1
|
Kalous J, Aleshkina D. Multiple Roles of PLK1 in Mitosis and Meiosis. Cells 2023; 12:cells12010187. [PMID: 36611980 PMCID: PMC9818836 DOI: 10.3390/cells12010187] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
Cells are equipped with a diverse network of signaling and regulatory proteins that function as cell cycle regulators and checkpoint proteins to ensure the proper progression of cell division. A key regulator of cell division is polo-like kinase 1 (PLK1), a member of the serine/threonine kinase family that plays an important role in regulating the mitotic and meiotic cell cycle. The phosphorylation of specific substrates mediated by PLK1 controls nuclear envelope breakdown (NEBD), centrosome maturation, proper spindle assembly, chromosome segregation, and cytokinesis. In mammalian oogenesis, PLK1 is essential for resuming meiosis before ovulation and for establishing the meiotic spindle. Among other potential roles, PLK1 regulates the localized translation of spindle-enriched mRNAs by phosphorylating and thereby inhibiting the translational repressor 4E-BP1, a downstream target of the mTOR (mammalian target of rapamycin) pathway. In this review, we summarize the functions of PLK1 in mitosis, meiosis, and cytokinesis and focus on the role of PLK1 in regulating mRNA translation. However, knowledge of the role of PLK1 in the regulation of meiosis remains limited.
Collapse
|
2
|
Tokmakov AA, Morichika Y, Teranishi R, Sato KI. Oxidative Stress-Induced Overactivation of Frog Eggs Triggers Calcium-Dependent Non-Apoptotic Cell Death. Antioxidants (Basel) 2022; 11:antiox11122433. [PMID: 36552641 PMCID: PMC9774297 DOI: 10.3390/antiox11122433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Excessive activation of frog eggs (overactivation) is a pathological process that renders eggs unfertilizable. Its physiological inducers are unknown. Previously, oxidative stress was shown to cause time- and dose-dependent overactivation of Xenopus laevis frog eggs. Here, we demonstrate that the oxidative stress-induced egg overactivation is a calcium-dependent phenomenon which can be attenuated in the presence of the selective calcium chelator BAPTA. Degradation of cyclin B2, which is known to be initiated by calcium transient in fertilized or parthenogenetically activated eggs, can also be observed in the overactivated eggs. Decline in mitochondrial membrane potential, ATP depletion and termination of protein synthesis manifest in the eggs within one hour of triggering overactivation. These intracellular events occur in the absence of caspase activation. Furthermore, plasma membrane integrity is compromised in the overactivated eggs, as evidenced by ATP leakage and egg swelling. In sum, our data demonstrate that oxidative stress-induced overactivation of frog eggs causes fast and dramatic disruption of cellular homeostasis, resulting in robust and expedited cell death by a calcium-dependent non-apoptotic mechanism.
Collapse
Affiliation(s)
- Alexander A. Tokmakov
- Institute of Advanced Technoogy, Faculty of Biology-Oriented Science and Technology, KinDai University, 930 Nishimitani, Kinokawa City 649-6493, Japan
- Correspondence:
| | - Yudai Morichika
- Laboratory of Cell Signaling and Development, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Ryuga Teranishi
- Laboratory of Cell Signaling and Development, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Ken-Ichi Sato
- Laboratory of Cell Signaling and Development, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| |
Collapse
|
3
|
Wassmann K. Separase Control and Cohesin Cleavage in Oocytes: Should I Stay or Should I Go? Cells 2022; 11:3399. [PMID: 36359795 PMCID: PMC9656630 DOI: 10.3390/cells11213399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 10/19/2023] Open
Abstract
The key to gametogenesis is the proper execution of a specialized form of cell division named meiosis. Prior to the meiotic divisions, the recombination of maternal and paternal chromosomes creates new genetic combinations necessary for fitness and adaptation to an ever-changing environment. Two rounds of chromosome segregation -meiosis I and II- have to take place without intermediate S-phase and lead to the creation of haploid gametes harboring only half of the genetic material. Importantly, the segregation patterns of the two divisions are fundamentally different and require adaptation of the mitotic cell cycle machinery to the specificities of meiosis. Separase, the enzyme that cleaves Rec8, a subunit of the cohesin complex constituting the physical connection between sister chromatids, has to be activated twice: once in meiosis I and immediately afterwards, in meiosis II. Rec8 is cleaved on chromosome arms in meiosis I and in the centromere region in meiosis II. This step-wise cohesin removal is essential to generate gametes of the correct ploidy and thus, embryo viability. Hence, separase control and Rec8 cleavage must be perfectly controlled in time and space. Focusing on mammalian oocytes, this review lays out what we know and what we still ignore about this fascinating mechanism.
