1
|
Nguyen TTM, Gillet G, Popgeorgiev N. Caspases in the Developing Central Nervous System: Apoptosis and Beyond. Front Cell Dev Biol 2021; 9:702404. [PMID: 34336853 PMCID: PMC8322698 DOI: 10.3389/fcell.2021.702404] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
The caspase family of cysteine proteases represents the executioners of programmed cell death (PCD) type I or apoptosis. For years, caspases have been known for their critical roles in shaping embryonic structures, including the development of the central nervous system (CNS). Interestingly, recent findings have suggested that aside from their roles in eliminating unnecessary neural cells, caspases are also implicated in other neurodevelopmental processes such as axon guidance, synapse formation, axon pruning, and synaptic functions. These results raise the question as to how neurons regulate this decision-making, leading either to cell death or to proper development and differentiation. This review highlights current knowledge on apoptotic and non-apoptotic functions of caspases in the developing CNS. We also discuss the molecular factors involved in the regulation of caspase-mediated roles, emphasizing the mitochondrial pathway of cell death.
Collapse
Affiliation(s)
- Trang Thi Minh Nguyen
- Centre de Recherche en Cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| | - Germain Gillet
- Centre de Recherche en Cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France.,Hospices Civils de Lyon, Laboratoire d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Nikolay Popgeorgiev
- Centre de Recherche en Cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
2
|
Rapisarda V, Malashchuk I, Asamaowei IE, Poterlowicz K, Fessing MY, Sharov AA, Karakesisoglou I, Botchkarev VA, Mardaryev A. p63 Transcription Factor Regulates Nuclear Shape and Expression of Nuclear Envelope-Associated Genes in Epidermal Keratinocytes. J Invest Dermatol 2017; 137:2157-2167. [PMID: 28595999 PMCID: PMC5610935 DOI: 10.1016/j.jid.2017.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/20/2017] [Accepted: 05/01/2017] [Indexed: 01/07/2023]
Abstract
The maintenance of a proper nuclear architecture and three-dimensional organization of the genes, enhancer elements, and transcription machinery plays an essential role in tissue development and regeneration. Here we show that in the developing skin, epidermal progenitor cells of mice lacking p63 transcription factor display alterations in the nuclear shape accompanied by a marked decrease in expression of several nuclear envelope-associated components (Lamin B1, Lamin A/C, Sun1, Nesprin-3, Plectin) compared with controls. Furthermore, chromatin immunoprecipitation-quantitative PCR assay showed enrichment of p63 on Sun1, Syne3, and Plec promoters, suggesting them as p63 targets. Alterations in the nuclei shape and expression of nuclear envelope-associated proteins were accompanied by altered distribution patterns of the repressive histone marks trimethylation on lysine 27 of histone H3, trimethylation on lysine 9 of histone H3, and heterochromatin protein 1-alpha in p63-null keratinocytes. These changes were also accompanied by downregulation of the transcriptional activity and relocation of the keratinocyte-specific gene loci away from the sites of active transcription toward the heterochromatin-enriched repressive nuclear compartments in p63-null cells. These data demonstrate functional links between the nuclear envelope organization, chromatin architecture, and gene expression in keratinocytes and suggest nuclear envelope-associated genes as important targets mediating p63-regulated gene expression program in the epidermis.
Collapse
Key Words
- cc, chromocenter
- chip-qpcr, chromatin immunoprecipitation-quantitative pcr
- h3k9me3, trimethylation on lysine 9 of histone h3
- h3k27me3, trimethylation on lysine 27 of histone h3
- ktyi, keratin type i
- ktyii, keratin type ii
- pmk, primary mouse keratinocyte
- if, intermediate filament
- nm, nuclear membrane
- ne, nuclear envelope
- wt, wild-type
Collapse
Affiliation(s)
| | - Igor Malashchuk
- Centre for Skin Sciences, University of Bradford, Bradford, UK
| | | | | | | | - Andrey A Sharov
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Vladimir A Botchkarev
- Centre for Skin Sciences, University of Bradford, Bradford, UK; Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA.
