacrylate compound phenamacril (also known as JS399-19) is a recently identified fungicide that exerts its antifungal effect on susceptible Fusarium species by inhibiting the ATPase activity of their myosin class I motor domains. Although much is known about the antifungal spectrum of phenamacril, the exact mechanism behind the phenamacril-mediated inhibition remains to be resolved. Here, we describe the characterization of the effect of phenamacril on purified myosin motor constructs from the model plant pathogen and phenamacril-susceptible species Fusarium graminearum, phenamacril-resistant Fusarium species, and the mycetozoan model organism Dictyostelium discoideum Our results show that phenamacril potently (IC50 ∼360 nm), reversibly, and noncompetitively inhibits ATP turnover, actin binding during ATP turnover, and motor activity of F. graminearum myosin-1. Phenamacril also inhibits the ATPase activity of Fusarium avenaceum myosin-1 but has little or no inhibitory effect on the motor activity of Fusarium solani myosin-1, human myosin-1c, and D. discoideum myosin isoforms 1B, 1E, and 2. Our findings indicate that phenamacril is a species-specific, noncompetitive inhibitor of class I myosin in susceptible Fusarium sp.
Collapse
Affiliation(s)
- Rasmus D Wollenberg
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg, Denmark
| | - Manuel H Taft
- Institute for Biophysical Chemistry, OE4350, Hannover Medical School, 30623 Hannover, Germany
| | - Sven Giese
- Institute for Biophysical Chemistry, OE4350, Hannover Medical School, 30623 Hannover, Germany
| | - Claudia Thiel
- Division of Structural Biochemistry, OE8830, Hannover Medical School, 30623 Hannover, Germany
| | - Zoltán Balázs
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg, Denmark
| | - Henriette Giese
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg, Denmark
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, OE4350, Hannover Medical School, 30623 Hannover, Germany; Division of Structural Biochemistry, OE8830, Hannover Medical School, 30623 Hannover, Germany.
| | - Teis E Sondergaard
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg, Denmark.
| |
Collapse
|
15
|
Wang L, Bai F, Zhang Q, Song W, Messer A, Kawai M. Development of apical hypertrophic cardiomyopathy with age in a transgenic mouse model carrying the cardiac actin E99K mutation. J Muscle Res Cell Motil 2018; 38:421-435. [PMID: 29582353 DOI: 10.1007/s10974-018-9492-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
In both humans and mice, the Glu-99-Lys (E99K) mutation in the cardiac actin gene (ACTC) results in little understood apical hypertrophic cardiomyopathy (AHCM). To determine how cross-bridge kinetics change with AHCM development, we applied sinusoidal length perturbations to skinned papillary muscle fibres from 2- and 5-month old E99K transgenic (Tg) and non-transgenic (NTg) mice, and studied tension and its transients. These age groups were chosen because our preliminary studies indicated that AHCM develops with age. Fibres from 5-month old E99K mice showed significant decreases in tension, stiffness, the rate of the medium-speed exponential process and its magnitude compared to non-transgenic control. The nucleotide association constants increased with age, and they were significantly larger in E99K compared to NTg. However, there were no large differences in the rates of the cross-bridge detachment step, the rates of the force generation step, or the phosphate association constant. Our result on force/cross-bridge demonstrates that the decreased active tension of E99K fibres was caused by a decreased amount of force generated per each cross-bridge. The effects were generally less or insignificant at 2 months. A pCa-tension study showed increased Ca2+-sensitivity (pCa50) with age in both the E99K and NTg sample groups, and pCa50 was significantly larger (but only for 0.05-0.06 pCa units) in E99K than in NTg groups. A significant decrease in cooperativity (nH) was observed only in 5-month old E99K mice. We conclude that the AHCM-causing ACTC E99K mutation is associated with progressive alterations in biomechanical parameters, with changes smaller at 2 months but larger at 5 months, correlating with the development of AHCM.
Collapse
Affiliation(s)
- Li Wang
- School of Nursing, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.,Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Fan Bai
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Qing Zhang
- School of Nursing, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Weihua Song
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew Messer
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Masataka Kawai
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
16
|
Pathan-Chhatbar S, Taft MH, Reindl T, Hundt N, Latham SL, Manstein DJ. Three mammalian tropomyosin isoforms have different regulatory effects on nonmuscle myosin-2B and filamentous β-actin in vitro. J Biol Chem 2017; 293:863-875. [PMID: 29191834 PMCID: PMC5777259 DOI: 10.1074/jbc.m117.806521] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/16/2017] [Indexed: 12/19/2022] Open
Abstract
The metazoan actin cytoskeleton supports a wide range of contractile and transport processes. Recent studies have shown how the dynamic association with specific tropomyosin isoforms generates actin filament populations with distinct functional properties. However, critical details of the associated molecular interactions remain unclear. Here, we report the properties of actomyosin–tropomyosin complexes containing filamentous β-actin, nonmuscle myosin-2B (NM-2B) constructs, and either tropomyosin isoform Tpm1.8cy (b.–.b.d), Tpm1.12br (b.–.b.c), or Tpm3.1cy (b.–.a.d). Our results show the extent to which the association of filamentous β-actin with these different tropomyosin cofilaments affects the actin-mediated activation of NM-2B and the release of the ATP hydrolysis products ADP and phosphate from the active site. Phosphate release gates a transition from weak to strong F-actin–binding states. The release of ADP has the opposite effect. These changes in dominant rate-limiting steps have a direct effect on the duty ratio, the fraction of time that NM-2B spends in strongly F-actin–bound states during ATP turnover. The duty ratio is increased ∼3-fold in the presence of Tpm1.12 and 5-fold for both Tpm1.8 and Tpm3.1. The presence of Tpm1.12 extends the time required per ATP hydrolysis cycle 3.7-fold, whereas it is shortened by 27 and 63% in the presence of Tpm1.8 and Tpm3.1, respectively. The resulting Tpm isoform–specific changes in the frequency, duration, and efficiency of actomyosin interactions establish a molecular basis for the ability of these complexes to support cellular processes with widely divergent demands in regard to force production, capacity to move processively, and speed of movement.
