1
|
Kim JC, Hu W, Lee M, Bae GH, Park JY, Lee SY, Jeong YS, Park B, Park JS, Zabel BA, Bae YS, Bae YS. Sphingosylphosphorylcholine Promotes Th9 Cell Differentiation Through Regulation of Smad3, STAT5, and β-Catenin Pathways. Immune Netw 2024; 24:e45. [PMID: 39801737 PMCID: PMC11711130 DOI: 10.4110/in.2024.24.e45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/06/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
Sphingosylphosphorylcholine (SPC) is one of sphingomyelin-derived sphingolipids. SPC levels are increased in ascitic fluids of ovarian cancer patients and stratum corneum of atopic dermatitis (AD) patients. SPC has antitumor activity against several cancer cells by reducing proliferation and migration and increasing apoptosis in vitro. SPC can also cause scratching, potentially exacerbating symptoms of AD. However, the role of SPC in modulating immune responses, particularly in the differentiation of Th9 cells, which carry the most powerful antitumor activity among CD4+ T cells, has yet to be investigated. In this study, we found that SPC is another inducer of Th9 cell differentiation by replicating TGF-β. SPC upregulated Smad3, STAT5, and β-catenin signaling pathways. Increased Smad3 and STAT5 signaling pathways by SPC promoted the differentiation of Th9 cells and increased β-catenin signaling pathway resulted in a less-exhausted, memory-like phenotype of Th9 cells. Increased Smad3, STAT5 and β-catenin signaling pathways by SPC were mediated by increased mitochondrial ROS. These results suggest that SPC is an important endogenous inducer of Th9 cell differentiation and may be one of the targets for treating Th9-related diseases, and that enhancing Th9 differentiation by SPC may be helpful in adoptive T cell therapy for cancer treatment.
Collapse
Affiliation(s)
- Ji Cheol Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Wonseok Hu
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Mingyu Lee
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
| | - Geon Ho Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Ji Ye Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Suh Yeon Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Yu Sun Jeong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Byunghyun Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Joon Seong Park
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Brian A. Zabel
- Palo Alto Veterans Institute for Research (PAVIR), VA Palo Alto Health Care Systems (VAPAHCS), Palo Alto, CA 94304, USA
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
| |
Collapse
|
2
|
Gholami K, Deyhimfar R, Mirzaei A, Karimizadeh Z, Mashhadi R, Zahmatkesh P, Ghajar Azodian H, Aghamir SMK. Decellularized amniotic membrane hydrogel promotes mesenchymal stem cell differentiation into smooth muscle cells. FASEB J 2024; 38:e70004. [PMID: 39190010 DOI: 10.1096/fj.202302170rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/22/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Previous studies showed that the bladder extracellular matrix (B-ECM) could increase the differentiation efficiency of mesenchymal cells into smooth muscle cells (SMC). This study investigates the potential of human amniotic membrane-derived hydrogel (HAM-hydrogel) as an alternative to xenogeneic B-ECM for the myogenic differentiation of the rabbit adipose tissue-derived MSC (AD-MSC). Decellularized human amniotic membrane (HAM) and sheep urinary bladder (SUB) were utilized to create pre-gel solutions for hydrogel formation. Rabbit AD-MSCs were cultured on SUB-hydrogel or HAM-hydrogel-coated plates supplemented with differentiation media containing myogenic growth factors (PDGF-BB and TGF-β1). An uncoated plate served as the control. After 2 weeks, real-time qPCR, immunocytochemistry, flow cytometry, and western blot were employed to assess the expression of SMC-specific markers (MHC and α-SMA) at both protein and mRNA levels. Our decellularization protocol efficiently removed cell nuclei from the bladder and amniotic tissues, preserving key ECM components (collagen, mucopolysaccharides, and elastin) within the hydrogels. Compared to the control, the hydrogel-coated groups exhibited significantly upregulated expression of SMC markers (p ≤ .05). These findings suggest HAM-hydrogel as a promising xenogeneic-free alternative for bladder tissue engineering, potentially overcoming limitations associated with ethical concerns and contamination risks of xenogeneic materials.
Collapse
Affiliation(s)
- Keykavos Gholami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Roham Deyhimfar
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Stem Cells Technology and Tissue Regeneration, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Akram Mirzaei
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Karimizadeh
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahil Mashhadi
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Zahmatkesh
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
3
|
Wu JY, Yeager K, Tavakol DN, Morsink M, Wang B, Soni RK, Hung CT, Vunjak-Novakovic G. Directed differentiation of human iPSCs into mesenchymal lineages by optogenetic control of TGF-β signaling. Cell Rep 2023; 42:112509. [PMID: 37178118 PMCID: PMC10278972 DOI: 10.1016/j.celrep.2023.112509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/28/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
In tissue development and homeostasis, transforming growth factor (TGF)-β signaling is finely coordinated by latent forms and matrix sequestration. Optogenetics can offer precise and dynamic control of cell signaling. We report the development of an optogenetic human induced pluripotent stem cell system for TGF-β signaling and demonstrate its utility in directing differentiation into the smooth muscle, tenogenic, and chondrogenic lineages. Light-activated TGF-β signaling resulted in expression of differentiation markers at levels close to those in soluble factor-treated cultures, with minimal phototoxicity. In a cartilage-bone model, light-patterned TGF-β gradients allowed the establishment of hyaline-like layer of cartilage tissue at the articular surface while attenuating with depth to enable hypertrophic induction at the osteochondral interface. By selectively activating TGF-β signaling in co-cultures of light-responsive and non-responsive cells, undifferentiated and differentiated cells were simultaneously maintained in a single culture with shared medium. This platform can enable patient-specific and spatiotemporally precise studies of cellular decision making.
Collapse
Affiliation(s)
- Josephine Y Wu
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Keith Yeager
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | | | - Margaretha Morsink
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Bryan Wang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
4
|
Adipose-Derived Stem Cells in Reinforced Collagen Gel: A Comparison between Two Approaches to Differentiation towards Smooth Muscle Cells. Int J Mol Sci 2023; 24:ijms24065692. [PMID: 36982766 PMCID: PMC10058441 DOI: 10.3390/ijms24065692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
Scaffolds made of degradable polymers, such as collagen, polyesters or polysaccharides, are promising matrices for fabrication of bioartificial vascular grafts or patches. In this study, collagen isolated from porcine skin was processed into a gel, reinforced with collagen particles and with incorporated adipose tissue-derived stem cells (ASCs). The cell-material constructs were then incubated in a DMEM medium with 2% of FS (DMEM_part), with added polyvinylalcohol nanofibers (PVA_part sample), and for ASCs differentiation towards smooth muscle cells (SMCs), the medium was supplemented either with human platelet lysate released from PVA nanofibers (PVA_PL_part) or with TGF-β1 + BMP-4 (TGF + BMP_part). The constructs were further endothelialised with human umbilical vein endothelial cells (ECs). The immunofluorescence staining of alpha-actin and calponin, and von Willebrand factor, was performed. The proteins involved in cell differentiation, the extracellular matrix (ECM) proteins, and ECM remodelling proteins were evaluated by mass spectrometry on day 12 of culture. Mechanical properties of the gels with ASCs were measured via an unconfined compression test on day 5. Gels evinced limited planar shrinkage, but it was higher in endothelialised TGF + BMP_part gel. Both PVA_PL_part samples and TGF + BMP_part samples supported ASC growth and differentiation towards SMCs, but only PVA_PL_part supported homogeneous endothelialisation. Young modulus of elasticity increased in all samples compared to day 0, and PVA_PL_part gel evinced a slightly higher ratio of elastic energy. The results suggest that PVA_PL_part collagen construct has the highest potential to remodel into a functional vascular wall.
Collapse
|
5
|
Choe HM, Gao K, Paek HJ, Liu XY, Li ZY, Quan BH, Yin XJ. Silencing myostatin increases area fraction of smooth muscle in the corpus cavernosum of pigs. Anim Reprod Sci 2022; 247:107077. [DOI: 10.1016/j.anireprosci.2022.107077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 08/03/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
|
6
|
Park R, Yoon JW, Lee JH, Hong SW, Kim JH. Phenotypic change of mesenchymal stem cells into smooth muscle cells regulated by dynamic cell-surface interactions on patterned arrays of ultrathin graphene oxide substrates. J Nanobiotechnology 2022; 20:17. [PMID: 34983551 PMCID: PMC8725258 DOI: 10.1186/s12951-021-01225-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/23/2021] [Indexed: 01/13/2023] Open
Abstract
The topographical interface of the extracellular environment has been appreciated as a principal biophysical regulator for modulating cell functions, such as adhesion, migration, proliferation, and differentiation. Despite the existed approaches that use two-dimensional nanomaterials to provide beneficial effects, opportunities evaluating their impact on stem cells remain open to elicit unprecedented cellular responses. Herein, we report an ultrathin cell-culture platform with potential-responsive nanoscale biointerfaces for monitoring mesenchymal stem cells (MSCs). We designed an intriguing nanostructured array through self-assembly of graphene oxide sheets and subsequent lithographical patterning method to produce chemophysically defined regions. MSCs cultured on anisotropic micro/nanoscale patterned substrate were spontaneously organized in a highly ordered configuration mainly due to the cell-repellent interactions. Moreover, the spatially aligned MSCs were spontaneously differentiated into smooth muscle cells upon the specific crosstalk between cells. This work provides a robust strategy for directing stem cells and differentiation, which can be utilized as a potential cell culture platform to understand cell-substrate or cell-cell interactions, further developing tissue repair and stem cell-based therapies.
Collapse
Affiliation(s)
- Rowoon Park
- Department of Cogno-Mechatronics Engineering, Pusan National University, 46241, Busan, Republic of Korea
| | - Jung Won Yoon
- Department of Physiology, School of Medicine, Pusan National University, 50612, Yangsan, Republic of Korea
| | - Jin-Ho Lee
- Department of Biomedical Convergence Engineering, Pusan National University, 50612, Yangsan, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, Pusan National University, 46241, Busan, Republic of Korea.