| | | |
Collapse
|
3
|
Nuclear deformability and telomere dynamics are regulated by cell geometric constraints. Proc Natl Acad Sci U S A 2015; 113:E32-40. [PMID: 26699462 DOI: 10.1073/pnas.1513189113] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Forces generated by the cytoskeleton can be transmitted to the nucleus and chromatin via physical links on the nuclear envelope and the lamin meshwork. Although the role of these active forces in modulating prestressed nuclear morphology has been well studied, the effect on nuclear and chromatin dynamics remains to be explored. To understand the regulation of nuclear deformability by these active forces, we created different cytoskeletal states in mouse fibroblasts using micropatterned substrates. We observed that constrained and isotropic cells, which lack long actin stress fibers, have more deformable nuclei than elongated and polarized cells. This nuclear deformability altered in response to actin, myosin, formin perturbations, or a transcriptional down-regulation of lamin A/C levels in the constrained and isotropic geometry. Furthermore, to probe the effect of active cytoskeletal forces on chromatin dynamics, we tracked the spatiotemporal dynamics of heterochromatin foci and telomeres. We observed increased dynamics and decreased correlation of the heterochromatin foci and telomere trajectories in constrained and isotropic cell geometry. The observed enhanced dynamics upon treatment with actin depolymerizing reagents in elongated and polarized geometry were regained once the reagent was washed off, suggesting an inherent structural memory in chromatin organization. We conclude that active forces from the cytoskeleton and rigidity from lamin A/C nucleoskeleton can together regulate nuclear and chromatin dynamics. Because chromatin remodeling is a necessary step in transcription control and its memory, genome integrity, and cellular deformability during migration, our results highlight the importance of cell geometric constraints as critical regulators in cell behavior.
Collapse
|
4
|
Wood AM, Danielsen JMR, Lucas CA, Rice EL, Scalzo D, Shimi T, Goldman RD, Smith ED, Le Beau MM, Kosak ST. TRF2 and lamin A/C interact to facilitate the functional organization of chromosome ends. Nat Commun 2014; 5:5467. [PMID: 25399868 PMCID: PMC4235626 DOI: 10.1038/ncomms6467] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 10/03/2014] [Indexed: 12/28/2022] Open
Abstract
Telomeres protect the ends of linear genomes, and the gradual loss of telomeres is associated with cellular ageing. Telomere protection involves the insertion of the 3' overhang facilitated by telomere repeat-binding factor 2 (TRF2) into telomeric DNA, forming t-loops. We present evidence suggesting that t-loops can also form at interstitial telomeric sequences in a TRF2-dependent manner, forming an interstitial t-loop (ITL). We demonstrate that TRF2 association with interstitial telomeric sequences is stabilized by co-localization with A-type lamins (lamin A/C). We also find that lamin A/C interacts with TRF2 and that reduction in levels of lamin A/C or mutations in LMNA that cause an autosomal dominant premature ageing disorder--Hutchinson Gilford Progeria Syndrome (HGPS)-lead to reduced ITL formation and telomere loss. We propose that cellular and organismal ageing are intertwined through the effects of the interaction between TRF2 and lamin A/C on chromosome structure.
Collapse
Affiliation(s)
- Ashley M. Wood
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | - Catherine A. Lucas
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Ellen L. Rice
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - David Scalzo
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Takeshi Shimi
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Robert D. Goldman
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Erica D. Smith
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Michelle M. Le Beau
- Section of Hematology/Oncology, Department of Medicine and Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois 60637, USA
| | - Steven T. Kosak
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
5
|
A Novel Feed-Forward Loop between ARIH2 E3-Ligase and PABPN1 Regulates Aging-Associated Muscle Degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1119-1131. [DOI: 10.1016/j.ajpath.2013.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/13/2013] [Accepted: 12/02/2013] [Indexed: 11/15/2022]
|
6
|
Anvar SY, Raz Y, Verway N, van der Sluijs B, Venema A, Goeman JJ, Vissing J, van der Maarel SM, 't Hoen PAC, van Engelen BGM, Raz V. A decline in PABPN1 induces progressive muscle weakness in oculopharyngeal muscle dystrophy and in muscle aging. Aging (Albany NY) 2013; 5:412-26. [PMID: 23793615 PMCID: PMC3824410 DOI: 10.18632/aging.100567] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is caused by trinucleotide repeat expansion mutations in Poly(A) binding protein 1 (PABPN1). PABPN1 is a regulator of mRNA stability and is ubiquitously expressed. Here we investigated how symptoms in OPMD initiate only at midlife and why a subset of skeletal muscles is predominantly affected. Genome-wide RNA expression profiles from Vastus lateralis muscles human carriers of expanded-PABPN1 at pre-symptomatic and symptomatic stages were compared with healthy controls. Major expression changes were found to be associated with age rather than with expression of expanded-PABPN1, instead transcriptomes of OPMD and elderly muscles were significantly similar (P<0.05). Using k-means clustering we identified age-dependent trends in both OPMD and controls, but trends were often accelerated in OPMD. We report an age-regulated decline in PABPN1 levels in Vastus lateralis muscles from the fifth decade. In concurrence with severe muscle degeneration in OPMD, the decline in PABPN1 accelerated in OPMD and was specific to skeletal muscles. Reduced PABPN1 levels (30% to 60%) in muscle cells induced myogenic defects and morphological signatures of cellular aging in proportion to PABPN1 expression levels. We suggest that PABPN1 levels regulate muscle cell aging and OPMD represents an accelerated muscle aging disorder.