Collapse
Affiliation(s)
- Katja Wassmann
- Institut Jacques Monod, Université Paris Cité, CNRS, 75013 Paris, France
| |
Collapse
|
4
|
Cyclin B3 implements timely vertebrate oocyte arrest for fertilization. Dev Cell 2022; 57:2305-2320.e6. [DOI: 10.1016/j.devcel.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/12/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022]
|
5
|
Zhang YL, Zheng W, Ren P, Jin J, Hu Z, Liu Q, Fan HY, Gong F, Lu GX, Lin G, Zhang S, Tong X. Biallelic variants in MOS cause large polar body in oocyte and human female infertility. Hum Reprod 2022; 37:1932-1944. [PMID: 35670744 DOI: 10.1093/humrep/deac120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/29/2022] [Indexed: 01/28/2023] Open
Abstract
STUDY QUESTION What is the genetic basis of female infertility involving abnormal oocyte morphology with the production of a large first polar body (PB1)? SUMMARY ANSWER The homozygous missense variant (c.791C>G) and compound missense variants (c.596A>T and c.875C>T) in MOS proto-oncogene, serine/threonine kinase (MOS) (Online Mendelian Inheritance in Man (OMIM) reference: 190060; NM_005372.1) are responsible for abnormal oocyte morphology with the production of a large PB1 to cause infertility in women. WHAT IS KNOWN ALREADY MOS, an oocyte-specific gene, encodes a serine/threonine-protein kinase that directly phosphorylates mitogen-activated protein kinase (MAPK) kinase (MEK) to activate MAPK (also called extracellular-signal-regulated kinase (ERK)) signal cascade in the oocyte. Female mice lacking Mos remained viable, but infertile because of oocyte symmetric division, spontaneous parthenogenetic activation and early embryonic arrest. Recently, two independent studies demonstrated that female infertility with early embryonic arrest and fragmentation can be caused by biallelic mutations in MOS. However, so far, MOS variants have not been associated with the phenotype of large PB1 extrusion in human oocytes to contribute to female infertility. STUDY DESIGN, SIZE, DURATION Two independent infertile families characterized by the presence of large PB1 in oocytes were recruited between December 2020 and February 2022. PARTICIPANTS/MATERIALS, SETTING, METHODS Genomic DNA was extracted from the peripheral blood samples of the subjects for whole-exome sequencing. Pedigree analysis was validated by Sanger sequencing. Then, the pathogenic effects of the MOS variants on MOS protein properties and ERK1/2 activation were determined in HEK293 cells and mouse oocytes. MAIN RESULTS AND THE ROLE OF CHANCE We identified three rare missense variants in MOS, including a homozygous missense variant (c.791C>G) from Patient 1 in Family 1 and two compound missense variants (c.596A>T and c.875C>T) from twin sisters in Family 2. The MOS variants followed a recessive inheritance pattern in infertile patients. All three patients displayed a high percentage of large PB1 extrusion in the oocytes. The three MOS variants could not activate MEK1/2 and ERK1/2 in oocytes and HEK293 cells. In addition, when compared with wild-type MOS, the MOS variants decreased the MOS protein level and attenuated the binding capacity with MEK1. Microinjection of wild-type human MOS complementary RNAs (cRNAs) reversed the symmetric division of oocytes after siMos treatment. In contrast, the three MOS variants demonstrated no rescuing ability. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Owing to the scarcity of human oocyte samples and the associated ethical restrictions, we could not perform the rescue attempt for the study patients. WIDER IMPLICATIONS OF THE FINDINGS Our findings expand the genetic and phenotypic spectrum of MOS variants in causing female infertility. Our study findings facilitate the early genetic diagnosis of abnormal oocyte morphology characterized as large PB1 that eventually causes infertility in women. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Natural Science Foundation of China (82071640 and 82001633), Natural Science Foundation of Zhejiang Province (LD22C060001), the Key Projects Jointly Constructed by the Ministry and the Province of Zhejiang Medical and Health Science and Technology Project (WKJ-ZJ-2005), China Postdoctoral Science Foundation (2020M682575 and 2021T140198), the Changsha Municipal Natural Science Foundation (kq2007022) and Hunan Provincial Grant for Innovative Province Construction (2019SK4012). None of the authors declare any competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Yin-Li Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Wei Zheng
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Peipei Ren
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Jiamin Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Zhanhong Hu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Qing Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Heng-Yu Fan
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China.,Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fei Gong
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Guang-Xiu Lu
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Ge Lin
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| |
Collapse
|
6
|
Gryaznova Y, Keating L, Touati SA, Cladière D, El Yakoubi W, Buffin E, Wassmann K. Kinetochore individualization in meiosis I is required for centromeric cohesin removal in meiosis II. EMBO J 2021; 40:e106797. [PMID: 33644892 PMCID: PMC8013791 DOI: 10.15252/embj.2020106797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
Partitioning of the genome in meiosis occurs through two highly specialized cell divisions, named meiosis I and meiosis II. Step-wise cohesin removal is required for chromosome segregation in meiosis I, and sister chromatid segregation in meiosis II. In meiosis I, mono-oriented sister kinetochores appear as fused together when examined by high-resolution confocal microscopy, whereas they are clearly separated in meiosis II, when attachments are bipolar. It has been proposed that bipolar tension applied by the spindle is responsible for the physical separation of sister kinetochores, removal of cohesin protection, and chromatid separation in meiosis II. We show here that this is not the case, and initial separation of sister kinetochores occurs already in anaphase I independently of bipolar spindle forces applied on sister kinetochores, in mouse oocytes. This kinetochore individualization depends on separase cleavage activity. Crucially, without kinetochore individualization in meiosis I, bivalents when present in meiosis II oocytes separate into chromosomes and not sister chromatids. This shows that whether centromeric cohesin is removed or not is determined by the kinetochore structure prior to meiosis II.