Collapse
Affiliation(s)
| | | | | | | | | | - Dietmar J Manstein
- From the Institute for Biophysical Chemistry and .,the Division for Structural Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
17
|
Li S, Li F, Sun Z, Zhang X, Xiang J. Differentially proteomic analysis of the Chinese shrimp at WSSV latent and acute infection stages by iTRAQ approach. FISH & SHELLFISH IMMUNOLOGY 2016; 54:629-638. [PMID: 27192146 DOI: 10.1016/j.fsi.2016.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 06/05/2023]
Abstract
As the direct executors of biological function, the expression level of proteins will reveal the molecular mechanisms regulating WSSV acute infection more directly. In the present study, the iTRAQ approach was applied to identifying differentially expressed proteins in Chinese shrimp during WSSV latent infection and acute infection. A total of 4051 unique peptides corresponding to 1286 proteins were identified. 118 unique proteins showed differential up-regulation and 122 proteins were down-regulated in shrimp during WSSV acute infection compared with those in WSSV latent infection stage. A number of proteins related to actin-myosin cytoskeleton process, including myosin, actin, tubulin, clathrin, and tropomyosin were found up-regulated in shrimp at WSSV AI stage, indicating that the phagocytosis process was involved in WSSV AI stage. The apoptosis process in shrimp during WSSV AI seemed to be inhibited because some proteins suppressive on apoptosis were up-regulated, such as ALG-2 interacting protein x, Hsp90, 14-3-3-like protein, peroxiredoxin 5, peroxiredoxin 6 and adenine nucleotide translocase 2. Association analysis between the proteomic data and the previous transcriptome data was performed. Quantitative real-time PCR and western blot were carried out to verify the reliability of the proteomics data. The present study provided a comprehensive view of molecular mechanisms regulating WSSV acute infection at the protein level.
Collapse
Affiliation(s)
- Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, China.
| | - Zheng Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| |
Collapse
|
18
|
Brzeska H, Koech H, Pridham KJ, Korn ED, Titus MA. Selective localization of myosin-I proteins in macropinosomes and actin waves. Cytoskeleton (Hoboken) 2016; 73:68-82. [PMID: 26801966 DOI: 10.1002/cm.21275] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/20/2016] [Accepted: 01/20/2016] [Indexed: 01/19/2023]
Abstract
Class I myosins are widely expressed with roles in endocytosis and cell migration in a variety of cell types. Dictyostelium express multiple myosin Is, including three short-tailed (Myo1A, Myo1E, Myo1F) and three long-tailed (Myo1B, Myo1C, Myo1D). Here we report the molecular basis of the specific localizations of short-tailed Myo1A, Myo1E, and Myo1F compared to our previously determined localization of long-tailed Myo1B. Myo1A and Myo1B have common and unique localizations consistent with the various features of their tail region; specifically the BH sites in their tails are required for their association with the plasma membrane and heads are sufficient for relocalization to the front of polarized cells. Myo1A does not localize to actin waves and macropinocytic protrusions, in agreement with the absence of a tail region which is required for these localizations of Myo1B. However, in spite of the overall similarity of their domain structures, the cellular distributions of Myo1E and Myo1F are quite different from Myo1A. Myo1E and Myo1F, but not Myo1A, are associated with macropinocytic cups and actin waves. The localizations of Myo1E and Myo1F in macropinocytic structures and actin waves differ from the localization of Myo1B. Myo1B colocalizes with F-actin in the actin waves and at the tips of mature macropinocytic cups whereas Myo1E and Myo1F are in the interior of actin waves and along the entire surface of macropinocytic cups. Our results point to different mechanisms of targeting of short- and long-tailed myosin Is, and are consistent with these myosins having both shared and divergent cellular functions.
Collapse
Affiliation(s)
- Hanna Brzeska
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Hilary Koech
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Kevin J Pridham
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Edward D Korn
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Margaret A Titus
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
19
|
Heissler SM, Sellers JR. Various Themes of Myosin Regulation. J Mol Biol 2016; 428:1927-46. [PMID: 26827725 DOI: 10.1016/j.jmb.2016.01.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 10/24/2022]
Abstract
Members of the myosin superfamily are actin-based molecular motors that are indispensable for cellular homeostasis. The vast functional and structural diversity of myosins accounts for the variety and complexity of the underlying allosteric regulatory mechanisms that determine the activation or inhibition of myosin motor activity and enable precise timing and spatial aspects of myosin function at the cellular level. This review focuses on the molecular basis of posttranslational regulation of eukaryotic myosins from different classes across species by allosteric intrinsic and extrinsic effectors. First, we highlight the impact of heavy and light chain phosphorylation. Second, we outline intramolecular regulatory mechanisms such as autoinhibition and subsequent activation. Third, we discuss diverse extramolecular allosteric mechanisms ranging from actin-linked regulatory mechanisms to myosin:cargo interactions. At last, we briefly outline the allosteric regulation of myosins with synthetic compounds.