Collapse
Affiliation(s)
- Seyed Yahya Anvar
- Center for Human and Clinical Genetics, Leiden University Medical Center, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sethman CR, Hawiger J. The innate immunity adaptor SARM translocates to the nucleus to stabilize lamins and prevent DNA fragmentation in response to pro-apoptotic signaling. PLoS One 2013; 8:e70994. [PMID: 23923041 PMCID: PMC3726548 DOI: 10.1371/journal.pone.0070994] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/02/2013] [Indexed: 02/06/2023] Open
Abstract
Sterile alpha and armadillo-motif containing protein (SARM), a highly conserved and structurally unique member of the MyD88 family of Toll-like receptor adaptors, plays an important role in innate immunity signaling and apoptosis. Its exact mechanism of intracellular action remains unclear. Apoptosis is an ancient and ubiquitous process of programmed cell death that results in disruption of the nuclear lamina and, ultimately, dismantling of the nucleus. In addition to supporting the nuclear membrane, lamins serve important roles in chromatin organization, epigenetic regulation, transcription, nuclear transport, and mitosis. Mutations and other damage that destabilize nuclear lamins (laminopathies) underlie a number of intractable human diseases. Here, we report that SARM translocates to the nucleus of human embryonic kidney cells by using its amino-terminal Armadillo repeat region. Within the nucleus, SARM forms a previously unreported lattice akin to the nuclear lamina scaffold. Moreover, we show that SARM protects lamins from apoptotic degradation and reduces internucleosomal DNA fragmentation in response to signaling induced by the proinflammatory cytokine Tumor Necrosis Factor alpha. These findings indicate an important link between the innate immunity adaptor SARM and stabilization of nuclear lamins during inflammation-driven apoptosis in human cells.
Collapse
Affiliation(s)
- Chad R. Sethman
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jacek Hawiger
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
8
|
Quantification of the Spatial Organization of the Nuclear Lamina as a Tool for Cell Classification. ISRN MOLECULAR BIOLOGY 2013; 2013:374385. [PMID: 27335676 PMCID: PMC4890873 DOI: 10.1155/2013/374385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/01/2013] [Indexed: 11/23/2022]
Abstract
The nuclear lamina is the structural scaffold of the nuclear envelope that plays multiple regulatory roles in chromatin organization and gene expression as well as a structural role in nuclear stability. The lamina proteins, also referred to as lamins, determine nuclear lamina organization and define the nuclear shape and the structural integrity of the cell nucleus. In addition, lamins are connected with both nuclear and cytoplasmic structures forming a dynamic cellular structure whose shape changes upon external and internal signals. When bound to the nuclear lamina, the lamins are mobile, have an impact on the nuclear envelop structure, and may induce changes in their regulatory functions. Changes in the nuclear lamina shape cause changes in cellular functions. A quantitative description of these structural changes could provide an unbiased description of changes in cellular function. In this review, we describe how changes in the nuclear lamina can be measured from three-dimensional images of lamins at the nuclear envelope, and we discuss how structural changes of the nuclear lamina can be used for cell classification.