Collapse
Affiliation(s)
- Yulia Gryaznova
- Institut de Biologie Paris SeineSorbonne UniversitéParisFrance
- CNRS UMR7622 Developmental Biology LabSorbonne UniversitéParisFrance
| | - Leonor Keating
- Institut de Biologie Paris SeineSorbonne UniversitéParisFrance
- CNRS UMR7622 Developmental Biology LabSorbonne UniversitéParisFrance
| | - Sandra A Touati
- Institut de Biologie Paris SeineSorbonne UniversitéParisFrance
- CNRS UMR7622 Developmental Biology LabSorbonne UniversitéParisFrance
| | - Damien Cladière
- Institut de Biologie Paris SeineSorbonne UniversitéParisFrance
- CNRS UMR7622 Developmental Biology LabSorbonne UniversitéParisFrance
| | - Warif El Yakoubi
- Institut de Biologie Paris SeineSorbonne UniversitéParisFrance
- CNRS UMR7622 Developmental Biology LabSorbonne UniversitéParisFrance
- Present address:
Cell and Developmental Biology CenterNational Heart Lung and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Eulalie Buffin
- Institut de Biologie Paris SeineSorbonne UniversitéParisFrance
- CNRS UMR7622 Developmental Biology LabSorbonne UniversitéParisFrance
| | - Katja Wassmann
- Institut de Biologie Paris SeineSorbonne UniversitéParisFrance
- CNRS UMR7622 Developmental Biology LabSorbonne UniversitéParisFrance
| |
Collapse
|
7
|
Tokmakov AA, Stefanov VE, Sato KI. Dissection of the Ovulatory Process Using ex vivo Approaches. Front Cell Dev Biol 2020; 8:605379. [PMID: 33363163 PMCID: PMC7755606 DOI: 10.3389/fcell.2020.605379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
Ovulation is a unique physiological phenomenon that is essential for sexual reproduction. It refers to the entire process of ovarian follicle responses to hormonal stimulation resulting in the release of mature fertilization-competent oocytes from the follicles and ovaries. Remarkably, ovulation in different species can be reproduced out-of-body with high fidelity. Moreover, most of the molecular mechanisms and signaling pathways engaged in this process have been delineated using in vitro ovulation models. Here, we provide an overview of the major molecular and cytological events of ovulation observed in frogs, primarily in the African clawed frog Xenopus laevis, using mainly ex vivo approaches, with the focus on meiotic oocyte maturation and follicle rupture. For the purpose of comparison and generalization, we also refer extensively to ovulation in other biological species, most notoriously, in mammals.
Collapse
Affiliation(s)
| | - Vasily E Stefanov
- Department of Biochemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Ken-Ichi Sato
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
8
|
Jessus C, Munro C, Houliston E. Managing the Oocyte Meiotic Arrest-Lessons from Frogs and Jellyfish. Cells 2020; 9:E1150. [PMID: 32392797 PMCID: PMC7290932 DOI: 10.3390/cells9051150] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
During oocyte development, meiosis arrests in prophase of the first division for a remarkably prolonged period firstly during oocyte growth, and then when awaiting the appropriate hormonal signals for egg release. This prophase arrest is finally unlocked when locally produced maturation initiation hormones (MIHs) trigger entry into M-phase. Here, we assess the current knowledge of the successive cellular and molecular mechanisms responsible for keeping meiotic progression on hold. We focus on two model organisms, the amphibian Xenopus laevis, and the hydrozoan jellyfish Clytia hemisphaerica. Conserved mechanisms govern the initial meiotic programme of the oocyte prior to oocyte growth and also, much later, the onset of mitotic divisions, via activation of two key kinase systems: Cdk1-Cyclin B/Gwl (MPF) for M-phase activation and Mos-MAPkinase to orchestrate polar body formation and cytostatic (CSF) arrest. In contrast, maintenance of the prophase state of the fully-grown oocyte is assured by highly specific mechanisms, reflecting enormous variation between species in MIHs, MIH receptors and their immediate downstream signalling response. Convergence of multiple signalling pathway components to promote MPF activation in some oocytes, including Xenopus, is likely a heritage of the complex evolutionary history of spawning regulation, but also helps ensure a robust and reliable mechanism for gamete production.