Collapse
Affiliation(s)
- Sarah M Heissler
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Drive, B50/3529, Bethesda, MD 20892-8015, USA.
| | - James R Sellers
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Drive, B50/3529, Bethesda, MD 20892-8015, USA
| |
Collapse
|
20
|
Diensthuber RP, Tominaga M, Preller M, Hartmann FK, Orii H, Chizhov I, Oiwa K, Tsiavaliaris G. Kinetic mechanism of Nicotiana tabacum myosin-11 defines a new type of a processive motor. FASEB J 2015; 29:81-94. [PMID: 25326536 DOI: 10.1096/fj.14-254763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The 175-kDa myosin-11 from Nicotiana tabacum (Nt(175kDa)myosin-11) is exceptional in its mechanical activity as it is the fastest known processive actin-based motor, moving 10 times faster than the structurally related class 5 myosins. Although this ability might be essential for long-range organelle transport within larger plant cells, the kinetic features underlying the fast processive movement of Nt(175kDa)myosin-11 still remain unexplored. To address this, we generated a single-headed motor domain construct and carried out a detailed kinetic analysis. The data demonstrate that Nt(175kDa)myosin-11 is a high duty ratio motor, which remains associated with actin most of its enzymatic cycle. However, different from other processive myosins that establish a high duty ratio on the basis of a rate-limiting ADP-release step, Nt(175kDa)myosin-11 achieves a high duty ratio by a prolonged duration of the ATP-induced isomerization of the actin-bound states and ADP release kinetics, both of which in terms of the corresponding time constants approach the total ATPase cycle time. Molecular modeling predicts that variations in the charge distribution of the actin binding interface might contribute to the thermodynamic fine-tuning of the kinetics of this myosin. Our study unravels a new type of a high duty ratio motor and provides important insights into the molecular mechanism of processive movement of higher plant myosins.
Collapse
Affiliation(s)
- Ralph P Diensthuber
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Motoki Tominaga
- Live Cell Molecular Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan; Science and Technology Agency, PRESTO, Saitama, Japan
| | - Matthias Preller
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany; Centre for Structural Systems Biology, German Electron Synchrotron (DESY), Hamburg, Germany
| | - Falk K Hartmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Hidefumi Orii
- Graduate School of Life Science, University of Hyogo, Hyogo, Japan; and
| | - Igor Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Kazuhiro Oiwa
- Graduate School of Life Science, University of Hyogo, Hyogo, Japan; and Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe, Japan
| | | |
Collapse
|
21
|
Bojovschi A, Liu MS, Sadus RJ. Mg²⁺ coordinating dynamics in Mg:ATP fueled motor proteins. J Chem Phys 2014; 140:115102. [PMID: 24655204 DOI: 10.1063/1.4867898] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The coordination of Mg(2+) with the triphosphate group of adenosine triphosphate (ATP) in motor proteins is investigated using data mining and molecular dynamics. The possible coordination structures available from crystal data for actin, myosin, RNA polymerase, DNA polymerase, DNA helicase, and F1-ATPase are verified and investigated further by molecular dynamics. Coordination states are evaluated using structural analysis and quantified by radial distribution functions, coordination numbers, and pair interaction energy calculations. The results reveal a diverse range of both transitory and stable coordination arrangements between Mg(2+) and ATP. The two most stable coordinating states occur when Mg(2+) coordinates two or three oxygens from the triphosphate group of ATP. Evidence for five-site coordination is also reported involving water in addition to the triphosphate group. The stable states correspond to a pair interaction energy of either ∼-2750 kJ/mol or -3500 kJ/mol. The role of water molecules in the hydration shell surrounding Mg(2+) is also reported.
Collapse
Affiliation(s)
- A Bojovschi
- Centre for Molecular Simulation, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Ming S Liu
- Centre for Molecular Simulation, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Richard J Sadus
- Centre for Molecular Simulation, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
22
|
Liburd J, Chitayat S, Crawley SW, Munro K, Miller E, Denis CM, Spencer HL, Côté GP, Smith SP. Structure of the small Dictyostelium discoideum myosin light chain MlcB provides insights into MyoB IQ motif recognition. J Biol Chem 2014; 289:17030-42. [PMID: 24790102 DOI: 10.1074/jbc.m113.536532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dictyostelium discoideum MyoB is a class I myosin involved in the formation and retraction of membrane projections, cortical tension generation, membrane recycling, and phagosome maturation. The MyoB-specific, single-lobe EF-hand light chain MlcB binds the sole IQ motif of MyoB with submicromolar affinity in the absence and presence of Ca(2+). However, the structural features of this novel myosin light chain and its interaction with its cognate IQ motif remain uncharacterized. Here, we describe the NMR-derived solution structure of apoMlcB, which displays a globular four-helix bundle. Helix 1 adopts a unique orientation when compared with the apo states of the EF-hand calcium-binding proteins calmodulin, S100B, and calbindin D9k. NMR-based chemical shift perturbation mapping identified a hydrophobic MyoB IQ binding surface that involves amino acid residues in helices I and IV and the functional N-terminal Ca(2+) binding loop, a site that appears to be maintained when MlcB adopts the holo state. Complementary mutagenesis and binding studies indicated that residues Ile-701, Phe-705, and Trp-708 of the MyoB IQ motif are critical for recognition of MlcB, which together allowed the generation of a structural model of the apoMlcB-MyoB IQ complex. We conclude that the mode of IQ motif recognition by the novel single-lobe MlcB differs considerably from that of stereotypical bilobal light chains such as calmodulin.