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, 50612, Yangsan, Republic of Korea.
| |
Collapse
|
7
|
Walters B, Turner PA, Rolauffs B, Hart ML, Stegemann JP. Controlled Growth Factor Delivery and Cyclic Stretch Induces a Smooth Muscle Cell-like Phenotype in Adipose-Derived Stem Cells. Cells 2021; 10:cells10113123. [PMID: 34831345 PMCID: PMC8624888 DOI: 10.3390/cells10113123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023] Open
Abstract
Adipose-derived stem cells (ASCs) are an abundant and easily accessible multipotent stem cell source with potential application in smooth muscle regeneration strategies. In 3D collagen hydrogels, we investigated whether sustained release of growth factors (GF) PDGF-AB and TGF-β1 from GF-loaded microspheres could induce a smooth muscle cell (SMC) phenotype in ASCs, and if the addition of uniaxial cyclic stretch could enhance the differentiation level. This study demonstrated that the combination of cyclic stretch and GF release over time from loaded microspheres potentiated the differentiation of ASCs, as quantified by protein expression of early to late SMC differentiation markers (SMA, TGLN and smooth muscle MHC). The delivery of GFs via microspheres produced large ASCs with a spindle-shaped, elongated SMC-like morphology. Cyclic strain produced the largest, longest, and most spindle-shaped cells regardless of the presence or absence of growth factors or the growth factor delivery method. Protein expression and cell morphology data confirmed that the sustained release of GFs from GF-loaded microspheres can be used to promote the differentiation of ASCs into SMCs and that the addition of uniaxial cyclic stretch significantly enhances the differentiation level, as quantified by intermediate and late SMC markers and a SMC-like elongated cell morphology.
Collapse
Affiliation(s)
- Brandan Walters
- Department of Biomedical Engineering, University of Michigan, 1107 Carl A. Gerstacker Building, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA; (B.W.); (P.A.T.)
| | - Paul A. Turner
- Department of Biomedical Engineering, University of Michigan, 1107 Carl A. Gerstacker Building, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA; (B.W.); (P.A.T.)
| | - Bernd Rolauffs
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstraße 4, 79108 Freiburg, Germany;
| | - Melanie L. Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstraße 4, 79108 Freiburg, Germany;
- Correspondence: (M.L.H.); (J.P.S.); Tel.: +49-(761)-270-26102 (M.L.H.); +001-(734)-764-8313 (J.P.S.)
| | - Jan P. Stegemann
- Department of Biomedical Engineering, University of Michigan, 1107 Carl A. Gerstacker Building, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA; (B.W.); (P.A.T.)
- Correspondence: (M.L.H.); (J.P.S.); Tel.: +49-(761)-270-26102 (M.L.H.); +001-(734)-764-8313 (J.P.S.)
| |
Collapse
|
8
|
Jia W, Sharma D, He W, Xing Q, Zhao F. Preservation of microvascular integrity and immunomodulatory property of prevascularized human mesenchymal stem cell sheets. J Tissue Eng Regen Med 2021; 15:207-218. [PMID: 33432700 DOI: 10.1002/term.3167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/28/2020] [Accepted: 12/07/2020] [Indexed: 01/23/2023]
Abstract
Prevascularization is essential to ensure the viability, functionality, and successful integration of tissue-engineered three-dimensional (3D) constructs with surrounding host tissues after transplantation. Human mesenchymal stem cell (hMSC) sheet can be prevascularized by coculturing with endothelial cells (ECs), and then be further used as building blocks for engineering 3D complex tissues. In addition, predifferentiation of hMSCs into a tissue-specific lineage in vitro has been proven to promote graft engraftment and regeneration. However, it is unclear if the prevascularized hMSC sheets can still maintain their microvascular integrity as well as the immune-regulatory properties after their tissue-specific differentiation. The objective of this study was to investigate the effects of differentiation cues on the microvascular structure, angiogenic factor secretion, and immunogenic responses of prevascularized hMSC sheets. The results showed that upon coculturing with ECs, hMSC sheets successfully formed microvascular network, while maintaining hMSCs' multi-lineage differentiation capability. The next step, osteogenic and adipogenic induction, damaged the preformed microvascular structures and compromised the angiogenic factor secretion ability of hMSCs. Nonetheless, this effect was mitigated by adjusting the concentration of differentiation factors. The subcutaneous transplantation in an immunocompetent rat model demonstrated that the osteogenic differentiated prevascularized hMSC sheet preserved its microvascular structure and immunomodulatory properties comparable to the undifferentiated prevascularized hMSC sheets. This study suggested that a balanced and optimal differentiation condition can effectively promote the tissue-specific predifferentiation of prevascularized hMSC sheet while maintaining its immunomodulatory and tissue integration properties.
Collapse
Affiliation(s)
- Wenkai Jia
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Dhavan Sharma
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Weilue He
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, USA
| | - Qi Xing
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, USA
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, USA
| |
Collapse
|
9
|
Sun X, Zhu M, Chen X, Jiang X. MYH9 Inhibition Suppresses TGF-β1-Stimulated Lung Fibroblast-to-Myofibroblast Differentiation. Front Pharmacol 2021; 11:573524. [PMID: 33519439 PMCID: PMC7838063 DOI: 10.3389/fphar.2020.573524] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/05/2020] [Indexed: 12/04/2022] Open
Abstract
Previous cDNA microarray results showed that MYH9 gene expression levels are increased in TGF-β1-stimulated lung fibroblast. Recently, our proteomic results revealed that the expression levels of MYH9 protein are notably upregulated in lung tissues of bleomycin-treated rats. However, whether MYH9 plays a critical role in the differentiation of fibroblast remains unclear. Herein, we demonstrated that TGF-β1 increased MYH9 expression, and siRNA-mediated knockdown of MYH9 and pharmacological inhibition of MYH9 ATPase activity remarkably repressed TGF-β1-induced lung fibroblast-to-myofibroblast differentiation. TGF-β1-stimulated MYH9 induction might be via ALK5/Smad2/3 pathway but not through noncanonical pathways, including p38 mitogen-activated kinase, and Akt pathways in lung fibroblasts. Our results showed that MYH9 inhibition suppressed TGF-β1-induced lung fibroblast-to-myofibroblast differentiation, which provides valuable information for illuminating the pathological mechanisms of lung fibroblast differentiation, and gives clues for finding new potential target for pulmonary fibrosis treatment.
Collapse
Affiliation(s)
- Xionghua Sun
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Mei Zhu
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xihua Chen
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xiaogang Jiang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Yu L, Kim HJ, Park MK, Byun HJ, Kim EJ, Kim B, Nguyen MT, Kim JH, Kang GJ, Lee H, Kim SY, Rho SB, Lee CH. Ethacrynic acid, a loop diuretic, suppresses epithelial-mesenchymal transition of A549 lung cancer cells via blocking of NDP-induced WNT signaling. Biochem Pharmacol 2020; 183:114339. [PMID: 33189676 DOI: 10.1016/j.bcp.2020.114339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022]
Abstract
Lung cancer is one of the leading causes of death in cancer patients. Epithelial-mesenchymal transition (EMT) plays an important role in lung cancer progression. Therefore, for lung cancer treatment, it is crucial to find substances that inhibit EMT. Ethacrynic acid (ECA) is a diuretic that inhibits cellular ion flux and exerts anticancer effects. However, the effects of ECA on EMT in lung cancer remain unclear. We examined the effects of ECA on sphingosylphosphorylcholine (SPC) or TGF-β1-induced EMT process in A549 and H1299 cells via reverse transcription polymerase chain reaction and Western blotting. We found that ECA inhibited SPC-induced EMT and SPC-induced WNT signalling in EMT. We observed that SPC induces the expression of NDP [Norrie disease protein] and WNT-2, whereas ECA suppressed their expression. SPC-induced WNT activation, EMT, migration, and invasion were suppressed by NDP small-interfering RNA (siNDP), but NDP overexpression (pNDP) enhanced these events in A549 and H1299 cells. Accordingly, NDP expression may influence lung cancer prognosis. In summary, our results revealed that ECA inhibited SPC or TGF-β1-induced EMT in A549 and H1299 lung cancer cells by downregulating NDP expression and inhibiting WNT activation. Therefore, ECA might be a new drug candidate for lung cancer treatment.
Collapse
Affiliation(s)
- Lu Yu
- College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Hyun Ji Kim
- College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Mi Kyung Park
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Hyun Jung Byun
- College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Eun Ji Kim
- College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Boram Kim
- College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Minh Tuan Nguyen
- College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Ji Hyun Kim
- College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Gyeoung Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
| | - Ho Lee
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Soo Youl Kim
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Seung Bae Rho
- National Cancer Center, Goyang 10408, Republic of Korea.
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea.
| |
Collapse
|
11
|
Davaapil H, Shetty DK, Sinha S. Aortic "Disease-in-a-Dish": Mechanistic Insights and Drug Development Using iPSC-Based Disease Modeling. Front Cell Dev Biol 2020; 8:550504. [PMID: 33195187 PMCID: PMC7655792 DOI: 10.3389/fcell.2020.550504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022] Open
Abstract
Thoracic aortic diseases, whether sporadic or due to a genetic disorder such as Marfan syndrome, lack effective medical therapies, with limited translation of treatments that are highly successful in mouse models into the clinic. Patient-derived induced pluripotent stem cells (iPSCs) offer the opportunity to establish new human models of aortic diseases. Here we review the power and potential of these systems to identify cellular and molecular mechanisms underlying disease and discuss recent advances, such as gene editing, and smooth muscle cell embryonic lineage. In particular, we discuss the practical aspects of vascular smooth muscle cell derivation and characterization, and provide our personal insights into the challenges and limitations of this approach. Future applications, such as genotype-phenotype association, drug screening, and precision medicine are discussed. We propose that iPSC-derived aortic disease models could guide future clinical trials via “clinical-trials-in-a-dish”, thus paving the way for new and improved therapies for patients.
Collapse
Affiliation(s)
- Hongorzul Davaapil
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| | - Deeti K Shetty
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| |
Collapse
|
12
|
Zou ML, Liu SY, Sun ZL, Wu JJ, Yuan ZD, Teng YY, Feng Y, Yuan FL. Insights into the role of adipose-derived stem cells: Wound healing and clinical regenerative potential. J Cell Physiol 2020; 236:2290-2297. [PMID: 32830327 DOI: 10.1002/jcp.30019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/11/2020] [Indexed: 12/30/2022]
Abstract
The incidence of acute and chronic wound diseases is rising due to various reasons. With complicated pathogenesis, long course, difficult treatment and high disability, wound diseases have become a major burden for patients, their families, and society. Therefore, the focus of research is to identify new ideas and methods for treatment. Fat grafting has gained increased attention because of its effectiveness in wound treatment, and further analysis has uncovered that the stem cells derived from fat may be the main factor affecting wound healing. We summarize the function of adipose stem cells and analyze their possible mechanisms in tissue repair, helping to provide new ideas for the treatment of wound healing.
Collapse
Affiliation(s)
- Ming-Li Zou
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Si-Yu Liu
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Zi-Li Sun
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Jun-Jie Wu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Zheng-Dong Yuan
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Ying-Ying Teng
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yi Feng
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Department of Pharmacology, Medical School, Yangzhou University, Yangzhou, China
| | - Feng-Lai Yuan
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Department of Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu, China
| |
Collapse
|
13
|
Ni H, Zhao Y, Ji Y, Shen J, Xiang M, Xie Y. Adipose-derived stem cells contribute to cardiovascular remodeling. Aging (Albany NY) 2019; 11:11756-11769. [PMID: 31800397 PMCID: PMC6932876 DOI: 10.18632/aging.102491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/17/2019] [Indexed: 02/06/2023]
Abstract
Obesity is an independent risk factor for cardiovascular disease. Adipose tissue was initially thought to be involved in metabolism through paracrine. Recent researches discovered mesenchymal stem cells inside adipose tissue which could differentiate into vascular lineages in vitro and in vivo, participating vascular remodeling. However, there were few researches focusing on distinct characteristics and functions of adipose-derived stem cells (ADSCs) from different regions. This is the first comprehensive review demonstrating the variances of ADSCs from the perspective of their origins.