Collapse
Affiliation(s)
- Catherine Jessus
- Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Catriona Munro
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France;
- Inserm, Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, CNRS, 75005 Paris, France
| | - Evelyn Houliston
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France;
| |
Collapse
|
9
|
Osman E, Hong K, Scott R. A case of recurrent spontaneous parthenogenetic oocyte activation. Reprod Biomed Online 2019. [DOI: 10.1016/j.rbmo.2019.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Ardestani G, West MC, Maresca TJ, Fissore RA, Stratton MM. FRET-based sensor for CaMKII activity (FRESCA): A useful tool for assessing CaMKII activity in response to Ca 2+ oscillations in live cells. J Biol Chem 2019; 294:11876-11891. [PMID: 31201271 DOI: 10.1074/jbc.ra119.009235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/11/2019] [Indexed: 01/22/2023] Open
Abstract
Ca2+ oscillations and consequent Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation are required for embryogenesis, as well as neuronal, immunological, and cardiac signaling. Fertilization directly results in Ca2+ oscillations, but the resultant pattern of CaMKII activity remains largely unclear. To address this gap, we first employed the one existing biosensor for CaMKII activation. This sensor, Camui, comprises CaMKIIα and therefore solely reports on the activation of this CaMKII variant. Additionally, to detect the activity of all endogenous CaMKII variants simultaneously, we constructed a substrate-based sensor for CaMKII activity, FRESCA (FRET-based sensor for CaMKII activity). To examine the differential responses of the Camui and FRESCA sensors, we used several approaches to stimulate Ca2+ release in mouse eggs, including addition of phospholipase Cζ cRNA, which mimics natural fertilization. We found that the Camui response is delayed or terminates earlier than the FRESCA response. FRESCA enables assessment of endogenous CaMKII activity in real-time by both fertilization and artificial reagents, such as Sr2+, which also leads to CaMKII activation. FRESCA's broad utility will be important for optimizing artificial CaMKII activation for clinical use to manage infertility. Moreover, FRESCA provides a new view on CaMKII activity, and its application in additional biological systems may reveal new signaling paradigms in eggs, as well as in neurons, cardiomyocytes, immune cells, and other CaMKII-expressing cells.
Collapse
Affiliation(s)
- Goli Ardestani
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003.,Veterinary and Animal Sciences Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003
| | - Megan C West
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Thomas J Maresca
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Margaret M Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
11
|
Reconstitution of Intracellular Calcium Signaling in Xenopus Egg Extracts. Methods Mol Biol 2019. [PMID: 30737685 DOI: 10.1007/978-1-4939-9009-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Generation of calcium signal in the cytoplasm of fertilized or parthenogenetically activated eggs has been extensively studied in the intact eggs of several biological species. Calcium transient was found to elicit a plethora of biochemical and cellular events in these cells. Remarkably, intracellular calcium signaling can also be reconstituted in cell-free environment. In this chapter, we describe the methods that allow reconstitution, detection, and quantification of the calcium signal in cell-free extracts of Xenopus oocytes and eggs.
Collapse
|
12
|
Gopinathan L, Szmyd R, Low D, Diril MK, Chang HY, Coppola V, Liu K, Tessarollo L, Guccione E, van Pelt AMM, Kaldis P. Emi2 Is Essential for Mouse Spermatogenesis. Cell Rep 2018; 20:697-708. [PMID: 28723571 DOI: 10.1016/j.celrep.2017.06.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 05/12/2017] [Accepted: 06/12/2017] [Indexed: 12/01/2022] Open
Abstract
The meiotic functions of Emi2, an inhibitor of the APC/C complex, have been best characterized in oocytes where it mediates metaphase II arrest as a component of the cytostatic factor. We generated knockout mice to determine the in vivo functions of Emi2-in particular, its functions in the testis, where Emi2 is expressed at high levels. Male and female Emi2 knockout mice are viable but sterile, indicating that Emi2 is essential for meiosis but dispensable for embryonic development and mitotic cell divisions. We found that, besides regulating cell-cycle arrest in mouse eggs, Emi2 is essential for meiosis I progression in spermatocytes. In the absence of Emi2, spermatocytes arrest in early diplotene of prophase I. This arrest is associated with decreased Cdk1 activity and was partially rescued by a knockin mouse model of elevated Cdk1 activity. Additionally, we detected expression of Emi2 in spermatids and sperm, suggesting potential post-meiotic functions for Emi2.
Collapse
Affiliation(s)
- Lakshmi Gopinathan
- Institute of Molecular and Cell Biology (IMCB), A(∗)STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos #3-09, Singapore 138673, Republic of Singapore
| | - Radoslaw Szmyd
- Institute of Molecular and Cell Biology (IMCB), A(∗)STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos #3-09, Singapore 138673, Republic of Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (NUS), Singapore 117456, Republic of Singapore
| | - Diana Low
- Institute of Molecular and Cell Biology (IMCB), A(∗)STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos #3-09, Singapore 138673, Republic of Singapore
| | - M Kasim Diril
- Institute of Molecular and Cell Biology (IMCB), A(∗)STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos #3-09, Singapore 138673, Republic of Singapore
| | - Heng-Yu Chang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Vincenzo Coppola
- Mouse Cancer Genetics Program, National Cancer Institute, NCI-Frederick, Building 560, 1050 Boyles Street, Frederick, MD 21702-1201, USA
| | - Kui Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, National Cancer Institute, NCI-Frederick, Building 560, 1050 Boyles Street, Frederick, MD 21702-1201, USA
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology (IMCB), A(∗)STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos #3-09, Singapore 138673, Republic of Singapore; Department of Biochemistry, National University of Singapore (NUS), Singapore 117597, Republic of Singapore
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A(∗)STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos #3-09, Singapore 138673, Republic of Singapore; Department of Biochemistry, National University of Singapore (NUS), Singapore 117597, Republic of Singapore.