Collapse
Affiliation(s)
- Janine Liburd
- From the Department of Biomedical and Molecular Sciences and
| | - Seth Chitayat
- From the Department of Biomedical and Molecular Sciences and
| | - Scott W Crawley
- From the Department of Biomedical and Molecular Sciences and
| | - Kim Munro
- the Protein Function Discovery Group, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Emily Miller
- From the Department of Biomedical and Molecular Sciences and
| | - Chris M Denis
- From the Department of Biomedical and Molecular Sciences and
| | - Holly L Spencer
- From the Department of Biomedical and Molecular Sciences and
| | - Graham P Côté
- From the Department of Biomedical and Molecular Sciences and the Protein Function Discovery Group, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Steven P Smith
- From the Department of Biomedical and Molecular Sciences and the Protein Function Discovery Group, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
23
|
Yang Y, de la Roche M, Crawley SW, Li Z, Furmaniak-Kazmierczak E, Côté GP. PakB binds to the SH3 domain of Dictyostelium Abp1 and regulates its effects on cell polarity and early development. Mol Biol Cell 2013; 24:2216-27. [PMID: 23699396 PMCID: PMC3708727 DOI: 10.1091/mbc.e12-12-0883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dictyostelium p21-activated kinase B (PakB) phosphorylates and activates class I myosins. PakB colocalizes with myosin I to actin-rich regions of the cell, including macropinocytic and phagocytic cups and the leading edge of migrating cells. Here we show that residues 1-180 mediate the cellular localization of PakB. Yeast two-hybrid and pull-down experiments identify two proline-rich motifs in PakB-1-180 that directly interact with the SH3 domain of Dictyostelium actin-binding protein 1 (dAbp1). dAbp1 colocalizes with PakB to actin-rich regions in the cell. The loss of dAbp1 does not affect the cellular distribution of PakB, whereas the loss of PakB causes dAbp1 to adopt a diffuse cytosolic distribution. Cosedimentation studies show that the N-terminal region of PakB (residues 1-70) binds directly to actin filaments, whereas dAbp1 exhibits only a low affinity for filamentous actin. PakB-1-180 significantly enhances the binding of dAbp1 to actin filaments. When overexpressed in PakB-null cells, dAbp1 completely blocks early development at the aggregation stage, prevents cell polarization, and significantly reduces chemotaxis rates. The inhibitory effects are abrogated by the introduction of a function-blocking mutation into the dAbp1 SH3 domain. We conclude that PakB plays a critical role in regulating the cellular functions of dAbp1, which are mediated largely by its SH3 domain.
Collapse
Affiliation(s)
- Yidai Yang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Greenberg MJ, Ostap EM. Regulation and control of myosin-I by the motor and light chain-binding domains. Trends Cell Biol 2012. [PMID: 23200340 DOI: 10.1016/j.tcb.2012.10.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Members of the myosin-I family of molecular motors are expressed in many eukaryotes, where they are involved in a multitude of critical processes. Humans express eight distinct members of the myosin-I family, making it the second largest family of myosins expressed in humans. Despite the high degree of sequence conservation in the motor and light chain-binding domains (LCBDs) of these myosins, recent studies have revealed surprising diversity of function and regulation arising from isoform-specific differences in these domains. Here we review the regulation of myosin-I function and localization by the motor and LCBDs.
Collapse
Affiliation(s)
- Michael J Greenberg
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | | |
Collapse
|
25
|
Behrmann E, Müller M, Penczek PA, Mannherz HG, Manstein DJ, Raunser S. Structure of the rigor actin-tropomyosin-myosin complex. Cell 2012; 150:327-38. [PMID: 22817895 DOI: 10.1016/j.cell.2012.05.037] [Citation(s) in RCA: 276] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/13/2012] [Accepted: 05/20/2012] [Indexed: 01/13/2023]
Abstract
Regulation of myosin and filamentous actin interaction by tropomyosin is a central feature of contractile events in muscle and nonmuscle cells. However, little is known about molecular interactions within the complex and the trajectory of tropomyosin movement between its "open" and "closed" positions on the actin filament. Here, we report the 8 Å resolution structure of the rigor (nucleotide-free) actin-tropomyosin-myosin complex determined by cryo-electron microscopy. The pseudoatomic model of the complex, obtained from fitting crystal structures into the map, defines the large interface involving two adjacent actin monomers and one tropomyosin pseudorepeat per myosin contact. Severe forms of hereditary myopathies are linked to mutations that critically perturb this interface. Myosin binding results in a 23 Å shift of tropomyosin along actin. Complex domain motions occur in myosin, but not in actin. Based on our results, we propose a structural model for the tropomyosin-dependent modulation of myosin binding to actin.