Collapse
|
9
|
Palaoro LA, Rocher AE, Canessa OE, Peressini S, Rosales M, Del Río AG, Mendeluk G. Epididymal mitochondrial status of hypothyroid rats examined by transmission electron microscopy. Biotech Histochem 2012; 88:138-44. [DOI: 10.3109/10520295.2012.741712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
10
|
de Klerk E, Venema A, Anvar SY, Goeman JJ, Hu O, Trollet C, Dickson G, den Dunnen JT, van der Maarel SM, Raz V, 't Hoen PAC. Poly(A) binding protein nuclear 1 levels affect alternative polyadenylation. Nucleic Acids Res 2012; 40:9089-101. [PMID: 22772983 PMCID: PMC3467053 DOI: 10.1093/nar/gks655] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The choice for a polyadenylation site determines the length of the 3′-untranslated region (3′-UTRs) of an mRNA. Inclusion or exclusion of regulatory sequences in the 3′-UTR may ultimately affect gene expression levels. Poly(A) binding protein nuclear 1 (PABPN1) is involved in polyadenylation of pre-mRNAs. An alanine repeat expansion in PABPN1 (exp-PABPN1) causes oculopharyngeal muscular dystrophy (OPMD). We hypothesized that previously observed disturbed gene expression patterns in OPMD muscles may have been the result of an effect of PABPN1 on alternative polyadenylation, influencing mRNA stability, localization and translation. A single molecule polyadenylation site sequencing method was developed to explore polyadenylation site usage on a genome-wide level in mice overexpressing exp-PABPN1. We identified 2012 transcripts with altered polyadenylation site usage. In the far majority, more proximal alternative polyadenylation sites were used, resulting in shorter 3′-UTRs. 3′-UTR shortening was generally associated with increased expression. Similar changes in polyadenylation site usage were observed after knockdown or overexpression of expanded but not wild-type PABPN1 in cultured myogenic cells. Our data indicate that PABPN1 is important for polyadenylation site selection and that reduced availability of functional PABPN1 in OPMD muscles results in use of alternative polyadenylation sites, leading to large-scale deregulation of gene expression.
Collapse
Affiliation(s)
- Eleonora de Klerk
- Center for Human and Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Righolt CH, van 't Hoff MLR, Vermolen BJ, Young IT, Raz V. Robust nuclear lamina-based cell classification of aging and senescent cells. Aging (Albany NY) 2012; 3:1192-201. [PMID: 22199022 PMCID: PMC3273899 DOI: 10.18632/aging.100414] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Changes in the shape of the nuclear lamina are exhibited in senescent cells, as well as in cells expressing mutations in lamina genes. To identify cells with defects in the nuclear lamina we developed an imaging method that quantifies the intensity and curvature of the nuclear lamina. We show that this method accurately describes changes in the nuclear lamina. Spatial changes in nuclear lamina coincide with redistribution of lamin A proteins and local reduction in protein mobility in senescent cell. We suggest that local accumulation of lamin A in the nuclear envelope leads to bending of the structure. A quantitative distinction of the nuclear lamina shape in cell populations was found between fresh and senescent cells, and between primary myoblasts from young and old donors. Moreover, with this method mutations in lamina genes were significantly distinct from cells with wild-type genes. We suggest that this method can be applied to identify abnormal cells during aging, in in vitro propagation, and in lamina disorders.
Collapse
|
12
|
Raz V, Abraham T, van Zwet EW, Dirks RW, Tanke HJ, van der Maarel SM. Reversible aggregation of PABPN1 pre-inclusion structures. Nucleus 2012; 2:208-18. [PMID: 21818414 DOI: 10.4161/nucl.2.3.15736] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/08/2011] [Accepted: 04/05/2011] [Indexed: 11/19/2022] Open
Abstract
Increased aggregation of misfolded proteins is associated with aging, and characterizes a number of neurodegenerative disorders caused by homopolymeric amino acid expansion mutations. PABPN1 is an aggregation-prone nuclear protein. Natural aggregation of wild-type (WT) PABPN1 is not known to be disease-associated, but alanine-expanded PABPN1 (expPABPN1) accumulates in insoluble intranuclear inclusions in muscle of patients with oculopharyngeal muscular dystrophy (OPMD). We applied microscopic image quantification to study PABPN1 aggregation process in living cells. We identified transitional pre-inclusion foci and demonstrate that these structures significantly differ between WT- and expPABPN1-expressing cells, while inclusions of these proteins are indistinguishable. In addition to the immobile PABPN1 in inclusions, in the nucleoplasm of expPABPN1 expressing cells we also found a fraction of immobile proteins, representing pre-aggregated species. We found that pre-aggregated and pre-inclusion structures are reverted by a PABPN1 specific affinity binder while inclusion structures are not. Together our results demonstrate that the aggregation process of WT- and expPABPN1 differs in steps preceding inclusion formation, suggesting that pre-aggregated protein species could represent the cytotoxic structures.