| |
Collapse
|
13
|
Tokmakov AA, Sato KI, Stefanov VE. Postovulatory cell death: why eggs die via apoptosis in biological species with external fertilization. J Reprod Dev 2017; 64:1-6. [PMID: 29081453 PMCID: PMC5830352 DOI: 10.1262/jrd.2017-100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spawned unfertilized eggs have been found to die by apoptosis in several species with external fertilization. However, there is no necessity for the externally laid eggs to degrade via this process, as apoptosis evolved as a mechanism to reduce the damaging effects of individual cell death on the whole organism. The recent observation of egg degradation in the genital tracts of some oviparous species provides a clue as to the physiological relevance of egg apoptosis in these animals. We hypothesize that egg apoptosis accompanies ovulation in species with external fertilization as a normal process to eliminate mature eggs retained in the genital tract after ovulation. Furthermore, apoptosis universally develops in ovulated eggs after spontaneous activation in the absence of fertilization. This paper provides an overview of egg apoptosis in several oviparous biological species, including frog, fish, sea urchin, and starfish.
Collapse
Affiliation(s)
| | - Ken-Ichi Sato
- Department of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Vasily E Stefanov
- Department of Biochemistry, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
14
|
Lane SIR, Morgan SL, Wu T, Collins JK, Merriman JA, ElInati E, Turner JM, Jones KT. DNA damage induces a kinetochore-based ATM/ATR-independent SAC arrest unique to the first meiotic division in mouse oocytes. Development 2017; 144:3475-3486. [PMID: 28851706 PMCID: PMC5665484 DOI: 10.1242/dev.153965] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/18/2017] [Indexed: 12/31/2022]
Abstract
Mouse oocytes carrying DNA damage arrest in meiosis I, thereby preventing creation of embryos with deleterious mutations. The arrest is dependent on activation of the spindle assembly checkpoint, which results in anaphase-promoting complex (APC) inhibition. However, little is understood about how this checkpoint is engaged following DNA damage. Here, we find that within minutes of DNA damage checkpoint proteins are assembled at the kinetochore, not at damage sites along chromosome arms, such that the APC is fully inhibited within 30 min. Despite this robust response, there is no measurable loss in k-fibres, or tension across the bivalent. Through pharmacological inhibition we observed that the response is dependent on Mps1 kinase, aurora kinase and Haspin. Using oocyte-specific knockouts we find the response does not require the DNA damage response kinases ATM or ATR. Furthermore, checkpoint activation does not occur in response to DNA damage in fully mature eggs during meiosis II, despite the divisions being separated by just a few hours. Therefore, mouse oocytes have a unique ability to sense DNA damage rapidly by activating the checkpoint at their kinetochores.
Collapse
Affiliation(s)
- Simon I R Lane
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Stephanie L Morgan
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Tianyu Wu
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Josie K Collins
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Julie A Merriman
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Elias ElInati
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - James M Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Keith T Jones
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
15
|
Prasad S, Koch B, Chaube SK. Involvement of Cyclin-Dependent Kinase 1 during Postovulatory Aging-Mediated Abortive Spontaneous Egg Activation in Rat Eggs Cultured In Vitro. Cell Reprogram 2016; 18:96-107. [PMID: 26982431 DOI: 10.1089/cell.2015.0068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Freshly ovulated rat eggs do not remain arrested at metaphase II (MII) and undergo exit from MII arrest with initiation of extrusion of the second polar body (PBII), a characteristic feature of abortive spontaneous egg activation (SEA). The biochemical and molecular changes during postovulatory aging-mediated abortive SEA remain poorly understood. We investigated the morphological, cellular, and molecular changes during postovulatory aging-mediated abortive SEA in eggs cultured in vitro. Our results suggest that postovulatory egg aging in vitro induced initiation of PBII extrusion in a time-dependent manner. Postovulatory aging increased Wee1 kinase and Thr-14/Tyr-15 phosphorylated cyclin-dependent kinase 1 (Cdk1) levels, whereas Thr-161 phosphorylated Cdk1 and cyclin B1 levels were significantly decreased in eggs cultured in vitro. The early mitotic inhibitor 2 (Emi2) level was significantly reduced, but anaphase promoting complex/cyclosome (APC/C) and mitotic arrest deficient protein (MAD2) levels were increased initially and then reduced during a later period of in vitro culture. These results suggest that an increased Wee1 kinase level modulated the specific phosphorylation status of Cdk1, increased Cdk1 activity, and decreased the cyclin B1 level. Furthermore, the decreased Emi2 level was associated with an increased level of APC/C and decreased level of cyclin B1, which resulted in maturation promoting factor (MPF) destabilization and finally led to postovulatory aging-mediated abortive SEA in rat eggs cultured in vitro.