Collapse
Affiliation(s)
- Elmar Behrmann
- Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Two independent switches regulate cytoplasmic dynein's processivity and directionality. Proc Natl Acad Sci U S A 2012; 109:5289-93. [PMID: 22411823 DOI: 10.1073/pnas.1116315109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cytoplasmic dynein is a microtubule-based molecular motor that participates in a multitude of cell activities, from cell division to organelle transport. Unlike kinesin and myosin, where different tasks are performed by highly specialized members of these superfamilies, a single form of the dynein heavy chain is utilized for different functions. This versatility demands an extensive regulation of motor function. Using an improved application of an optical trap, we were now able to demonstrate that cytoplasmic dynein can generate a discrete power stroke as well as a processive walk in either direction; i.e., towards the plus- or towards the minus-end of a microtubule. Thus, dynein's motor functions can be described by four basic modes of motion: processive and nonprocessive movement, and movement in the forward and reverse directions. Importantly, these four modes of movement can be controlled by two switches. One switch, based on phosphate, determines the directionality of movement. The second switch, depending on magnesium, converts cytoplasmic dynein from a nonprocessive to a processive motor. The two switches can be triggered separately or jointly by changing concentrations of phosphate and magnesium in the local environment. The control of four modes of movement by two switches has major implications for our understanding of the cellular functions and regulation of cytoplasmic dynein. Based on recent studies of dynein's structure we are able to draw new conclusions on cytoplasmic dynein's stepping mechanism.
Collapse
|
27
|
Chen CL, Wang Y, Sesaki H, Iijima M. Myosin I links PIP3 signaling to remodeling of the actin cytoskeleton in chemotaxis. Sci Signal 2012; 5:ra10. [PMID: 22296834 DOI: 10.1126/scisignal.2002446] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Class I myosins participate in various interactions between the cell membrane and the cytoskeleton. Several class I myosins preferentially bind to acidic phospholipids, such as phosphatidylserine and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], through a tail homology 1 (TH1) domain. Here, we show that the second messenger lipid phosphatidylinositol 3,4,5-trisphosphate (PIP3) binds to the TH1 domain of a subset of Dictyostelium class I myosins (ID, IE, and IF) and recruits them to the plasma membrane. The PIP3-regulated membrane recruitment of myosin I promoted chemotaxis and induced chemoattractant-stimulated actin polymerization. Similarly, PIP3 recruited human myosin IF to the plasma membrane upon chemotactic stimulation in a neutrophil cell line. These data suggest a mechanism through which the PIP3 signal is transmitted through myosin I to the actin cytoskeleton.
Collapse
Affiliation(s)
- Chun-Lin Chen
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
28
|
Bloemink MJ, Geeves MA. Shaking the myosin family tree: biochemical kinetics defines four types of myosin motor. Semin Cell Dev Biol 2011; 22:961-7. [PMID: 22001381 DOI: 10.1016/j.semcdb.2011.09.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 09/29/2011] [Indexed: 12/12/2022]
Abstract
Although all myosin motors follow the same basic cross-bridge cycle, they display a large variety in the rates of transition between different states in the cycle, allowing each myosin to be finely tuned for a specific task. Traditionally, myosins have been classified by sequence analysis into a large number of sub-families (∼35). Here we use a different method to classify the myosin family members which is based on biochemical and mechanical properties. The key properties that define the type of mechanical activity of the motor are duty ratio (defined as the fraction of the time myosin remains attached to actin during each cycle), thermodynamic coupling of actin and nucleotide binding to myosin and the degree of strain-sensitivity of the ADP release step. Based on these properties we propose to classify myosins into four different groups: (I) fast movers, (II) slow/efficient force holders, (III) strain sensors and (IV) gates.
Collapse
|
29
|
Crawley SW, Liburd J, Shaw K, Jung Y, Smith SP, Côté GP. Identification of calmodulin and MlcC as light chains for Dictyostelium myosin-I isozymes. Biochemistry 2011; 50:6579-88. [PMID: 21671662 DOI: 10.1021/bi2007178] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dictyostelium discoideum express seven single-headed myosin-I isozymes (MyoA-MyoE and MyoK) that drive motile processes at the cell membrane. The light chains for MyoA and MyoE were identified by expressing Flag-tagged constructs consisting of the motor domain and the two IQ motifs in the neck region in Dictyostelium. The MyoA and MyoE constructs both copurified with calmodulin. Isothermal titration calorimetry (ITC) showed that apo-calmodulin bound to peptides corresponding to the MyoA and MyoE IQ motifs with micromolar affinity. In the presence of calcium, calmodulin cross-linked two IQ motif peptides, with one domain binding with nanomolar affinity and the other with micromolar affinity. The IQ motifs were required for the actin-activated MgATPase activity of MyoA but not MyoE; however, neither myosin exhibited calcium-dependent activity. A Flag-tagged construct consisting of the MyoC motor domain and the three IQ motifs in the adjacent neck region bound a novel 8.6 kDa two EF-hand protein named MlcC, for myosin light chain for MyoC. MlcC is most similar to the C-terminal domain of calmodulin but does not bind calcium. ITC studies showed that MlcC binds IQ1 and IQ2 but not IQ3 of MyoC. IQ3 contains a proline residue that may render it nonfunctional. Each long-tailed Dictyostelium myosin-I has now been shown to have a unique light chain (MyoB-MlcB, MyoC-MlcC, and MyoD-MlcD), whereas the short-tailed myosins-I, MyoA and MyoE, have the multifunctional calmodulin as a light chain. The diversity in light chain composition is likely to contribute to the distinct cellular functions of each myosin-I isozyme.