Collapse
Affiliation(s)
- Vered Raz
- Department of Human Genetics, Leiden University Medical Centre, The Netherlands.
| | | | | | | | | | | |
Collapse
|
13
|
Telomeres and the nucleus. Semin Cancer Biol 2012; 23:116-24. [PMID: 22330096 DOI: 10.1016/j.semcancer.2012.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/01/2012] [Accepted: 02/02/2012] [Indexed: 01/08/2023]
Abstract
Telomeres are crucial for the maintenance of genome stability through "capping" of chromosome ends to prevent their recognition as double-strand breaks, thus avoiding end-to-end fusions or illegitimate recombination [1-3]. Similar to other genomic regions, telomeres participate to the nuclear architecture while being highly mobile. The interaction of telomeres with nuclear domains or compartments greatly differs not only between organisms but also between cells within the same organism. It is also expected that biological processes like replication, repair or telomere elongation impact the distribution of chromosome extremities within the nucleus, as they probably do with other regions of the genome. Pathological processes such as cancer induce profound changes in the nuclear architecture, which also affects telomere dynamics and spatial organization. Here we will expose our present knowledge on the relationship between telomeres and nuclear architecture and on how this relationship is affected by normal or abnormal telomere metabolisms.
Collapse
|
14
|
Abstract
This chapter focuses on the three-dimensional organization of the nucleus in normal, early genomically unstable, and tumor cells. A cause-consequence relationship is discussed between nuclear alterations and the resulting genomic rearrangements. Examples are presented from studies on conditional Myc deregulation, experimental tumorigenesis in mouse plasmacytoma, nuclear remodeling in Hodgkin's lymphoma, and in adult glioblastoma. A model of nuclear remodeling is proposed for cancer progression in multiple myeloma. Current models of nuclear remodeling are described, including our model of altered nuclear architecture and the onset of genomic instability.
Collapse
|
15
|
Modeling oculopharyngeal muscular dystrophy in myotube cultures reveals reduced accumulation of soluble mutant PABPN1 protein. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1988-2000. [PMID: 21854744 DOI: 10.1016/j.ajpath.2011.06.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/07/2011] [Accepted: 06/21/2011] [Indexed: 12/17/2022]
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is an autosomal dominant disease caused by an alanine tract expansion mutation in poly(A) binding protein nuclear 1 (expPABPN1). To model OPMD in a myogenic and physiological context, we generated mouse myoblast cell clones stably expressing either human wild type (WT) or expPABPN1 at low levels. Transgene expression is induced on myotube differentiation and results in formation of insoluble nuclear PABPN1 aggregates that are similar to those observed in patients with OPMD. Quantitative analysis of PABPN1 in myotube cultures revealed that expPABPN1 accumulation and aggregation is greater than that of the WT protein. We found that aggregation of expPABPN1 is more affected than WT PABPN1 by inhibition of proteasome activity. Consistent with this, in myotube cultures expressing expPABPN1, deregulation of the proteasome was identified as the most significantly perturbed pathway. Differences in the accumulation of soluble WT and expPABPN1 were consistent with differences in ubiquitination and rate of protein turnover. This study demonstrates, for the first time to our knowledge, that, in myotubes, the ratio of soluble/insoluble expPABPN1 is significantly lower compared with that of the WT protein. We suggest that this difference can contribute to muscle weakness in OPMD.
Collapse
|
16
|
Anvar SY, 't Hoen PA, Venema A, van der Sluijs B, van Engelen B, Snoeck M, Vissing J, Trollet C, Dickson G, Chartier A, Simonelig M, van Ommen GJB, van der Maarel SM, Raz V. Deregulation of the ubiquitin-proteasome system is the predominant molecular pathology in OPMD animal models and patients. Skelet Muscle 2011; 1:15. [PMID: 21798095 PMCID: PMC3156638 DOI: 10.1186/2044-5040-1-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 04/04/2011] [Indexed: 01/07/2023] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset progressive muscle disorder caused by a poly-alanine expansion mutation in the Poly(A) Binding Protein Nuclear 1 (PABPN1). The molecular mechanisms that regulate disease onset and progression are largely unknown. In order to identify molecular pathways that are consistently associated with OPMD, we performed an integrated high-throughput transcriptome study in affected muscles of OPMD animal models and patients. The ubiquitin-proteasome system (UPS) was found to be the most consistently and significantly OPMD-deregulated pathway across species. We could correlate the association of the UPS OPMD-deregulated genes with stages of disease progression. The expression trend of a subset of these genes is age-associated and therefore, marks the late onset of the disease, and a second group with expression trends relating to disease-progression. We demonstrate a correlation between expression trends and entrapment into PABPN1 insoluble aggregates of OPMD-deregulated E3 ligases. We also show that manipulations of proteasome and immunoproteasome activity specifically affect the accumulation and aggregation of mutant PABPN1. We suggest that the natural decrease in proteasome expression and its activity during muscle aging contributes to the onset of the disease.