Collapse
Affiliation(s)
- Hui Ni
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiming Zhao
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongli Ji
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Shen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Allogeneic Versus Autologous Injectable Mesenchymal Stem Cells for Knee Osteoarthritis: Review and Current Status. Tech Orthop 2019. [DOI: 10.1097/bto.0000000000000357] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Role of Sphingosylphosphorylcholine in Tumor and Tumor Microenvironment. Cancers (Basel) 2019; 11:cancers11111696. [PMID: 31683697 PMCID: PMC6896196 DOI: 10.3390/cancers11111696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022] Open
Abstract
Sphingosylphosphorylcholine (SPC) is a unique type of lysosphingolipid found in some diseases, and has been studied in cardiovascular, neurological, and inflammatory phenomena. In particular, SPC’s studies on cancer have been conducted mainly in terms of effects on cancer cells, and relatively little consideration has been given to aspects of tumor microenvironment. This review summarizes the effects of SPC on cancer and tumor microenvironment, and presents the results and prospects of modulators that regulate the various actions of SPC.
Collapse
|
16
|
Burtenshaw D, Kitching M, Redmond EM, Megson IL, Cahill PA. Reactive Oxygen Species (ROS), Intimal Thickening, and Subclinical Atherosclerotic Disease. Front Cardiovasc Med 2019; 6:89. [PMID: 31428618 PMCID: PMC6688526 DOI: 10.3389/fcvm.2019.00089] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022] Open
Abstract
Arteriosclerosis causes significant morbidity and mortality worldwide. Central to this process is the development of subclinical non-atherosclerotic intimal lesions before the appearance of pathologic intimal thickening and advanced atherosclerotic plaques. Intimal thickening is associated with several risk factors, including oxidative stress due to reactive oxygen species (ROS), inflammatory cytokines and lipid. The main ROS producing systems in-vivo are reduced nicotinamide dinucleotide phosphate (NADPH) oxidase (NOX). ROS effects are context specific. Exogenous ROS induces apoptosis and senescence, whereas intracellular ROS promotes stem cell differentiation, proliferation, and migration. Lineage tracing studies using murine models of subclinical atherosclerosis have revealed the contributory role of medial smooth muscle cells (SMCs), resident vascular stem cells, circulating bone-marrow progenitors and endothelial cells that undergo endothelial-mesenchymal-transition (EndMT). This review will address the putative physiological and patho-physiological roles of ROS in controlling vascular cell fate and ROS contribution to vascular regeneration and disease progression.
Collapse
Affiliation(s)
- Denise Burtenshaw
- Vascular Biology & Therapeutics, School of Biotechnology, Dublin City University, Dublin, Ireland
| | | | - Eileen M Redmond
- Department of Surgery, University of Rochester, Rochester, NY, United States
| | - Ian L Megson
- Centre for Health Science, UHI Institute of Health Research and Innovation, Inverness, United Kingdom
| | - Paul A Cahill
- Vascular Biology & Therapeutics, School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
17
|
Lau S, Klingenberg M, Mrugalla A, Helms F, Sedding D, Haverich A, Wilhelmi M, Böer U. Biochemical Myogenic Differentiation of Adipogenic Stem Cells Is Donor Dependent and Requires Sound Characterization. Tissue Eng Part A 2019; 25:936-948. [PMID: 30648499 DOI: 10.1089/ten.tea.2018.0172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPACT STATEMENT We here showed that even under optimized conditions for biochemical differentiation of adipose-derived stem cells (with respect to a pronounced marker protein expression for a reasonable period of time) it was not possible to obtain functional smooth muscle cells from all donors. Moreover, an underestimated role may play the effect of the scaffold material on smooth muscle cell functionality. Both aspects are crucial for the successful tissue engineering of the vascular medial layer combining autologous cells with a suitable scaffold material and thus should be thoroughly addressed in each individualized therapeutic approach.
Collapse
Affiliation(s)
- Skadi Lau
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,2Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Melanie Klingenberg
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,2Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Anna Mrugalla
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Florian Helms
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Daniel Sedding
- 3Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,2Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Mathias Wilhelmi
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,2Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Ulrike Böer
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,2Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
18
|
Yamawaki H. A Novel Regulatory Mechanism for Differentiation of Mesenchymal Stem Cell: Redox State of DJ-1 Matters. Proteomics 2018; 18. [PMID: 29194978 DOI: 10.1002/pmic.201700345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Indexed: 11/06/2022]
Abstract
Reactive oxygen species (ROS) are multifunctional gas transmitters with diverse biological actions (adverse vs beneficial) dependent on their level. The differentiation of vascular stem cells into smooth muscle cells (SMCs) might be involved in the pathogenesis of cardiovascular disorders including hypertension and atherosclerosis. Therefore, controlling the differentiation of vascular stem cells is a potential strategy for the treatment of vascular diseases. Nonetheless, it remains to be revealed whether ROS could mediate the differentiation of mesenchymal stem cells (MSCs) into SMCs. In addition, there are no redox (reduction-oxidation)-sensitive molecules identified, which are responsible for the ROS-induced differentiation of MSCs. In article number 1700208, Baek et al. [Proteomics 2017, 17, Issue 21] found that ROS mediate the differentiation of MSCs into SMCs through the modification of redox states of a multifunctional ROS-responsive protein, DJ-1, revealing a novel regulatory mechanism for differentiation of MSCs into SMCs and shedding light into the future development of stem-cell-targeted pharmacotherapy.
Collapse
Affiliation(s)
- Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada City, Aomori, Japan
| |
Collapse
|
19
|
Ge D, Yue HW, Liu HH, Zhao J. Emerging roles of sphingosylphosphorylcholine in modulating cardiovascular functions and diseases. Acta Pharmacol Sin 2018; 39:1830-1836. [PMID: 30050085 DOI: 10.1038/s41401-018-0036-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/03/2018] [Indexed: 11/10/2022]
Abstract
Sphingosylphosphorylcholine (SPC) is a bioactive sphingolipid in blood plasma that is metabolized from the hydrolysis of the membrane sphingolipid. SPC maintains low levels in the circulation under normal conditions, which makes studying its origin and action difficult. In recent years, however, it has been revealed that SPC may act as a first messenger through G protein-coupled receptors (S1P1-5, GPR12) or membrane lipid rafts, or as a second messenger mediating intracellular Ca2+ release in diverse human organ systems. SPC is a constituent of lipoproteins, and the activation of platelets promotes the release of SPC into blood, both implying a certain effect of SPC in modulating the pathological process of the heart and vessels. A line of evidence indeed confirms that SPC exerts a pronounced influence on the cardiovascular system through modulation of the functions of myocytes, vein endothelial cells, as well as vascular smooth muscle cells. In this review we summarize the current knowledge of the potential roles of SPC in the development of cardiovascular diseases and discuss the possible underlying mechanisms.
Collapse
|
20
|
Zhang X, Xie H, Chang P, Zhao H, Xia Y, Zhang L, Guo X, Huang C, Yan F, Hu L, Lin C, Li Y, Xiong Z, Wang X, Li G, Deng L, Wang S, Tao L. Glycoprotein M6B Interacts with TβRI to Activate TGF-β-Smad2/3 Signaling and Promote Smooth Muscle Cell Differentiation. Stem Cells 2018; 37:190-201. [PMID: 30372567 PMCID: PMC7379588 DOI: 10.1002/stem.2938] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 01/01/2023]
Abstract
Smooth muscle cells (SMCs), which form the walls of blood vessels, play an important role in vascular development and the pathogenic process of vascular remodeling. However, the molecular mechanisms governing SMC differentiation remain poorly understood. Glycoprotein M6B (GPM6B) is a four-transmembrane protein that belongs to the proteolipid protein family and is widely expressed in neurons, oligodendrocytes, and astrocytes. Previous studies have revealed that GPM6B plays a role in neuronal differentiation, myelination, and osteoblast differentiation. In the present study, we found that the GPM6B gene and protein expression levels were significantly upregulated during transforming growth factor-β1 (TGF-β1)-induced SMC differentiation. The knockdown of GPM6B resulted in the downregulation of SMC-specific marker expression and repressed the activation of Smad2/3 signaling. Moreover, GPM6B regulates SMC Differentiation by Controlling TGF-β-Smad2/3 Signaling. Furthermore, we demonstrated that similar to p-Smad2/3, GPM6B was profoundly expressed and coexpressed with SMC differentiation markers in embryonic SMCs. Moreover, GPM6B can regulate the tightness between TβRI, TβRII, or Smad2/3 by directly binding to TβRI to activate Smad2/3 signaling during SMC differentiation, and activation of TGF-β-Smad2/3 signaling also facilitate the expression of GPM6B. Taken together, these findings demonstrate that GPM6B plays a crucial role in SMC differentiation and regulates SMC differentiation through the activation of TGF-β-Smad2/3 signaling via direct interactions with TβRI. This finding indicates that GPM6B is a potential target for deriving SMCs from stem cells in cardiovascular regenerative medicine. Stem Cells 2018 Stem Cells 2019;37:190-201.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Huaning Xie
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Pan Chang
- Central Laboratory, Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Huishou Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Ling Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Xiong Guo
- Department of Cardiology, Hospital of People's Liberation Army, Golmud, Qinghai, People's Republic of China
| | - Chong Huang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Feng Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Lang Hu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Chen Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yueyang Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Zhenyu Xiong
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Xiong Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Guohua Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Longxiang Deng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Shan Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
21
|
Chen T, Wu Y, Gu W, Xu Q. Response of vascular mesenchymal stem/progenitor cells to hyperlipidemia. Cell Mol Life Sci 2018; 75:4079-4091. [PMID: 29946805 PMCID: PMC11105685 DOI: 10.1007/s00018-018-2859-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/14/2018] [Accepted: 06/20/2018] [Indexed: 12/29/2022]
Abstract
Hyperlipidemia is a risk factor for atherosclerosis that is characterized by lipid accumulation, inflammatory cell infiltration, and smooth muscle cell proliferation. It is well known that hyperlipidemia is a stimulator for endothelial dysfunction and smooth muscle cell migration during vascular disease development. Recently, it was found that vessel wall contains a variable number of mesenchymal stem cells (MSCs) that are quiescent in physiological conditions, but can be activated by a variety of stimuli, e.g., increased lipid level or hyperlipidemia. Vascular MSCs displayed characteristics of stem cells which can differentiate into several types of cells, e.g., smooth muscle cells, adipocytic, chondrocytic, and osteocytic lineages. In vitro, lipid loading can induce MSC migration and chemokines secretion. After MSC migration into the intima, they play an essential role in inflammatory response and cell accumulation during the initiation and progression of atherosclerosis. In addition, MSC transplantation has been explored as a therapeutic approach to treat atherosclerosis in animal models. In this review, we aim to summarize current progress in characterizing the identity of vascular MSCs and to discuss the mechanisms involved in the response of vascular stem/progenitor cells to lipid loading, as well as to explore therapeutic strategies for vascular diseases and shed new light on regenerative medicine.