Collapse
Affiliation(s)
- Scott W Crawley
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | | | |
Collapse
|
30
|
Rump A, Scholz T, Thiel C, Hartmann FK, Uta P, Hinrichs MH, Taft MH, Tsiavaliaris G. Myosin-1C associates with microtubules and stabilizes the mitotic spindle during cell division. J Cell Sci 2011; 124:2521-8. [PMID: 21712373 DOI: 10.1242/jcs.084335] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The mitotic spindle in eukaryotic cells is composed of a bipolar array of microtubules (MTs) and associated proteins that are required during mitosis for the correct partitioning of the two sets of chromosomes to the daughter cells. In addition to the well-established functions of MT-associated proteins (MAPs) and MT-based motors in cell division, there is increasing evidence that the F-actin-based myosin motors are important mediators of F-actin-MT interactions during mitosis. Here, we report the functional characterization of the long-tailed class-1 myosin myosin-1C from Dictyostelium discoideum during mitosis. Our data reveal that myosin-1C binds to MTs and has a role in maintenance of spindle stability for accurate chromosome separation. Both myosin-1C motor function and tail-domain-mediated MT-F-actin interactions are required for the cell-cycle-dependent relocalization of the protein from the cell periphery to the spindle. We show that the association of myosin-1C with MTs is mediated through the tail domain. The myosin-1C tail can inhibit kinesin motor activity, increase the stability of MTs, and form crosslinks between MTs and F-actin. These data illustrate that myosin-1C is involved in the regulation of MT function during mitosis in D. discoideum.
Collapse
Affiliation(s)
- Agrani Rump
- Laboratory for Cellular Biophysics, Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Heissler SM, Manstein DJ. Functional characterization of the human myosin-7a motor domain. Cell Mol Life Sci 2011; 69:299-311. [PMID: 21687988 PMCID: PMC3249170 DOI: 10.1007/s00018-011-0749-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 05/30/2011] [Accepted: 06/01/2011] [Indexed: 11/26/2022]
Abstract
Myosin-7a participates in auditory and visual processes. Defects in MYO7A, the gene encoding the myosin-7a heavy chain, are causative for Usher syndrome 1B, the most frequent cause of deaf-blindness in humans. In the present study, we performed a detailed kinetic and functional characterization of the isolated human myosin-7a motor domain to elucidate the details of chemomechanical coupling and the regulation of motor function. A rate-limiting, slow ADP release step causes long lifetimes of strong actin-binding intermediates and results in a high duty ratio. Moreover, our results reveal a Mg2+-sensitive regulatory mechanism tuning the kinetic and mechanical properties of the myosin-7a motor domain. We obtained direct evidence that changes in the concentration of free Mg2+ ions affect the motor properties of human myosin-7a using an in vitro motility assay system. Our results suggest that in a cellular environment, compartment-specific fluctuations in free Mg2+ ions can mediate the conditional switching of myosin-7a between cargo moving and tension bearing modes.
Collapse
Affiliation(s)
- Sarah M. Heissler
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dietmar J. Manstein
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
32
|
Chinthalapudi K, Taft MH, Martin R, Heissler SM, Preller M, Hartmann FK, Brandstaetter H, Kendrick-Jones J, Tsiavaliaris G, Gutzeit HO, Fedorov R, Buss F, Knölker HJ, Coluccio LM, Manstein DJ. Mechanism and specificity of pentachloropseudilin-mediated inhibition of myosin motor activity. J Biol Chem 2011; 286:29700-8. [PMID: 21680745 PMCID: PMC3191011 DOI: 10.1074/jbc.m111.239210] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here, we report that the natural compound pentachloropseudilin (PClP) acts as a reversible and allosteric inhibitor of myosin ATPase and motor activity. IC(50) values are in the range from 1 to 5 μm for mammalian class-1 myosins and greater than 90 μm for class-2 and class-5 myosins, and no inhibition was observed with class-6 and class-7 myosins. We show that in mammalian cells, PClP selectively inhibits myosin-1c function. To elucidate the structural basis for PClP-induced allosteric coupling and isoform-specific differences in the inhibitory potency of the compound, we used a multifaceted approach combining direct functional, crystallographic, and in silico modeling studies. Our results indicate that allosteric inhibition by PClP is mediated by the combined effects of global changes in protein dynamics and direct communication between the catalytic and allosteric sites via a cascade of small conformational changes along a conserved communication pathway.
Collapse
|
33
|
Heissler SM, Manstein DJ. Comparative kinetic and functional characterization of the motor domains of human nonmuscle myosin-2C isoforms. J Biol Chem 2011; 286:21191-202. [PMID: 21478157 PMCID: PMC3122181 DOI: 10.1074/jbc.m110.212290] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Nonmuscle myosins are widely distributed and play important roles in the maintenance of cell morphology and cytokinesis. In this study, we compare the detailed kinetic and functional characterization of naturally occurring transcript variants of the motor domain of human nonmuscle myosin heavy chain (NMHC)-2C. NMHC-2C is alternatively spliced both in loop-1 and loop-2. Isoform 2C0 contains no inserts in either of the loops and represents the shortest isoform. An 8-amino acid extension in the loop-1 region is present in isoforms 2C1 and 2C1C2. Isoform 2C1C2 additionally displays a 33-amino acid extension in the loop-2 region. Transient kinetic experiments indicate increased rate constants for F-actin binding by isoform 2C1C2 in the absence and presence of nucleotide, which can be attributed to the loop-2 extension. ADP binding shows only minor differences for the three transcript variants. In contrast, larger differences are observed for the rates of ADP release both in the absence and presence of F-actin. The largest differences are observed between isoforms 2C0 and 2C1C2. In the absence and presence of F-actin, isoform 2C1C2 displays a 5–7-fold increase in ADP affinity. Moreover, our results indicate that the ADP release kinetics of all three isoforms are modulated by changes in the concentration of free Mg2+ ions. The greatest responsiveness of the NMHC-2C isoforms is observed in the physiological range from 0.2 to 1.5 mm free Mg2+ ions, affecting their duty ratio, velocity, and tension-bearing properties.