Collapse
Affiliation(s)
- Seyed Yahya Anvar
- Center for Human and Clinical Genetics, Leiden University Medical Center, P,O, Box 9600, 2300 RC Leiden, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
De Vylder J, De Vos WH, Manders EM, Philips W. 2D mapping of strongly deformable cell nuclei-based on contour matching. Cytometry A 2011; 79:580-8. [DOI: 10.1002/cyto.a.21055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/12/2011] [Accepted: 03/01/2011] [Indexed: 11/12/2022]
|
18
|
Abstract
One of the many debated topics in ageing research is whether progeroid syndromes are really accelerated forms of human ageing. The answer requires a better understanding of the normal ageing process and the molecular pathology underlying these rare diseases. Exciting recent findings regarding a severe human progeria, Hutchinson-Gilford progeria syndrome, have implicated molecular changes that are also linked to normal ageing, such as genome instability, telomere attrition, premature senescence and defective stem cell homeostasis in disease development. These observations, coupled with genetic studies of longevity, lead to a hypothesis whereby progeria syndromes accelerate a subset of the pathological changes that together drive the normal ageing process.
Collapse
|
19
|
Molecular image analysis: quantitative description and classification of the nuclear lamina in human mesenchymal stem cells. INTERNATIONAL JOURNAL OF MOLECULAR IMAGING 2010; 2011:723283. [PMID: 21490732 PMCID: PMC3065845 DOI: 10.1155/2011/723283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 04/14/2010] [Accepted: 05/14/2010] [Indexed: 11/17/2022]
Abstract
The nuclear lamina is an intermediate filament network that provides a structural framework for the cell nucleus. Changes in lamina structure are found during changes in cell fate such as cell division or cell death and are associated with human diseases. An unbiased method that quantifies changes in lamina shape can provide information on cells undergoing changes in cellular functions. We have developed an image processing methodology that finds and quantifies the 3D structure of the nuclear lamina. We show that measurements on such images can be used for cell classification and provide information concerning protein spatial localization in this structure. To demonstrate the efficacy of this method, we compared the lamina of unmanipulated human mesenchymal stem cells (hMSCs) at passage 4 to cells activated for apoptosis. A statistically significant classification was found between the two populations.
Collapse
|
20
|
De Vos WH, Van Neste L, Dieriks B, Joss GH, Van Oostveldt P. High content image cytometry in the context of subnuclear organization. Cytometry A 2010; 77:64-75. [PMID: 19821512 DOI: 10.1002/cyto.a.20807] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The organization of proteins in space and time is essential to their function. To accurately quantify subcellular protein characteristics in a population of cells with regard for the stochasticity of events in a natural context, there is a fast-growing need for image-based cytometry. Simultaneously, the massive amount of data that is generated by image-cytometric analyses, calls for tools that enable pattern recognition and automated classification. In this article, we present a general approach for multivariate phenotypic profiling of individual cell nuclei and quantification of subnuclear spots using automated fluorescence mosaic microscopy, optimized image processing tools, and supervised classification. We demonstrate the efficiency of our analysis by determination of differential DNA damage repair patterns in response to genotoxic stress and radiation, and we show the potential of data mining in pinpointing specific phenotypes after transient transfection. The presented approach allowed for systematic analysis of subnuclear features in large image data sets and accurate classification of phenotypes at the level of the single cell. Consequently, this type of nuclear fingerprinting shows potential for high-throughput applications, such as functional protein assays or drug compound screening.