Collapse
Affiliation(s)
- Ting Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Yutao Wu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Wenduo Gu
- School of Cardiovascular Medicine and Sciences, King's BHF Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.
- School of Cardiovascular Medicine and Sciences, King's BHF Centre, 125 Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|
22
|
Ma C, Guo Y, Wen H, Zheng Y, Tan L, Li X, Wang C, Guan W, Liu C. Identification and Multilineage Potential Research of a Novel Type of Adipose-Derived Mesenchymal Stem Cells from Goose Inguinal Groove. DNA Cell Biol 2018; 37:731-741. [PMID: 30102556 DOI: 10.1089/dna.2017.4061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue-derived mesenchymal stem cells (ADSCs) play a crucial role in the field of regenerative medicine and tissue repair for its own unique features. However, up to date, the isolation and characterizations of multidifferentiation potentials of goose ADSCs are still uncertain. In this study, we successfully isolated ADSCs from goose inguinal groove in vitro for the first time and also attempted to unravel its fundamental differentiation potentials and genetic characteristics. The results showed that isolated ADSCs exhibited a typical fibroblast-like morphology and high proliferative potential, could be passaged for at least 40 passages and maintained high hereditary stability with more than 92.2% of cells were diploid (2n = 78) by G-banding analysis. Moreover, the ADSCs could express pluripotent marker gene (OCT4) and mesenchymal stem cells-related surface antigens, which are similar to previously reported human ADSCs. Additionally, the goose ADSCs could be induced to transdifferentiate into cells of three layers in vitro, such as osteoblasts, chondrocytes, and adipocytes derived from mesoderm, neurocytes from ectoderm, and hepatocytes of the endoderm. Most of all, we confirmed that the induced β-like cells and hepatocytes had metabolic functions similar to normal cells in vivo. Taken together, these results demonstrated the multidifferentiation potentials of ADSCs in vitro, which conferred an appealing candidate for cell regenerative therapy.
Collapse
Affiliation(s)
- Caiyun Ma
- 1 Department of Bioscience, Bengbu Medical College , Bengbu, China .,2 Department of Animal Resources and Genetic Breeding, Institute of Animal Science , Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Guo
- 1 Department of Bioscience, Bengbu Medical College , Bengbu, China .,3 Department of Laboratory Medicine, Bengbu Medical College , Bengbu, China
| | - Hebao Wen
- 2 Department of Animal Resources and Genetic Breeding, Institute of Animal Science , Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanjie Zheng
- 2 Department of Animal Resources and Genetic Breeding, Institute of Animal Science , Chinese Academy of Agricultural Sciences, Beijing, China
| | - Leiqi Tan
- 1 Department of Bioscience, Bengbu Medical College , Bengbu, China .,3 Department of Laboratory Medicine, Bengbu Medical College , Bengbu, China
| | - Xiangchen Li
- 2 Department of Animal Resources and Genetic Breeding, Institute of Animal Science , Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunjing Wang
- 1 Department of Bioscience, Bengbu Medical College , Bengbu, China .,3 Department of Laboratory Medicine, Bengbu Medical College , Bengbu, China
| | - Weijun Guan
- 2 Department of Animal Resources and Genetic Breeding, Institute of Animal Science , Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changqing Liu
- 1 Department of Bioscience, Bengbu Medical College , Bengbu, China .,4 Department of Neuroscience, University of Connecticut Health Center , Farmington, Connecticut
| |
Collapse
|
23
|
de Araújo Farias V, Carrillo-Gálvez AB, Martín F, Anderson P. TGF-β and mesenchymal stromal cells in regenerative medicine, autoimmunity and cancer. Cytokine Growth Factor Rev 2018; 43:25-37. [PMID: 29954665 DOI: 10.1016/j.cytogfr.2018.06.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/12/2018] [Indexed: 12/30/2022]
Abstract
Multipotent mesenchymal stromal cells (MSCs) represent a promising cell-based therapy in regenerative medicine and for the treatment of inflammatory/autoimmune diseases. Importantly, MSCs have emerged as an important contributor to the tumor stroma with both pro- and anti-tumorigenic effects. However, the successful translation of MSCs to the clinic and the prevention of their tumorigenic and metastatic effect require a greater understanding of factors controlling their proliferation, differentiation, migration and immunomodulation in vitro and in vivo. The transforming growth factor(TGF)-β1, 2 and 3 are involved in almost every aspect of MSC function. The aim of this review is to highlight the roles that TGF-β play in the biology and therapeutic applications of MSCs. We will discuss the how TGF-β modulate MSC function as well as the paracrine effects of MSC-derived TGF-β on other cell types in the context of tissue regeneration, immune responses and cancer. Finally, taking all these aspects into consideration we discuss how modulation of TGF-β signaling/production in MSCs could be of clinical interest.
Collapse
Affiliation(s)
- Virgínea de Araújo Farias
- Centre for Genomics and Oncological Research (GENYO): Pfizer/University of Granada/Andalucian Regional Government, PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain; Facultad de Odontología, Universidad de Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | - Ana Belén Carrillo-Gálvez
- Centre for Genomics and Oncological Research (GENYO): Pfizer/University of Granada/Andalucian Regional Government, PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain
| | - Francisco Martín
- Centre for Genomics and Oncological Research (GENYO): Pfizer/University of Granada/Andalucian Regional Government, PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain
| | - Per Anderson
- Centre for Genomics and Oncological Research (GENYO): Pfizer/University of Granada/Andalucian Regional Government, PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain.
| |
Collapse
|
24
|
Baek S, Lee KP, Jung SH, Cui L, Ko K, Kim B, Won KJ. DJ-1 Regulates Differentiation of Human Mesenchymal Stem Cells into Smooth Muscle-like Cells in Response to Sphingosylphosphorylcholine. Proteomics 2018; 17. [PMID: 28949093 DOI: 10.1002/pmic.201700208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/12/2017] [Indexed: 11/06/2022]
Abstract
Although multiple factors contribute to the differentiation of human mesenchymal stem cells (hMSCs) into various types of cells, the differentiation of hMSCs into smooth muscle cells (SMCs), one of central events in vascular remodeling, remains to be clarified. ROS participate in the differentiation of hMSCs into several cell types and were regulated by redox-sensitive molecules including a multifunctional protein DJ-1. Here, we investigated the correlation between altered proteins, especially those related to ROS, and SMC differentiation in sphingosylphosphorylcholine (SPC)-stimulated hMSCs. Treatment with SPC resulted in an increased expression of SMC markers, namely α-smooth muscle actin (SMA) and calponin, and an increased production of ROS in hMSCs. A proteomic analysis of SPC-stimulated hMSCs revealed a distinctive alteration of the ratio between the oxidized and reduced forms of DJ-1 in hMSCs in response to SPC. The increased abundance of oxidized DJ-1 in SPC-stimulated hMSCs was validated by immunoblot analysis. The SPC-induced increase in the expression of α-SMA was stronger in DJ-1-knockdown hMSCs than in control cells. Moreover, the expression of α-SMA, and the calponin and generation of ROS in response to SPC were weaker in normal hMSCs than in DJ-1-overexpressing hMSCs. Exogenous H2 O2 mimicked the responses induced by SPC treatment. These results indicate that the ROS-related DJ-1 pathway regulates the differentiation of hMSCs into SMCs in response to SPC.
Collapse
Affiliation(s)
- Suji Baek
- Departments of Physiology, School of Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Kang Pa Lee
- Departments of Physiology, School of Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Seung Hyo Jung
- Departments of Physiology, School of Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Long Cui
- Departments of Physiology, School of Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Kinarm Ko
- Stem Cell Biology, School of Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Bokyung Kim
- Departments of Physiology, School of Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Kyung Jong Won
- Departments of Physiology, School of Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| |
Collapse
|
25
|
The Methods and Mechanisms to Differentiate Endothelial-Like Cells and Smooth Muscle Cells from Mesenchymal Stem Cells for Vascularization in Vaginal Reconstruction. Mol Biotechnol 2018; 60:396-411. [DOI: 10.1007/s12033-018-0079-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Human very Small Embryonic-like Cells Support Vascular Maturation and Therapeutic Revascularization Induced by Endothelial Progenitor Cells. Stem Cell Rev Rep 2018; 13:552-560. [PMID: 28303468 DOI: 10.1007/s12015-017-9731-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Very small embryonic-like stem cells (VSELs) are major pluripotent stem cells defined as cells of small size being Lineage- negative, CD133-positive, and CD45-negative. We previously described that human bone marrow VSELs were able to differentiate into endothelial cells and promoted post-ischemic revascularization in mice with surgically induced critical limb ischemia. In the present work, we isolated bone marrow VSELs from patients with critical limb ischemia and studied their ability to support endothelial progenitor cells therapeutic capacity and revascularization potential. Sorted bone marrow VSELs cultured in angiogenic media were co-injected with endothelial progenitor cells and have been show to trigger post-ischemic revascularization in immunodeficient mice, and support vessel formation in vivo in Matrigel implants better than human bone marrow mesenchymal stem cells. In conclusion, VSELs are a potential new source of therapeutic cells that may give rise to cells of the endothelial and perivascular lineage in humans. VSELs are the first real vasculogenic stem cells able to differentiate in endothelial and perivascular lineage in human adult described from now. Thus, because VSELs presence have been proposed in adult tissues, we think that VSELs are CD45 negative stem cells able to give rise to vascular regeneration in human tissues and vessels.