Collapse
Affiliation(s)
- Sarah M Heissler
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | | |
Collapse
|
34
|
Nagy NT, Sakamoto T, Takács B, Gyimesi M, Hazai E, Bikádi Z, Sellers JR, Kovács M. Functional adaptation of the switch-2 nucleotide sensor enables rapid processive translocation by myosin-5. FASEB J 2010; 24:4480-90. [PMID: 20631329 DOI: 10.1096/fj.10-163998] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Active site loops that are conserved across superfamilies of myosins, kinesins, and G proteins play key roles in allosteric coupling of NTP hydrolysis to interaction with track filaments or effector proteins. In this study, we investigated how the class-specific natural variation in the switch-2 active site loop contributes to the motor function of the intracellular transporter myosin-5. We used single-molecule, rapid kinetic and spectroscopic experiments and semiempirical quantum chemical simulations to show that the class-specific switch-2 structure including a tyrosine (Y439) in myosin-5 enables rapid processive translocation along actin filaments by facilitating Mg(2+)-dependent ADP release. Using wild-type control and Y439 point mutant myosin-5 proteins, we demonstrate that the translocation speed precisely correlates with the kinetics of nucleotide exchange. Switch-2 variants can thus be used to fine-tune translocation speed while maintaining high processivity. The class-specific variation of switch-2 in various NTPase superfamilies indicates its general role in the kinetic tuning of Mg(2+)-dependent nucleotide exchange.
Collapse
Affiliation(s)
- Nikolett T Nagy
- Department of Biochemistry, Eötvös University, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Dieckmann R, von Heyden Y, Kistler C, Gopaldass N, Hausherr S, Crawley SW, Schwarz EC, Diensthuber RP, Côté GP, Tsiavaliaris G, Soldati T. A myosin IK-Abp1-PakB circuit acts as a switch to regulate phagocytosis efficiency. Mol Biol Cell 2010; 21:1505-18. [PMID: 20200225 PMCID: PMC2861610 DOI: 10.1091/mbc.e09-06-0485] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Actin dynamics and myosin (Myo) contractile forces are necessary for formation and closure of the phagocytic cup. In Dictyostelium, the actin-binding protein Abp1 and myosin IK are enriched in the closing cup and especially at an actin-dense constriction furrow formed around the neck of engulfed budded yeasts. This phagocytic furrow consists of concentric overlapping rings of MyoK, Abp1, Arp3, coronin, and myosin II, following an order strikingly reminiscent of the overall organization of the lamellipodium of migrating cells. Mutation analyses of MyoK revealed that both a C-terminal farnesylation membrane anchor and a Gly-Pro-Arg domain that interacts with profilin and Abp1 were necessary for proper localization in the furrow and efficient phagocytosis. Consequently, we measured the binding affinities of these interactions and unraveled further interactions with profilins, dynamin A, and PakB. Due to the redundancy of the interaction network, we hypothesize that MyoK and Abp1 are restricted to regulatory roles and might affect the dynamic of cup progression. Indeed, phagocytic uptake was regulated antagonistically by MyoK and Abp1. MyoK is phosphorylated by PakB and positively regulates phagocytosis, whereas binding of Abp1 negatively regulates PakB and MyoK. We conclude that a MyoK-Abp1-PakB circuit acts as a switch regulating phagocytosis efficiency of large particles.
Collapse
Affiliation(s)
- Régis Dieckmann
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, CH-1211-Genève-4, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
All cell functions that involve membrane deformation or a change in cell shape (e.g., endocytosis, exocytosis, cell motility, and cytokinesis) are regulated by membrane tension. While molecular contacts between the plasma membrane and the underlying actin cytoskeleton are known to make significant contributions to membrane tension, little is known about the molecules that mediate these interactions. We used an optical trap to directly probe the molecular determinants of membrane tension in isolated organelles and in living cells. Here, we show that class I myosins, a family of membrane-binding, actin-based motor proteins, mediate membrane/cytoskeleton adhesion and thus, make major contributions to membrane tension. These studies show that class I myosins directly control the mechanical properties of the cell membrane; they also position these motor proteins as master regulators of cellular events involving membrane deformation.
Collapse
|
37
|
Taft MH, Hartmann FK, Rump A, Keller H, Chizhov I, Manstein DJ, Tsiavaliaris G. Dictyostelium myosin-5b is a conditional processive motor. J Biol Chem 2008; 283:26902-10. [PMID: 18650439 DOI: 10.1074/jbc.m802957200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Dictyostelium myosin-5b is the gene product of myoJ and one of two closely related myosin-5 isoenzymes produced in Dictyostelium discoideum. Here we report a detailed investigation of the kinetic and functional properties of the protein. In standard assay buffer conditions, Dictyostelium myosin-5b displays high actin affinity in the presence of ADP, fast ATP hydrolysis, and a high steady-state ATPase activity in the presence of actin that is rate limited by ADP release. These properties are typical for a processive motor that can move over long distances along actin filaments without dissociating. Our results show that a physiological decrease in the concentration of free Mg(2+)-ions leads to an increased rate of ADP release and shortening of the fraction of time the motor spends in the strong actin binding states. Consistently, the ability of the motor to efficiently translocate actin filaments at very low surface densities decreases with decreasing concentrations of free Mg(2+)-ions. In addition, we provide evidence that the observed changes in Dd myosin-5b motor activity are of physiological relevance and propose a mechanism by which this molecular motor can switch between processive and non-processive movement.