Collapse
Affiliation(s)
- W H De Vos
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium.
| | | | | | | | | |
Collapse
|
21
|
Mazumder A, Shivashankar GV. Emergence of a prestressed eukaryotic nucleus during cellular differentiation and development. J R Soc Interface 2010; 7 Suppl 3:S321-30. [PMID: 20356876 DOI: 10.1098/rsif.2010.0039.focus] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nuclear shape and size are emerging as mechanistic regulators of genome function. Yet, the coupling between chromatin assembly and various nuclear and cytoplasmic scaffolds is poorly understood. The present work explores the structural organization of a prestressed nucleus in a variety of cellular systems ranging from cells in culture to those in an organism. A combination of laser ablation and cellular perturbations was used to decipher the dynamic nature of the nucleo-cytoplasmic contacts. In primary mouse embryonic fibroblasts, ablation of heterochromatin nodes caused an anisotropic shrinkage of the nucleus. Depolymerization of actin and microtubules, and inhibition of myosin motors, resulted in the differential stresses that these cytoplasmic systems exert on the nucleus. The onset of nuclear prestress was then mapped in two contexts--first, in the differentiation of embryonic stem cells, where signatures of prestress appeared with differentiation; second, at an organism level, where nuclear or cytoplasmic laser ablations of cells in the early Drosophila embryo induced a collapse of the nucleus only after cellularization. We thus show that the interplay of physical connections bridging the nucleus with the cytoplasm governs the size and shape of a prestressed eukaryotic nucleus.
Collapse
Affiliation(s)
- Aprotim Mazumder
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
| | | |
Collapse
|
22
|
Raz V, Vermolen BJ, Garini Y, Onderwater JJM, Mommaas-Kienhuis MA, Koster AJ, Young IT, Tanke H, Dirks RW. The nuclear lamina promotes telomere aggregation and centromere peripheral localization during senescence of human mesenchymal stem cells. J Cell Sci 2009; 121:4018-28. [PMID: 19056671 DOI: 10.1242/jcs.034876] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ex vivo, human mesenchymal stem cells (hMSCs) undergo spontaneous cellular senescence after a limited number of cell divisions. Intranuclear structures of the nuclear lamina were formed in senescent hMSCs, which are identified by the presence of Hayflick-senescence-associated factors. Notably, spatial changes in lamina shape were observed before the Hayflick senescence-associated factors, suggesting that the lamina morphology can be used as an early marker to identify senescent cells. Here, we applied quantitative image-processing tools to study the changes in nuclear architecture during cell senescence. We found that centromeres and telomeres colocalised with lamina intranuclear structures, which resulted in a preferred peripheral distribution in senescent cells. In addition, telomere aggregates were progressively formed during cell senescence. Once formed, telomere aggregates showed colocalization with gamma-H2AX but not with TERT, suggesting that telomere aggregates are sites of DNA damage. We also show that telomere aggregation is associated with lamina intranuclear structures, and increased telomere binding to lamina proteins is found in cells expressing lamina mutants that lead to increases in lamina intranuclear structures. Moreover, three-dimensional image processing revealed spatial overlap between telomere aggregates and lamina intranuclear structures. Altogether, our data suggest a mechanical link between changes in lamina spatial organization and the formation of telomere aggregates during senescence of hMSCs, which can possibly contribute to changes in nuclear activity during cell senescence.
Collapse
Affiliation(s)
- Vered Raz
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Arnault E, Tosca L, Courtot AM, Doussau M, Pesty A, Finaz C, Allemand I, Lefèvre B. Caspase-2(L), caspase-9, and caspase-3 during in vitro maturation and fragmentation of the mouse oocyte. Dev Dyn 2009; 237:3892-903. [PMID: 19035350 DOI: 10.1002/dvdy.21793] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several studies have shown that apoptotic pathways control fragmentation of unfertilized ovulated oocyte, induced by doxorubicin. But very few have investigated the basis of this process, from prophase I to later stages. Our results revealed the presence of caspase-2(L), caspase-9, and caspase-3 in their zymogen and cleaved forms in the oocyte before meiosis resumption. Caspase-2(L) and caspase-9 were detected in the nucleus of GV-oocytes in a distribution related to chromatin configuration. The inhibition of caspase activity by Z-VAD-fmk accelerated the transition from metaphase I to metaphase II, and caspase-9 and caspase-3 were detected along the meiotic spindle. Surprisingly, Western blot analysis revealed that the three cleaved caspases were present in similar amounts in healthy and fragmented oocytes and caspase inhibition did not prevent doxorubicin-induced apoptosis. Our results suggest that, if cleaved, caspases may be dispensable for final oocyte death and they could be involved in regulating the maturation process.