Collapse
Affiliation(s)
- Shilpa Prasad
- 1 Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi-221005, Uttar Pradesh, India
| | - Biplob Koch
- 2 Genotoxicology and Cancer Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi-221005, Uttar Pradesh, India
| | - Shail K Chaube
- 1 Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi-221005, Uttar Pradesh, India
| |
Collapse
|
16
|
Abstract
Vertebrate reproduction requires a myriad of precisely orchestrated events-in particular, the maternal production of oocytes, the paternal production of sperm, successful fertilization, and initiation of early embryonic cell divisions. These processes are governed by a host of signaling pathways. Protein kinase and phosphatase signaling pathways involving Mos, CDK1, RSK, and PP2A regulate meiosis during maturation of the oocyte. Steroid signals-specifically testosterone-regulate spermatogenesis, as does signaling by G-protein-coupled hormone receptors. Finally, calcium signaling is essential for both sperm motility and fertilization. Altogether, this signaling symphony ensures the production of viable offspring, offering a chance of genetic immortality.
Collapse
Affiliation(s)
- Sally Kornbluth
- Duke University School of Medicine, Durham, North Carolina 27710
| | - Rafael Fissore
- University of Massachusetts, Amherst, Veterinary and Animal Sciences, Amherst, Massachusetts 01003
| |
Collapse
|
17
|
Touati SA, Wassmann K. How oocytes try to get it right: spindle checkpoint control in meiosis. Chromosoma 2015; 125:321-35. [PMID: 26255654 DOI: 10.1007/s00412-015-0536-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/09/2015] [Accepted: 07/20/2015] [Indexed: 11/27/2022]
Abstract
The generation of a viable, diploid organism depends on the formation of haploid gametes, oocytes, and spermatocytes, with the correct number of chromosomes. Halving the genome requires the execution of two consecutive specialized cell divisions named meiosis I and II. Unfortunately, and in contrast to male meiosis, chromosome segregation in oocytes is error prone, with human oocytes being extraordinarily "meiotically challenged". Aneuploid oocytes, that are with the wrong number of chromosomes, give rise to aneuploid embryos when fertilized. In humans, most aneuploidies are lethal and result in spontaneous abortions. However, some trisomies survive to birth or even adulthood, such as the well-known trisomy 21, which gives rise to Down syndrome (Nagaoka et al. in Nat Rev Genet 13:493-504, 2012). A staggering 20-25 % of oocytes ready to be fertilized are aneuploid in humans. If this were not bad enough, there is an additional increase in meiotic missegregations as women get closer to menopause. A woman above 40 has a risk of more than 30 % of getting pregnant with a trisomic child. Worse still, in industrialized western societies, child birth is delayed, with women getting their first child later in life than ever. This trend has led to an increase of trisomic pregnancies by 70 % in the last 30 years (Nagaoka et al. in Nat Rev Genet 13:493-504, 2012; Schmidt et al. in Hum Reprod Update 18:29-43, 2012). To understand why errors occur so frequently during the meiotic divisions in oocytes, we review here the molecular mechanisms at works to control chromosome segregation during meiosis. An important mitotic control mechanism, namely the spindle assembly checkpoint or SAC, has been adapted to the special requirements of the meiotic divisions, and this review will focus on our current knowledge of SAC control in mammalian oocytes. Knowledge on how chromosome segregation is controlled in mammalian oocytes may help to identify risk factors important for questions related to human reproductive health.
Collapse
Affiliation(s)
- Sandra A Touati
- Institut de Biologie Paris Seine (IBPS), UMR7622, Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,CNRS, IBPS, UMR7622 Developmental Biology Lab, Paris, France.,Chromosome Segregation Laboratory, Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, UK
| | - Katja Wassmann
- Institut de Biologie Paris Seine (IBPS), UMR7622, Sorbonne Universités, UPMC Univ Paris 06, Paris, France. .,CNRS, IBPS, UMR7622 Developmental Biology Lab, Paris, France.
| |
Collapse
|
18
|
Socolov R, Ebner T, Gorduza V, Martiniuc V, Angioni S, Socolov D. Self-oocyte activation and parthenogenesis: an unusual outcome of a misconducted IVF cycle. Gynecol Endocrinol 2015; 31:529-30. [PMID: 26137987 DOI: 10.3109/09513590.2015.1062861] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A rare cause of infertility is the lack of fertilisation with the spontaneous activation of oocytes, leading to parthenogenesis. We present such a case. The patient was a G1P0 38-year-old woman of African ethnicity, who requested an in vitro fertilisation (IVF) with donor sperm. She received a stimulation protocol of 75 IU of FSH/LH from day 3 of the cycle, which she interrupted after 2 d, and restarted with the same dosage for another 3 d from day 7, plus one administration of GnRH antagonist in day 10 of the cycle. With a follicle reaching 19 mm on day 11, estradiol of 325 ng/ml, ovulation was induced with hMG 5000 UI, and oocyte pick-up performed at 30 h. One oocyte was retrieved, and good-quality sperms were added to the insemination procedure. No fecundation occurred at 20 h, with the extruded oocyte separated from the granulosa wall. At 40 h and 64 h the aspect was of three cells, one cell with one nucleus, the others with high granulation and no visible nuclei. This case shows an unusual self-activation oocyte in a poorly managed IVF cycle. The patient will be further evaluated, to decide if a better managed stimulation protocol would prevent recurrence.