Collapse
|
27
|
Kim BS, Kwon YW, Kong JS, Park GT, Gao G, Han W, Kim MB, Lee H, Kim JH, Cho DW. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering. Biomaterials 2018; 168:38-53. [PMID: 29614431 DOI: 10.1016/j.biomaterials.2018.03.040] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/11/2022]
Abstract
3D cell-printing technique has been under spotlight as an appealing biofabrication platform due to its ability to precisely pattern living cells in pre-defined spatial locations. In skin tissue engineering, a major remaining challenge is to seek for a suitable source of bioink capable of supporting and stimulating printed cells for tissue development. However, current bioinks for skin printing rely on homogeneous biomaterials, which has several shortcomings such as insufficient mechanical properties and recapitulation of microenvironment. In this study, we investigated the capability of skin-derived extracellular matrix (S-dECM) bioink for 3D cell printing-based skin tissue engineering. S-dECM was for the first time formulated as a printable material and retained the major ECM compositions of skin as well as favorable growth factors and cytokines. This bioink was used to print a full thickness 3D human skin model. The matured 3D cell-printed skin tissue using S-dECM bioink was stabilized with minimal shrinkage, whereas the collagen-based skin tissue was significantly contracted during in vitro tissue culture. This physical stabilization and the tissue-specific microenvironment from our bioink improved epidermal organization, dermal ECM secretion, and barrier function. We further used this bioink to print 3D pre-vascularized skin patch able to promote in vivo wound healing. In vivo results revealed that endothelial progenitor cells (EPCs)-laden 3D-printed skin patch together with adipose-derived stem cells (ASCs) accelerates wound closure, re-epithelization, and neovascularization as well as blood flow. We envision that the results of this paper can provide an insightful step towards the next generation source for bioink manufacturing.
Collapse
Affiliation(s)
- Byoung Soo Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Yang Woo Kwon
- Department of Physiology, Pusan National University, School of Medicine, Yangsan 50612, Republic of Korea
| | - Jeong-Sik Kong
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Gyu Tae Park
- Department of Physiology, Pusan National University, School of Medicine, Yangsan 50612, Republic of Korea
| | - Ge Gao
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Wonil Han
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Moon-Bum Kim
- Department of Dermatology, Pusan National University School of Medicine, Busan 49241, Republic of Korea
| | - Hyungseok Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, Pusan National University, School of Medicine, Yangsan 50612, Republic of Korea.
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
| |
Collapse
|
28
|
Kang JH, Kim HJ, Park MK, Lee CH. Sphingosylphosphorylcholine Induces Thrombospondin-1 Secretion in MCF10A Cells via ERK2. Biomol Ther (Seoul) 2017; 25:625-633. [PMID: 28274095 PMCID: PMC5685432 DOI: 10.4062/biomolther.2016.228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/11/2016] [Accepted: 01/09/2017] [Indexed: 01/06/2023] Open
Abstract
Sphingosylphosphorylcholine (SPC) is one of the bioactive phospholipids that has many cellular functions such as cell migration, adhesion, proliferation, angiogenesis, and Ca²⁺ signaling. Recent studies have reported that SPC induces invasion of breast cancer cells via matrix metalloproteinase-3 (MMP-3) secretion leading to WNT activation. Thrombospondin-1 (TSP-1) is a matricellular and calcium-binding protein that binds to a wide variety of integrin and non-integrin cell surface receptors. It regulates cell proliferation, migration, and apoptosis in inflammation, angiogenesis and neoplasia. TSP-1 promotes aggressive phenotype via epithelial mesenchymal transition (EMT). The relationship between SPC and TSP-1 is unclear. We found SPC induced EMT leading to mesenchymal morphology, decrease of E-cadherin expression and increases of N-cadherin and vimentin. SPC induced secretion of thrombospondin-1 (TSP-1) during SPC-induced EMT of various breast cancer cells. Gene silencing of TSP-1 suppressed SPC-induced EMT as well as migration and invasion of MCF10A cells. An extracellular signal-regulated kinase inhibitor, PD98059, significantly suppressed the secretion of TSP-1, expressions of N-cadherin and vimentin, and decrease of E-cadherin in MCF10A cells. ERK2 siRNA suppressed TSP-1 secretion and EMT. From online PROGgene V2, relapse free survival is low in patients having high TSP-1 expressed breast cancer. Taken together, we found that SPC induced EMT and TSP-1 secretion via ERK2 signaling pathway. These results suggests that SPC-induced TSP-1 might be a new target for suppression of metastasis of breast cancer cells.
Collapse
Affiliation(s)
- June Hee Kang
- College of Pharmacy, Dongguk University, Seoul 10326, Republic of Korea
| | - Hyun Ji Kim
- College of Pharmacy, Dongguk University, Seoul 10326, Republic of Korea
| | - Mi Kyung Park
- College of Pharmacy, Dongguk University, Seoul 10326, Republic of Korea.,National Cancer Center, Goyang, 10408, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 10326, Republic of Korea
| |
Collapse
|
29
|
Sritananuwat P, Sueangoen N, Thummarati P, Islam K, Suthiphongchai T. Blocking ERK1/2 signaling impairs TGF-β1 tumor promoting function but enhances its tumor suppressing role in intrahepatic cholangiocarcinoma cells. Cancer Cell Int 2017; 17:85. [PMID: 28959141 PMCID: PMC5615482 DOI: 10.1186/s12935-017-0454-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 09/19/2017] [Indexed: 12/19/2022] Open
Abstract
Background Transforming growth factor-β (TGF-β) plays a paradoxical role in cancer: it suppresses proliferation at early stages but promotes metastasis at late stages. This cytokine is upregulated in cholangiocarcinoma and is implicated in cholangiocarcinoma invasion and metastasis. Here we investigated the roles of non-Smad pathway (ERK1/2) and Smad in TGF-β tumor promoting and suppressing activities in intrahepatic cholangiocarcinoma (ICC) cells. Methods TGF-β1 effects on proliferation, invasion and migration of ICC cells, KKU-M213 and/or HuCCA-1, were investigated using MTT, colony formation, in vitro Transwell and wound healing assays. Levels of mRNAs and proteins/phospho-proteins were measured by quantitative (q)RT-PCR and Western blotting respectively. E-cadherin localization was examined by immunofluorescence and secreted MMP-9 activity was assayed by gelatin zymography. The role of ERK1/2 signaling was evaluated by treating cells with TGF-β1 in combination with MEK1/2 inhibitor U0126, and that of Smad2/3 and Slug using siSmad2/3- and siSlug-transfected cells. Results h-TGF-β1 enhanced KKU-M213 cell invasion and migration and induced epithelial-mesenchymal transition as shown by an increase in vimentin, Slug and secreted MMP-9 levels and by a change in E-cadherin localization from membrane to cytosol, while retaining the cytokine’s ability to attenuate cell proliferation. h-TGF-β1 stimulated Smad2/3 and ERK1/2 phosphorylation, and the MEK1/2 inhibitor U0126 attenuated TGF-β1-induced KKU-M213 cell invasion and MMP-9 production but moderately enhanced the cytokine growth inhibitory activity. The latter effect was more noticeable in HuCCA-1 cells, which resisted TGF-β-anti-proliferative activity. Smad2/3 knock-down suppressed TGF-β1 ability to induce ERK1/2 phosphorylation, Slug expression and cell invasion, whereas Slug knock-down suppressed cell invasion and vimentin expression but marginally affected ERK1/2 activation and MMP-9 secretion. These results indicate that TGF-β1 activated ERK1/2 through Smad2/3 but not Slug pathway, and that ERK1/2 enhanced TGF-β1 tumor promoting but repressed its tumor suppressing functions. Conclusions Inhibiting ERK1/2 activation attenuates TGF-β1 tumor promoting effect (invasion) but retains its tumor suppressing role, thereby highlighting the importance of ERK1/2 in resolving the TGF-β paradox switch. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0454-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Phaijit Sritananuwat
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand.,Present Address: Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Natthaporn Sueangoen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand.,Present Address: Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Parichut Thummarati
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | - Kittiya Islam
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | | |
Collapse
|
30
|
Deriving vascular smooth muscle cells from mesenchymal stromal cells: Evolving differentiation strategies and current understanding of their mechanisms. Biomaterials 2017; 145:9-22. [PMID: 28843066 DOI: 10.1016/j.biomaterials.2017.08.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/07/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022]
Abstract
Vascular smooth muscle cells (VSMCs) play essential roles in regulating blood vessel form and function. Regeneration of functional vascular smooth muscle tissue to repair vascular diseases is an area of intense research in tissue engineering and regenerative medicine. For functional vascular smooth muscle tissue regeneration to become a practical therapy over the next decade, the field will need to have access to VSMC sources that are effective, robust and safe. While pluripotent stem cells hold good future promise to this end, more immediate translation is expected to come from approaches that generate functional VSMCs from adult sources of multipotent adipose-derived and bone marrow-derived mesenchymal stromal cells (ASCs and BMSCs). The research to this end is extensive and is dominated by studies relating to classical biochemical signalling molecules used to induce differentiation of ASCs and BMSCs. However, prolonged use of the biochemical induction factors is costly and can cause potential endotoxin contamination in the culture. Over recent years several non-traditional differentiation approaches have been devised to mimic defined aspects of the native micro-environment in which VSMCs reside to contribute to the differentiation of VSMC-like cells from ASCs and BMSCs. In this review, the promises and limitations of several non-traditional culture approaches (e.g., co-culture, biomechanical, and biomaterial stimuli) targeting VSMC differentiation are discussed. The extensive crosstalk between the underlying signalling cascades are delineated and put into a translational context. It is expected that this review will not only provide significant insight into VSMC differentiation strategies for vascular smooth muscle tissue engineering applications, but will also highlight the fundamental importance of engineering the cellular microenvironment on multiple scales (with consideration of different combinatorial pathways) in order to direct cell differentiation fate and obtain cells of a desired and stable phenotype. These strategies may ultimately be applied to different sources of stem cells in the future for a range of biomaterial and tissue engineering disciplines.
Collapse
|
31
|
Shen EM, McCloskey KE. Development of Mural Cells: From In Vivo Understanding to In Vitro Recapitulation. Stem Cells Dev 2017; 26:1020-1041. [DOI: 10.1089/scd.2017.0020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Edwin M. Shen
- Graduate Program in Biological Engineering and Small-scale Technologies
| | - Kara E. McCloskey
- Graduate Program in Biological Engineering and Small-scale Technologies
- School of Engineering, University of California, Merced, Merced, California
| |
Collapse
|
32
|
Ma T, Sun J, Zhao Z, Lei W, Chen Y, Wang X, Yang J, Shen Z. A brief review: adipose-derived stem cells and their therapeutic potential in cardiovascular diseases. Stem Cell Res Ther 2017; 8:124. [PMID: 28583198 PMCID: PMC5460549 DOI: 10.1186/s13287-017-0585-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) are easily obtained and expanded, and have emerged as a novel source of adult stem cells for the treatment of cardiovascular diseases. These cells have been shown to have the capability of differentiating into cardiomyocytes, vascular smooth muscle cells, and endothelial cells. Furthermore, ADSCs secrete a series of paracrine factors to promote neovascularization, reduce apoptosis, and inhibit fibrosis, which contributes to cardiac regeneration. As a novel therapy in the regenerative field, ADSCs still face various limitations, such as low survival and engraftment. Thus, engineering and pharmacological studies have been conducted to solve these problems. Investigations have moved into phase I and II clinical trials examining the safety and efficacy of ADSCs in the setting of myocardial infarction. In this review, we discuss the differentiation and paracrine functions of ADSCs, the strategies promoting their therapeutic efficacy, and their clinical usage.