Collapse
Affiliation(s)
- Manuel H Taft
- Institute for Biophysical Chemistry, OE 4350, Hannover Medical School, Feodor-Lynen-Str. 5, D-30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Endocytosis and the Actin Cytoskeleton in Dictyostelium discoideum. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:343-97. [DOI: 10.1016/s1937-6448(08)00633-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Phagocytosis and host-pathogen interactions in Dictyostelium with a look at macrophages. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 271:253-300. [PMID: 19081545 DOI: 10.1016/s1937-6448(08)01206-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Research into phagocytosis and host-pathogen interactions in the lower eukaryote Dictyostelium discoideum has flourished in recent years. This chapter presents a glimpse of where this research stands, with emphasis on the cell biology of the phagocytic process and on the wealth of molecular genetic data that have been gathered. The basic mechanistic machinery and most of the underlying genes appear to be evolutionarily conserved, reflecting the fact that phagocytosis arose as an efficient way to ingest food in single protozoan cells devoid of a rigid cell wall. In spite of some differences, the signal transduction pathways regulating phagosome biogenesis are also emerging as ultimately similar between Dictyostelium and macrophages. Both cell types are hosts for many pathogenic invasive bacteria, which exploit phagocytosis to grow intracellularly. We present an overwiew, based on the analysis of mutants, on how Dictyostelium contributes as a genetic model system to decipher the complexity of host-pathogen interactions.
Collapse
|
40
|
Tsiavaliaris G, Fujita-Becker S, Dürrwang U, Diensthuber RP, Geeves MA, Manstein DJ. Mechanism, regulation, and functional properties of Dictyostelium myosin-1B. J Biol Chem 2007; 283:4520-7. [PMID: 18089562 DOI: 10.1074/jbc.m708113200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin-1B is one of three long tailed class-1 myosins containing an ATP-insensitive actin-binding site in the tail region that are produced in Dictyostelium discoideum. Myosin-1B localizes to actin-rich structures at the leading edge of migrating cells where it has been implicated in the formation and retraction of membrane projections, the recycling of plasma membrane components, and intracellular particle transport. Here, we have used a combination of molecular engineering approaches to describe the kinetic and motile properties of the myosin-1B motor and its regulation by TEDS site phosphorylation. Our results show that myosin-1B is a low duty ratio motor and displays the fastest nucleotide binding kinetics of any of the Dictyostelium class-1 myosins studied so far. Different from Dictyostelium myosin-1D and myosin-1E, dephosphorylated myosin-1B is not inactivated but moves actin filaments efficiently, albeit at an up to 8-fold slower velocity in the in vitro motility assay. A further difference is that myosin-1B lacks the ability to switch between rapid movement and bearing tension upon physiological changes of free Mg2+ ions. In this respect, its motor properties appear to be more closely related to Dictyostelium myosin-2 and rabbit skeletal muscle myosin.
Collapse
Affiliation(s)
- Georgios Tsiavaliaris
- Institute for Biophysical Chemistry, OE 4350, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30623 Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Early in evolution, the diversification of membrane-bound compartments that characterize eukaryotic cells was accompanied by the elaboration of molecular machineries that mediate intercompartmental communication and deliver materials to specific destinations. Molecular motors that move on tracks of actin filaments or microtubules mediate the movement of organelles and transport between compartments. The subjects of this review are the motors that power the transport steps along the endocytic and recycling pathways, their modes of attachment to cargo and their regulation.
Collapse
Affiliation(s)
- Thierry Soldati
- Départment de Biochimie, Faculté des Sciences, Université de Genève, 30 quai Ernest Ansermet, Sciences II, CH-1211-Genève-4, Switzerland.
| | | |
Collapse
|
42
|
Lewis JH, Lin T, Hokanson DE, Ostap EM. Temperature dependence of nucleotide association and kinetic characterization of myo1b. Biochemistry 2006; 45:11589-97. [PMID: 16981718 PMCID: PMC2517419 DOI: 10.1021/bi0611917] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Myo1b is a widely expressed myosin-I isoform that concentrates on endosomal and ruffling membranes and is thought to play roles in membrane trafficking and dynamics. It is one of the best characterized myosin-I isoforms and appears to have unique biochemical properties tuned for tension sensing or tension maintenance. We determined the key biochemical rate constants that define the actomyo1b ATPase cycle at 37 degrees C and measured the temperature dependence of ATP binding, ADP release, and the transition from a nucleotide-inaccessible state to a nucleotide-accessible state (k(alpha)). The rate of ATP binding is highly temperature sensitive, with an Arrhenius activation energy 2-3-fold greater than other characterized myosins (e.g., myosin-II and myosin-V). ATP hydrolysis is fast, and phosphate release is slow and rate limiting with an actin dependence that is nearly identical to the steady-state ATPase parameters (Vmax and K(ATPase)). ADP release is not as temperature dependent as ATP binding. The rates and temperature dependence of ADP release are similar to k(alpha) suggesting that a similar structural change is responsible for both transitions. We calculate a duty ratio of 0.08 based on the biochemical kinetics. However, this duty ratio is likely to be highly sensitive to strain.
Collapse
Affiliation(s)
| | | | | | - E. Michael Ostap
- Corresponding author: E. Michael Ostap, Department of Physiology, University of Pennsylvania School of Medicine, B400 Richards Building, Philadelphia, PA 19104-6085, Phone: 215-573-9758, Fax: 215-573-1171,
| |
Collapse
|