Collapse
Affiliation(s)
- Emilie Arnault
- UMR-S 566, CEA, DSV/iRCM/SCSR/LGAG, INSERM, Université Denis Diderot-Paris 7, Université Paris-Sud, Fontenay aux Roses, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Vermolen BJ, Garini Y, Young IT, Dirks RW, Raz V. Segmentation and analysis of the three-dimensional redistribution of nuclear components in human mesenchymal stem cells. Cytometry A 2008; 73:816-24. [DOI: 10.1002/cyto.a.20612] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 2008; 22:832-53. [PMID: 18381888 PMCID: PMC2732390 DOI: 10.1101/gad.1652708] [Citation(s) in RCA: 735] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past few years it has become evident that the intermediate filament proteins, the types A and B nuclear lamins, not only provide a structural framework for the nucleus, but are also essential for many aspects of normal nuclear function. Insights into lamin-related functions have been derived from studies of the remarkably large number of disease-causing mutations in the human lamin A gene. This review provides an up-to-date overview of the functions of nuclear lamins, emphasizing their roles in epigenetics, chromatin organization, DNA replication, transcription, and DNA repair. In addition, we discuss recent evidence supporting the importance of lamins in viral infections.
Collapse
Affiliation(s)
- Thomas Dechat
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Katrin Pfleghaar
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Kaushik Sengupta
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Takeshi Shimi
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Dale K. Shumaker
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Liliana Solimando
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Robert D. Goldman
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| |
Collapse
|
26
|
Marceau N, Schutte B, Gilbert S, Loranger A, Henfling MER, Broers JLV, Mathew J, Ramaekers FCS. Dual roles of intermediate filaments in apoptosis. Exp Cell Res 2007; 313:2265-81. [PMID: 17498695 DOI: 10.1016/j.yexcr.2007.03.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/05/2007] [Accepted: 03/12/2007] [Indexed: 02/06/2023]
Abstract
New roles have emerged recently for intermediate filaments (IFs), namely in modulating cell adhesion and growth, and providing resistance to various forms of stress and to apoptosis. In this context, we first summarize findings on the IF association with the cell response to mechanical stress and growth stimulation, in light of growth-related signaling events that are relevant to death-receptor engagement. We then address the molecular mechanisms by which IFs can provide cell resistance to apoptosis initiated by death-receptor stimulation and to necrosis triggered by excessive oxidative stress. In the same way, we examine IF involvement, along with cytolinker participation, in sequential caspase-mediated protein cleavages that are part of the overall cell death execution, particularly those that generate new functional IF protein fragments and uncover neoantigen markers. Finally, we report on the usefulness of these markers as diagnostic tools for disease-related aspects of apoptosis in humans. Clearly, the data accumulated in recent years provide new and significant insights into the multiple functions of IFs, particularly their dual roles in cell response to apoptotic insults.
Collapse
Affiliation(s)
- Normand Marceau
- Centre de recherche en cancérologie de l'Université Laval and L'Hôtel-Dieu de Québec (CHUQ), Québec, Canada G1R 2J6
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Hegele RA, Oshima J. Phenomics and lamins: From disease to therapy. Exp Cell Res 2007; 313:2134-43. [PMID: 17466974 DOI: 10.1016/j.yexcr.2007.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 03/19/2007] [Accepted: 03/22/2007] [Indexed: 11/19/2022]
Abstract
Systematic correlation of phenotype with genotype is a key goal of the emerging field of phenomics, which is expected to help define complex diseases. Careful evaluation of phenotype-genotype associations in monogenic disorders, such as laminopathies, might provide new hypotheses to be tested with molecular and cellular studies and might also suggest potential new intervention strategies. For instance, evaluation of the clinical features of carriers of mutant LMNA in kindreds with familial partial lipodystrophy suggests rational, staged intervention using established pharmaceutical agents to prevent cardiovascular complications not just for patients with lipodystrophy but by extension for patients with the common metabolic syndrome. Careful non-invasive imaging shows phenotypic differences between partial lipodystrophy due to mutant LMNA and not due to mutant LMNA. Furthermore, hierarchical cluster analysis detects systematic relationships between organ involvement in laminopathies and mutation position in the LMNA genomic sequence. However, sometimes the same LMNA mutation can underlie markedly different clinical phenotypes; cellular and molecular experiments can help to explain the mechanistic basis for such differences. Finally, promising novel treatment modalities for laminopathies, such as farnesyl transferase inhibition and gene-based therapies, might help not only to illuminate mechanisms that link genotype to phenotype, but also to provide hope for patients suffering with laminopathies, since these treatments are designed to modulate key early or proximal steps in the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Robert A Hegele
- Schulich School of Medicine and Dentistry, University of Western Ontario and Vascular Biology Research Group, Robarts Research Institute, London, Ontario, Canada N6A 5K8.
| | | |
Collapse
|