Collapse
Affiliation(s)
- Teng Ma
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Jiacheng Sun
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Zhenao Zhao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Yueqiu Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Xu Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Junjie Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China.
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China.
| |
Collapse
|
33
|
Liu X, Liu Y, Li X, Zhao J, Geng Y, Ning W. Follistatin like-1 (Fstl1) is required for the normal formation of lung airway and vascular smooth muscle at birth. PLoS One 2017; 12:e0177899. [PMID: 28574994 PMCID: PMC5456059 DOI: 10.1371/journal.pone.0177899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/04/2017] [Indexed: 12/20/2022] Open
Abstract
Fstl1, a secreted protein of the BMP antagonist class, has been implicated in the regulation of lung development and alveolar maturation. Here we generated a Fstl1-lacZ reporter mouse line as well as a Fstl1 knockout allele. We localized Fstl1 transcript in lung smooth muscle cells and identified Fstl1 as essential regulator of lung smooth muscle formation. Deletion of Fstl1 in mice led to postnatal death as a result of respiratory failure due to multiple defects in lung development. Analysis of the mutant phenotype showed impaired airway smooth muscle (SM) manifested as smaller SM line in trachea and discontinued SM surrounding bronchi, which were associated with decreased transcriptional factors myocardin/serum response factor (SRF) and impaired differentiation of SM cells. Fstl1 knockout mice also displayed abnormal vasculature SM manifested as hyperplasia SM in pulmonary artery. This study indicates a pivotal role for Fstl1 in early stage of lung airway smooth muscle development.
Collapse
Affiliation(s)
- Xue Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yingying Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jing Zhao
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Yan Geng
- Model Animal Research Center, Nanjing University, Nanjing, China
- School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- * E-mail:
| |
Collapse
|
34
|
Amirpour N, Razavi S, Esfandiari E, Hashemibeni B, Kazemi M, Salehi H. Hanging drop culture enhances differentiation of human adipose-derived stem cells into anterior neuroectodermal cells using small molecules. Int J Dev Neurosci 2017; 59:21-30. [PMID: 28285945 DOI: 10.1016/j.ijdevneu.2017.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/04/2017] [Accepted: 03/05/2017] [Indexed: 01/26/2023] Open
Abstract
Inspired by in vivo developmental process, several studies were conducted to design a protocol for differentiating of mesenchymal stem cells into neural cells in vitro. Human adipose-derived stem cells (hADSCs) as mesenchymal stem cells are a promising source for this purpose. At current study, we applied a defined neural induction medium by using small molecules for direct differentiation of hADSCs into anterior neuroectodermal cells. Anterior neuroectodermal differentiation of hADSCs was performed by hanging drop and monolayer protocols. At these methods, three small molecules were used to suppress the BMP, Nodal, and Wnt signaling pathways in order to obtain anterior neuroectodermal (eye field) cells from hADSCs. After two and three weeks of induction, the differentiated cells with neural morphology expressed anterior neuroectodermal markers such as OTX2, SIX3, β-TUB III and PAX6. The protein expression of such markers was confirmed by real time, RT-PCR and immunocytochemistry methods According to our data, it seems that the hanging drop method is a proper approach for neuroectodermal induction of hADSCs. Considering wide availability and immunosuppressive properties of hADSCs, these cells may open a way for autologous cell therapy of neurodegenerative disorders.
Collapse
Affiliation(s)
- Noushin Amirpour
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahnaz Razavi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Esfandiari
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batoul Hashemibeni
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
35
|
Liu X, Wang J, Dong F, Li H, Hou Y. Induced differentiation of human gingival fibroblasts into VSMC-like cells. Differentiation 2017; 95:1-9. [PMID: 28107746 DOI: 10.1016/j.diff.2017.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/31/2016] [Accepted: 01/05/2017] [Indexed: 01/08/2023]
Abstract
Vascular smooth muscle cells (VSMCs) are major component of the vascular wall, and they play an essential role in maintaining the basic physiological function and stable structure of the vascular wall. In the present study, human gingival fibroblasts (HGFs) were cultured and induced into VSMC-like cells in vitro to confirm that HGFs with properties of stem cells have the potential for differentiation. The epithelium isolated from patients was extracted from normal human gingiva consisting of epithelium and connective tissue. HGFs were first identified by morphological examination, as well as specific gene and protein expression, and then induced by 10ng/mL PDGF-BB combined with 2ng/mL of TGF-β1 for 28 days. After induction, ICS data indicated that induced VSMC-like cells were positive for α-SMA and SM-MHC, and IFA data showed that induced cells were positive for SM22α and Cnn1. RT-PCR results demonstrated that α-SMA and SM-MHC mRNA were specifically expressed, and myofilament-like structures also appeared in induced cells. In conclusion, the data indicated that HGFs could differentiate to VSMC-like cells with typical VSMC morphologic, ultrastructural, and immunological characteristics via induction with PDGF-BB and TGF-β1.
Collapse
Affiliation(s)
- Xuqian Liu
- Department of Oral Pathology, The Key Laboratory of Stomatology, College of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jie Wang
- Department of Oral Pathology, The Key Laboratory of Stomatology, College of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Fusheng Dong
- Department of Oral and Maxillofacial Surgery, The Key Laboratory of Stomatology, College of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Hexiang Li
- Department of Oral Pathology, The Key Laboratory of Stomatology, College of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yali Hou
- Department of Oral Pathology, The Key Laboratory of Stomatology, College of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
36
|
Salehi H, Amirpour N, Niapour A, Razavi S. An Overview of Neural Differentiation Potential of Human Adipose Derived Stem Cells. Stem Cell Rev Rep 2016; 12:26-41. [PMID: 26490462 DOI: 10.1007/s12015-015-9631-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is wide interest in application of adult stem cells due to easy to obtain with a minimal patient discomfort, capable of producing cell numbers in large quantities and their immunocompatible properties without restriction by ethical concerns. Among these stem cells, multipotent mesenchymal stem cells (MSCs) from human adipose tissue are considered as an ideal source for various regenerative medicine. In spite of mesodermal origin of human adipose-derived stem cells (hADSCs), these cells have differentiation potential toward mesodermal and non-mesodermal lineages. Up to now, several studies have shown that hADSCs can undergo transdifferentiation and produce cells outside of their lineage, especially into neural cells when they are transferred to a specific cell environment. The purpose of this literature review is to provide an overview of the existing state of knowledge of the differentiation potential of hADSCs, specifically their ability to give rise to neuronal cells. The following review discusses different protocols considered for differentiation of hADSCs to neural cells, the neural markers that are used in each procedure and possible mechanisms that are involved in this differentiation.
Collapse
|
37
|
Quan L, Wang Y, Liang J, Qiu T, Wang H, Zhang Y, Zhang Y, Hui Q, Tao K. Screening for genes, transcription factors and miRNAs associated with the myogenic and osteogenic differentiation of human adipose tissue-derived stem cells. Int J Mol Med 2016; 38:1839-1849. [PMID: 27779643 DOI: 10.3892/ijmm.2016.2788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/09/2016] [Indexed: 11/05/2022] Open
Abstract
In the present study, we aimed to reveal the molecular mechanisms responsible for the differentiation of human adipose tissue-derived stem cells (hASCs) into myocytes and osteoblasts. Microarray data GSE37329 were obtained from the Gene Expression Omnibus database, including three hASC cell lines from healthy donors, two osteogenic lineages and two myogenic lineages from the in vitro‑induction of hASCs. Differentially expressed genes (DEGs) in the two lineages were firstly screened. Subsequently, the underlying functions of the two sets of DEGs were investigated by Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, followed by protein-protein interaction (PPI) network construction. Regulatory relationships between transcription factors (TFs) and microRNAs (miRNAs or miRs) with target genes were finally explored using different algorithms. A total of 665 and 485 DEGs were identified from the hASC‑derived myogenic and osteogenic lineages, respectively. The shared upregulated genes (n=205) in the two sets of DEGs were mainly involved in metabolism-related pathways, whereas the shared downregulated genes (n=128) were significantly enriched in the transforming growth factor-β (TGF-β) signaling pathway. Four genes, vascular endothelial growth factor A (VEGFA), fibroblast growth factor 2 (FGF2), nerve growth factor (NGF) and interleukin 1B (IL1B), presented with relatively higher degrees in both PPI networks. The transcription factor RAD21 was predicted to target shared upregulated and downregulated genes as well as specific downregulated genes in the myogenic and the osteogenic lineages. In addition, miRNA-DEG interaction analysis revealed that hsa-miR-1 regulated the most shared DEGs in the two lineages. There may be a correlation between the four genes, VEGFA, FGF2, IL1B and NGF, and the differentiation of hASCs into myocytes and osteoblasts. The TF RAD21 and hsa-miR-1 may play important roles in regulating the expression of differentiation-associated genes.