Collapse
Affiliation(s)
- Razvan Socolov
- a Department of Obstetrics and Gynecology , University of Medicine and Pharmacy Gr.T.Popa , Iasi , Romania
| | | | | | | | | | | |
Collapse
|
19
|
Sato KI. Transmembrane signal transduction in oocyte maturation and fertilization: focusing on Xenopus laevis as a model animal. Int J Mol Sci 2014; 16:114-34. [PMID: 25546390 PMCID: PMC4307238 DOI: 10.3390/ijms16010114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/15/2014] [Indexed: 11/16/2022] Open
Abstract
Fertilization is a cell biological phenomenon of crucial importance for the birth of new life in a variety of multicellular and sexual reproduction species such as algae, animal and plants. Fertilization involves a sequence of events, in which the female gamete "egg" and the male gamete "spermatozoon (sperm)" develop, acquire their functions, meet and fuse with each other, to initiate embryonic and zygotic development. Here, it will be briefly reviewed how oocyte cytoplasmic components are orchestrated to undergo hormone-induced oocyte maturation and sperm-induced activation of development. I then review how sperm-egg membrane interaction/fusion and activation of development in the fertilized egg are accomplished and regulated through egg coat- or egg plasma membrane-associated components, highlighting recent findings and future directions in the studies using Xenopus laevis as a model experimental animal.
Collapse
Affiliation(s)
- Ken-ichi Sato
- Laboratory of Cell Signaling and Development, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan.
| |
Collapse
|
20
|
Houel-Renault L, Philippe L, Piquemal M, Ciapa B. Autophagy is used as a survival program in unfertilized sea urchin eggs that are destined to die by apoptosis after inactivation of MAPK1/3 (ERK2/1). Autophagy 2014; 9:1527-39. [DOI: 10.4161/auto.25712] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
21
|
Calcium signaling and meiotic exit at fertilization in Xenopus egg. Int J Mol Sci 2014; 15:18659-76. [PMID: 25322156 PMCID: PMC4227238 DOI: 10.3390/ijms151018659] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/01/2014] [Accepted: 10/09/2014] [Indexed: 11/16/2022] Open
Abstract
Calcium is a universal messenger that mediates egg activation at fertilization in all sexually reproducing species studied. However, signaling pathways leading to calcium generation and the mechanisms of calcium-induced exit from meiotic arrest vary substantially among species. Here, we review the pathways of calcium signaling and the mechanisms of meiotic exit at fertilization in the eggs of the established developmental model, African clawed frog, Xenopus laevis. We also discuss calcium involvement in the early fertilization-induced events in Xenopus egg, such as membrane depolarization, the increase in intracellular pH, cortical granule exocytosis, cortical contraction, contraction wave, cortical rotation, reformation of the nuclear envelope, sperm chromatin decondensation and sister chromatid segregation.
Collapse
|
22
|
Costache V, McDougall A, Dumollard R. Cell cycle arrest and activation of development in marine invertebrate deuterostomes. Biochem Biophys Res Commun 2014; 450:1175-81. [DOI: 10.1016/j.bbrc.2014.03.155] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/31/2014] [Indexed: 11/24/2022]
|
23
|
Zitouni S, Nabais C, Jana SC, Guerrero A, Bettencourt-Dias M. Polo-like kinases: structural variations lead to multiple functions. Nat Rev Mol Cell Biol 2014; 15:433-52. [PMID: 24954208 DOI: 10.1038/nrm3819] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Members of the polo-like kinase (PLK) family are crucial regulators of cell cycle progression, centriole duplication, mitosis, cytokinesis and the DNA damage response. PLKs undergo major changes in abundance, activity, localization and structure at different stages of the cell cycle. They interact with other proteins in a tightly controlled spatiotemporal manner as part of a network that coordinates key cell cycle events. Their essential roles are highlighted by the fact that alterations in PLK function are associated with cancers and other diseases. Recent knowledge gained from PLK crystal structures, evolution and interacting molecules offers important insights into the mechanisms that underlie their regulation and activity, and suggests novel functions unrelated to cell cycle control for this family of kinases.