Collapse
Affiliation(s)
- Liangliang Quan
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| | - Yang Wang
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| | - Jiulong Liang
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| | - Tao Qiu
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| | - Hongyi Wang
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| | - Ye Zhang
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| | - Yu Zhang
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| | - Qiang Hui
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| | - Kai Tao
- Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
38
|
Merfeld-Clauss S, Lease BR, Lu H, March KL, Traktuev DO. Adipose stromal cells differentiation toward smooth muscle cell phenotype diminishes their vasculogenic activity due to induction of activin A secretion. J Tissue Eng Regen Med 2016; 11:3145-3156. [DOI: 10.1002/term.2223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/17/2016] [Accepted: 04/19/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Stephanie Merfeld-Clauss
- Department of Medicine; Indiana Center for Vascular Biology and Medicine
- Krannert Institute of Cardiology; Indiana University School of Medicine; Indianapolis IN 46202 USA
- VA Center for Regenerative Medicine; R.L. Roudebush VA Medical Center; Indianapolis IN 46202 USA
| | - Benjamin R. Lease
- VA Center for Regenerative Medicine; R.L. Roudebush VA Medical Center; Indianapolis IN 46202 USA
| | - Hongyan Lu
- Department of Medicine; Indiana Center for Vascular Biology and Medicine
- Krannert Institute of Cardiology; Indiana University School of Medicine; Indianapolis IN 46202 USA
- VA Center for Regenerative Medicine; R.L. Roudebush VA Medical Center; Indianapolis IN 46202 USA
| | - Keith L. March
- Department of Medicine; Indiana Center for Vascular Biology and Medicine
- Krannert Institute of Cardiology; Indiana University School of Medicine; Indianapolis IN 46202 USA
- VA Center for Regenerative Medicine; R.L. Roudebush VA Medical Center; Indianapolis IN 46202 USA
- Department of Cellular and Integrative Physiology; Indiana University School of Medicine; Indianapolis IN 46202 USA
| | - Dmitry O. Traktuev
- Department of Medicine; Indiana Center for Vascular Biology and Medicine
- Krannert Institute of Cardiology; Indiana University School of Medicine; Indianapolis IN 46202 USA
- VA Center for Regenerative Medicine; R.L. Roudebush VA Medical Center; Indianapolis IN 46202 USA
| |
Collapse
|
39
|
Kramann R, Goettsch C, Wongboonsin J, Iwata H, Schneider RK, Kuppe C, Kaesler N, Chang-Panesso M, Machado FG, Gratwohl S, Madhurima K, Hutcheson JD, Jain S, Aikawa E, Humphreys BD. Adventitial MSC-like Cells Are Progenitors of Vascular Smooth Muscle Cells and Drive Vascular Calcification in Chronic Kidney Disease. Cell Stem Cell 2016; 19:628-642. [PMID: 27618218 DOI: 10.1016/j.stem.2016.08.001] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 06/13/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cell (MSC)-like cells reside in the vascular wall, but their role in vascular regeneration and disease is poorly understood. Here, we show that Gli1+ cells located in the arterial adventitia are progenitors of vascular smooth muscle cells and contribute to neointima formation and repair after acute injury to the femoral artery. Genetic fate tracing indicates that adventitial Gli1+ MSC-like cells migrate into the media and neointima during athero- and arteriosclerosis in ApoE-/- mice with chronic kidney disease. Our data indicate that Gli1+ cells are a major source of osteoblast-like cells during calcification in the media and intima. Genetic ablation of Gli1+ cells before induction of kidney injury dramatically reduced the severity of vascular calcification. These findings implicate Gli1+ cells as critical adventitial progenitors in vascular remodeling after acute and during chronic injury and suggest that they may be relevant therapeutic targets for mitigation of vascular calcification.
Collapse
Affiliation(s)
- Rafael Kramann
- Division of Nephrology and Clinical Immunology, Medical Faculty RWTH Aachen University, RWTH Aachen University, 52074 Aachen, Germany; Renal Division, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02138, USA.
| | - Claudia Goettsch
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Janewit Wongboonsin
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hiroshi Iwata
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Rebekka K Schneider
- Division of Hematology, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02138, USA; Division of Hematology, RWTH Aachen University, 52074 Aachen, Germany
| | - Christoph Kuppe
- Division of Nephrology and Clinical Immunology, Medical Faculty RWTH Aachen University, RWTH Aachen University, 52074 Aachen, Germany
| | - Nadine Kaesler
- Division of Nephrology and Clinical Immunology, Medical Faculty RWTH Aachen University, RWTH Aachen University, 52074 Aachen, Germany
| | - Monica Chang-Panesso
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Flavia G Machado
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susannah Gratwohl
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kaushal Madhurima
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua D Hutcheson
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Sanjay Jain
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Center for Excellence in Vascular Biology, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02138, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
40
|
Angelopoulos I, Southern P, Pankhurst QA, Day RM. Superparamagnetic iron oxide nanoparticles regulate smooth muscle cell phenotype. J Biomed Mater Res A 2016; 104:2412-9. [PMID: 27176658 PMCID: PMC5006844 DOI: 10.1002/jbm.a.35780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/21/2016] [Accepted: 05/11/2016] [Indexed: 01/12/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) are used for an increasing range of biomedical applications, from imaging to mechanical actuation of cells and tissue. The aim of this study was to investigate the loading of smooth muscle cells (SMC) with SPION and to explore what effect this has on the phenotype of the cells. Adherent human SMC were loaded with ∼17 pg of unconjugated, negatively charged, 50 nm SPION. Clusters of the internalized SPION particles were held in discrete cytoplasmic vesicles. Internalized SPION did not cause any change in cell morphology, proliferation, metabolic activity, or staining pattern of actin and calponin, two of the muscle contractile proteins involved in force generation. However, internalized SPION inhibited the increased gene expression of actin and calponin normally observed when cells are incubated under differentiation conditions. The observed change in the control of gene expression of muscle contractile apparatus by SPION has not previously been described. This finding could offer novel approaches for regulating the phenotype of SMC and warrants further investigation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2412–2419, 2016.
Collapse
Affiliation(s)
- Ioannis Angelopoulos
- Applied Biomedical Engineering Group, Division of Medicine, University College London, WC1E 6DD, UK
| | - Paul Southern
- UCL Institute of Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Quentin A Pankhurst
- UCL Institute of Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Richard M Day
- Applied Biomedical Engineering Group, Division of Medicine, University College London, WC1E 6DD, UK
| |
Collapse
|
41
|
Lei M, Wang X. Biodegradable Polymers and Stem Cells for Bioprinting. Molecules 2016; 21:E539. [PMID: 27136526 PMCID: PMC6274354 DOI: 10.3390/molecules21050539] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 02/06/2023] Open
Abstract
It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.
Collapse
Affiliation(s)
- Meijuan Lei
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xiaohong Wang
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
- Center of 3D printing & Organ Manufacturing, Department of Tissue Engineering, China Medical University (CMU), Shenyang 110122, China.
| |
Collapse
|
42
|
Li YF, Li RS, Samuel SB, Cueto R, Li XY, Wang H, Yang XF. Lysophospholipids and their G protein-coupled receptors in atherosclerosis. Front Biosci (Landmark Ed) 2016; 21:70-88. [PMID: 26594106 DOI: 10.2741/4377] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lysophospholipids (LPLs) are bioactive lipid-derived signaling molecules generated by the enzymatic and chemical processes of regiospecific phospholipases on substrates such as membrane phospholipids (PLs) and sphingolipids (SLs). They play a major role as extracellular mediators by activating G-protein coupled receptors (GPCRs) and stimulating diverse cellular responses from their signaling pathways. LPLs are involved in various pathologies of the vasculature system including coronary heart disease and hypertension. Many studies suggest the importance of LPLs in their association with the development of atherosclerosis, a chronic and severe vascular disease. This paper focuses on the pathophysiological effects of different lysophospholipids on atherosclerosis, which may promote the pathogenesis of myocardial infarction and strokes. Their atherogenic biological activities take place in vascular endothelial cells, vascular smooth muscle cells, fibroblasts, monocytes and macrophages, dendritic cells, T-lymphocytes, platelets, etc.
Collapse
Affiliation(s)
- Ya-Feng Li
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA ; Department of Nephrology and Hemodialysis Center, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Rong-Shan Li
- Department of Nephrology and Hemodialysis Center, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - Sonia B Samuel
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Ramon Cueto
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Xin-Yuan Li
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Xiao-Feng Yang
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
43
|
Fathi E, University of Tabriz, Iran, Farahzadi R, University of Tabriz, Iran. Isolation, Culturing, Characterization and Aging of Adipose Tissue-derived Mesenchymal Stem Cells: A Brief Overview. BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY 2016; 59. [DOI: 10.1590/1678-4324-2016150383] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
44
|
Nagata H, Ii M, Kohbayashi E, Hoshiga M, Hanafusa T, Asahi M. Cardiac Adipose-Derived Stem Cells Exhibit High Differentiation Potential to Cardiovascular Cells in C57BL/6 Mice. Stem Cells Transl Med 2015; 5:141-51. [PMID: 26683873 DOI: 10.5966/sctm.2015-0083] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 10/15/2015] [Indexed: 12/17/2022] Open
Abstract
Adipose-derived stem cells (AdSCs) have recently been shown to differentiate into cardiovascular lineage cells. However, little is known about the fat tissue origin-dependent differences in AdSC function and differentiation potential. AdSC-rich cells were isolated from subcutaneous, visceral, cardiac (CA), and subscapular adipose tissue from mice and their characteristics analyzed. After four different AdSC types were cultured with specific differentiation medium, immunocytochemical analysis was performed for the assessment of differentiation into cardiovascular cells. We then examined the in vitro differentiation capacity and therapeutic potential of AdSCs in ischemic myocardium using a mouse myocardial infarction model. The cell density and proliferation activity of CA-derived AdSCs were significantly increased compared with the other adipose tissue-derived AdSCs. Immunocytochemistry showed that CA-derived AdSCs had the highest appearance rates of markers for endothelial cells, vascular smooth muscle cells, and cardiomyocytes among the AdSCs. Systemic transfusion of CA-derived AdSCs exhibited the highest cardiac functional recovery after myocardial infarction and the high frequency of the recruitment to ischemic myocardium. Moreover, long-term follow-up of the recruited CA-derived AdSCs frequently expressed cardiovascular cell markers compared with the other adipose tissue-derived AdSCs. Cardiac adipose tissue could be an ideal source for isolation of therapeutically effective AdSCs for cardiac regeneration in ischemic heart diseases. Significance: The present study found that cardiac adipose-derived stem cells have a high potential to differentiate into cardiovascular lineage cells (i.e., cardiomyocytes, endothelial cells, and vascular smooth muscle cells) compared with stem cells derived from other adipose tissue such as subcutaneous, visceral, and subscapular adipose tissue. Notably, only a small number of supracardiac adipose-derived stem cells that were systemically transplanted sufficiently improved cardiac functional recovery after myocardial infarction, differentiating into cardiovascular cells in the ischemic myocardium. These findings suggest a new autologous stem cell therapy for patients with myocardial ischemia, especially those with secondary myocardial ischemia after cardiovascular open chest surgery.
Collapse
Affiliation(s)
- Hiroki Nagata
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka, Japan Department of Internal Medicine (I), Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Masaaki Ii
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Eiko Kohbayashi
- Department of Internal Medicine (I), Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Masaaki Hoshiga
- Department of Internal Medicine (III), Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Toshiaki Hanafusa
- Department of Internal Medicine (I), Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Michio Asahi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| |
Collapse
|
45
|
Ahmadian E, Jafari S, Yari Khosroushahi A. Role of angiotensin II in stem cell therapy of cardiac disease. J Renin Angiotensin Aldosterone Syst 2015; 16:702-11. [PMID: 26670032 DOI: 10.1177/1470320315621225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/01/2015] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION The renin angiotensin system (RAS) is closely related to the cardiovascular system, body fluid regulation and homeostasis. MATERIALS AND METHODS Despite common therapeutic methods, stem cell/progenitor cell therapy is daily increasing as a term of regenerative medicine. RAS and its pharmacological inhibitors are not only involved in physiological and pathological aspects of the cardiovascular system, but also affect the different stages of stem cell proliferation, differentiation and function, via interfering cell signaling pathways. RESULTS This study reviews the new role of RAS, in particular Ang II distinct from other common roles, by considering its regulating impact on the different signaling pathways involved in the cardiac and endothelial tissue, as well as in stem cell transplantation. CONCLUSIONS This review focuses on the impact of stem cell therapy on the cardiovascular system, the role of RAS in stem cell differentiation, and the role of RAS inhibition in cardiac stem cell growth and development.
Collapse
Affiliation(s)
- Elham Ahmadian
- Biotechnology Research Center, Tabriz University of Medical Science, Tabriz, Iran Department of Pharmacology and Toxicology, Tabriz University of Medical Science, Tabriz, Iran Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
| | - Samira Jafari
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran Department of Pharmaceutical Nanotechnology, Tabriz University of Medical Science, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran Department of Pharmacognosy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
46
|
Expression of CD24 in Human Bone Marrow-Derived Mesenchymal Stromal Cells Is Regulated by TGFβ3 and Induces a Myofibroblast-Like Genotype. Stem Cells Int 2015; 2016:1319578. [PMID: 26788063 PMCID: PMC4691640 DOI: 10.1155/2016/1319578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 12/17/2022] Open
Abstract
Human bone marrow-derived stromal cells (hBMSCs) derived from the adult organism hold great promise for diverse settings in regenerative medicine. Therefore a more complete understanding of hBMSC biology to fully exploit the cells' potential for clinical settings is important. The protein CD24 has been reported to be involved in a diverse range of processes such as cancer, adaptive immunity, inflammation, and autoimmune diseases in other cell types. Its expression in hBMSCs, which has not yet been analyzed, may add an important aspect in the understanding of hBMSC biology. The present study therefore analyzes the expression, regulation, and functional implication of the surface protein CD24 in hBMSCs. Methods used are stimulation studies with TGF beta as well as shRNA-mediated knockdown and overexpression of CD24 followed by microarray, immunocytochemistry, and flow cytometric analyses. To our knowledge, we demonstrate for the first time that the expression of CD24 is an inherent property of hBMSCs. Importantly, the data links the upregulation of CD24 to the adoption of a myofibroblast-like gene expression pattern in hBMSCs. We demonstrate that CD24 is an important modulator in transforming growth factor beta 3 (TGFβ3) signaling with a reciprocal regulatory relationship between these two proteins.
Collapse
|
47
|
Steinbach SK, Husain M. Vascular smooth muscle cell differentiation from human stem/progenitor cells. Methods 2015; 101:85-92. [PMID: 26678794 DOI: 10.1016/j.ymeth.2015.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 01/16/2023] Open
Abstract
Transplantation of vascular smooth muscle cells (VSMCs) is a promising cellular therapy to promote angiogenesis and wound healing. However, VSMCs are derived from diverse embryonic sources which may influence their role in the development of vascular disease and in its therapeutic modulation. Despite progress in understanding the mechanisms of VSMC differentiation, there remains a shortage of robust methods for generating lineage-specific VSMCs from pluripotent and adult stem/progenitor cells in serum-free conditions. Here we describe a method for differentiating pluripotent stem cells, such as embryonic and induced pluripotent stem cells, as well as skin-derived precursors, into lateral plate-derived VSMCs including 'coronary-like' VSMCs and neural crest-derived VSMC, respectively. We believe this approach will have broad applications in modeling origin-specific disease vulnerability and in developing personalized cell-based vascular grafts for regenerative medicine.
Collapse
Affiliation(s)
- Sarah K Steinbach
- McEwen Centre for Regenerative Medicine, Toronto General Research Institute, 101 College St., Toronto, Ontario M5G-1L7, Canada; Division of Experimental Therapeutics, Toronto General Research Institute, 101 College St., Toronto, Ontario M5G-1L7, Canada
| | - Mansoor Husain
- McEwen Centre for Regenerative Medicine, Toronto General Research Institute, 101 College St., Toronto, Ontario M5G-1L7, Canada; Division of Experimental Therapeutics, Toronto General Research Institute, 101 College St., Toronto, Ontario M5G-1L7, Canada; Departments of Medicine, University of Toronto, 1 Kings College Circle, Toronto, Ontario M5S-1A8, Canada; Departments of Physiology, University of Toronto, 1 Kings College Circle, Toronto, Ontario M5S-1A8, Canada; Departments of Laboratory Medicine & Pathobiology, University of Toronto, 1 Kings College Circle, Toronto, Ontario M5S-1A8, Canada; Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, 1 Kings College Circle, Toronto, Ontario M5S-1A8, Canada; Ted Rogers Centre for Heart Research, University of Toronto, 1 Kings College Circle, Toronto, Ontario M5S-1A8, Canada; Peter Munk Cardiac Centre, University Health Network, 200 Elizabeth St., Toronto, Ontario M5G-2C4, Canada.
| |
Collapse
|
48
|
Kozdon K, Fitchett C, Rose GE, Ezra DG, Bailly M. Mesenchymal Stem Cell-Like Properties of Orbital Fibroblasts in Graves' Orbitopathy. Invest Ophthalmol Vis Sci 2015; 56:5743-50. [PMID: 26325413 DOI: 10.1167/iovs.15-16580] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Graves' orbitopathy (GO) is a sight-threatening autoimmune disorder causing extraocular muscle fibrosis, upper lid retraction and eye bulging due to orbital fat expansion. These clinical features are mediated by aspects of orbital fibroblasts differentiation, including adipogenesis and fibrosis. Our previous work suggested that this dual phenotype might be a manifestation of mixed cell populations, partially linked to the expression of mesenchymal stem cell (MSC) marker CD90. Thus, we set out to determine whether GO orbital fibroblasts displayed MSC properties. METHODS Control and GO orbital fibroblasts previously characterized for CD90 and CD45 expression were analyzed by flow cytometry for classical MSC positive (CD73, CD105) and negative (CD14, CD19, HLA-DR, and CD34) markers. Graves' orbitopathy fibroblasts were tested further for their ability to undergo lineage specific differentiation following standard protocols. RESULTS Control and GO fibroblasts strongly expressed CD73 and CD105, with a higher percentage of positive cells and stronger expression levels in GO. Neither cell type expresses CD14, CD19, and HLA-DR. Protein CD34 was expressed at low levels by 45% to 70% of the cells, with its expression significantly lower in GO cells. Graves' orbitopathy fibroblasts displayed features of osteogenesis (calcium deposits, and osteocalcin [BGLAP] and osteonectin [SPARC] expression), chondrogenesis (glycosaminoglycan production; SOX9 and aggrecan [ACAN] expression), myogenesis (α-smooth muscle actin expression), and neurogenesis (β-III tubulin expression) upon differentiation. CONCLUSIONS Our findings suggest that orbital fibroblasts contain a population of cells that fulfil the criteria defining MSC. This subpopulation may be increased in GO, possibly underlying the complex differentiation phenotype of the disease.
Collapse
Affiliation(s)
- Katarzyna Kozdon
- Department of Cell Biology UCL Institute of Ophthalmology, London, United Kingdom
| | - Caroline Fitchett
- Department of Cell Biology UCL Institute of Ophthalmology, London, United Kingdom
| | - Geoffrey E Rose
- Orbital clinic, Moorfields Eye Hospital and the National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Daniel G Ezra
- Department of Cell Biology UCL Institute of Ophthalmology, London, United Kingdom 2Orbital clinic, Moorfields Eye Hospital and the National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and
| | - Maryse Bailly
- Department of Cell Biology UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
49
|
Tomé M, Sepúlveda JC, Delgado M, Andrades JA, Campisi J, González MA, Bernad A. miR-335 correlates with senescence/aging in human mesenchymal stem cells and inhibits their therapeutic actions through inhibition of AP-1 activity. Stem Cells 2015; 32:2229-44. [PMID: 24648336 DOI: 10.1002/stem.1699] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/25/2014] [Accepted: 03/02/2014] [Indexed: 12/13/2022]
Abstract
MicroRNAs, small noncoding RNAs, regulate gene expression primarily at the posttranscriptional level. We previously found that miR-335 is critically involved in the regulation and differentiation capacity of human mesenchymal stem cells (hMSCs) in vitro. In this study, we investigated the significance of miR-335 for the therapeutic potential of hMSCs. Analysis of hMSCs in ex vivo culture demonstrated a significant and progressive increase in miR-335 that is prevented by telomerase. Expression levels of miR-335 were also positively correlated with donor age of hMSCs, and were increased by stimuli that induce cell senescence, such as γ-irradiation and standard O2 concentration. Forced expression of miR-335 resulted in early senescence-like alterations in hMSCs, including: increased SA-β-gal activity and cell size, reduced cell proliferation capacity, augmented levels of p16 protein, and the development of a senescence-associated secretory phenotype. Furthermore, overexpression of miR-335 abolished the in vivo chondro-osseous potential of hMSCs, and disabled their immunomodulatory capacity in a murine experimental model of lethal endotoxemia. These effects were accompanied by a severely reduced capacity for cell migration in response to proinflammatory signals and a marked reduction in Protein Kinase D1 phosphorylation, resulting in a pronounced decrease of AP-1 activity. Our results demonstrate that miR-335 plays a key role in the regulation of reparative activities of hMSCs and suggests that it might be considered a marker for the therapeutic potency of these cells in clinical applications.
Collapse
Affiliation(s)
- María Tomé
- Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
50
|
Suzuki E, Fujita D, Takahashi M, Oba S, Nishimatsu H. Adipose tissue-derived stem cells as a therapeutic tool for cardiovascular disease. World J Cardiol 2015; 7:454-465. [PMID: 26322185 PMCID: PMC4549779 DOI: 10.4330/wjc.v7.i8.454] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue-derived stem cells (ADSCs) are adult stem cells that can be easily harvested from subcutaneous adipose tissue. Many studies have demonstrated that ADSCs differentiate into vascular endothelial cells (VECs), vascular smooth muscle cells (VSMCs), and cardiomyocytes in vitro and in vivo. However, ADSCs may fuse with tissue-resident cells and obtain the corresponding characteristics of those cells. If fusion occurs, ADSCs may express markers of VECs, VSMCs, and cardiomyocytes without direct differentiation into these cell types. ADSCs also produce a variety of paracrine factors such as vascular endothelial growth factor, hepatocyte growth factor, and insulin-like growth factor-1 that have proangiogenic and/or antiapoptotic activities. Thus, ADSCs have the potential to regenerate the cardiovascular system via direct differentiation into VECs, VSMCs, and cardiomyocytes, fusion with tissue-resident cells, and the production of paracrine factors. Numerous animal studies have demonstrated the efficacy of ADSC implantation in the treatment of acute myocardial infarction (AMI), ischemic cardiomyopathy (ICM), dilated cardiomyopathy, hindlimb ischemia, and stroke. Clinical studies regarding the use of autologous ADSCs for treating patients with AMI and ICM have recently been initiated. ADSC implantation has been reported as safe and effective so far. Therefore, ADSCs appear to be useful for the treatment of cardiovascular disease. However, the tumorigenic potential of ADSCs requires careful evaluation before their safe clinical application.
Collapse
|