Collapse
Affiliation(s)
- Sihem Zitouni
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Catarina Nabais
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Swadhin Chandra Jana
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Adán Guerrero
- 1] Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal. [2] Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico (UNAM), Avenida Universidad 2001, Col. Chamilpa, C.P. 62210 Cuernavaca Mor., Mexico
| | | |
Collapse
|
24
|
Matthews LM, Evans JP. α-endosulfine (ENSA) regulates exit from prophase I arrest in mouse oocytes. Cell Cycle 2014; 13:1639-49. [PMID: 24675883 DOI: 10.4161/cc.28606] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mammalian oocytes in ovarian follicles are arrested in meiosis at prophase I. This arrest is maintained until ovulation, upon which the oocyte exits from this arrest, progresses through meiosis I and to metaphase of meiosis II. The progression from prophase I to metaphase II, known as meiotic maturation, is mediated by signals that coordinate these transitions in the life of the oocyte. ENSA (α-endosulfine) and ARPP19 (cAMP-regulated phosphoprotein-19) have emerged as regulators of M-phase, with function in inhibition of protein phosphatase 2A (PP2A) activity. Inhibition of PP2A maintains the phosphorylated state of CDK1 substrates, thus allowing progression into and/or maintenance of an M-phase state. We show here ENSA in mouse oocytes plays a key role in the progression from prophase I arrest into M-phase of meiosis I. The majority of ENSA-deficient oocytes fail to exit from prophase I arrest. This function of ENSA in oocytes is dependent on PP2A, and specifically on the regulatory subunit PPP2R2D (also known as B55δ). Treatment of ENSA-deficient oocytes with Okadaic acid to inhibit PP2A rescues the defect in meiotic progression, with Okadaic acid-treated, ENSA-deficient oocytes being able to exit from prophase I arrest. Similarly, oocytes deficient in both ENSA and PPP2R2D are able to exit from prophase I arrest to an extent similar to wild-type oocytes. These data are evidence of a role for ENSA in regulating meiotic maturation in mammalian oocytes, and also have potential relevance to human oocyte biology, as mouse and human have genes encoding both Arpp19 and Ensa.
Collapse
Affiliation(s)
- Lauren M Matthews
- Department of Biochemistry and Molecular Biology; Bloomberg School of Public Health; Johns Hopkins University; Baltimore, MD USA
| | - Janice P Evans
- Department of Biochemistry and Molecular Biology; Bloomberg School of Public Health; Johns Hopkins University; Baltimore, MD USA
| |
Collapse
|
25
|
Levasseur M, Dumollard R, Chambon JP, Hebras C, Sinclair M, Whitaker M, McDougall A. Release from meiotic arrest in ascidian eggs requires the activity of two phosphatases but not CaMKII. Development 2014; 140:4583-93. [PMID: 24194472 DOI: 10.1242/dev.096578] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The fertilising sperm triggers a transient Ca(2+) increase that releases eggs from cell cycle arrest in the vast majority of animal eggs. In vertebrate eggs, Erp1, an APC/C(cdc20) inhibitor, links release from metaphase II arrest with the Ca(2+) transient and its degradation is triggered by the Ca(2+)-induced activation of CaMKII. By contrast, many invertebrate groups have mature eggs that arrest at metaphase I, and these species do not possess the CaMKII target Erp1 in their genomes. As a consequence, it is unknown exactly how cell cycle arrest at metaphase I is achieved and how the fertilisation Ca(2+) transient overcomes the arrest in the vast majority of animal species. Using live-cell imaging with a novel cyclin reporter to study cell cycle arrest and its release in urochordate ascidians, the closest living invertebrate group to the vertebrates, we have identified a new signalling pathway for cell cycle resumption in which CaMKII plays no part. Instead, we find that the Ca(2+)-activated phosphatase calcineurin (CN) is required for egg activation. Moreover, we demonstrate that parthenogenetic activation of metaphase I-arrested eggs by MEK inhibition, independent of a Ca(2+) increase, requires the activity of a second egg phosphatase: PP2A. Furthermore, PP2A activity, together with CN, is required for normal egg activation during fertilisation. As ascidians are a sister group of the vertebrates, we discuss these findings in relation to cell cycle arrest and egg activation in chordates.
Collapse
Affiliation(s)
- Mark Levasseur
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
We report optimized methods for preparing Xenopus egg extracts without cytochalasin D, that we term "actin-intact egg extract." These are undiluted egg cytoplasm that contains abundant organelles, and glycogen which supplies energy, and represents the least perturbed cell-free cytoplasm preparation we know of. We used this system to probe cell cycle regulation of actin and myosin-II dynamics (Field et al., 2011), and to reconstitute the large, interphase asters that organize early Xenopus embryos (Mitchison et al., 2012; Wühr, Tan, Parker, Detrich, & Mitchison, 2010). Actin-intact Xenopus egg extracts are useful for analysis of actin dynamics, and interaction of actin with other cytoplasmic systems, in a cell-free system that closely mimics egg physiology, and more generally for probing the biochemistry and biophysics of the egg, zygote, and early embryo. Detailed protocols are provided along with assays used to check cell cycle state and tips for handling and storing undiluted egg extracts.
Collapse
Affiliation(s)
- Christine M Field
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA; The Marine Biological Laboratory, Woods Hole, Massachusetts, USA.
| | - Phuong A Nguyen
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA; The Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Keisuke Ishihara
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA; The Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Aaron C Groen
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA; The Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA; The Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
27
|
Philippe L, Tosca L, Zhang WL, Piquemal M, Ciapa B. Different routes lead to apoptosis in unfertilized sea urchin eggs. Apoptosis 2013; 19:436-50. [DOI: 10.1007/s10495-013-0950-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Cui J, Sartain CV, Pleiss JA, Wolfner MF. Cytoplasmic polyadenylation is a major mRNA regulator during oogenesis and egg activation in Drosophila. Dev Biol 2013; 383:121-31. [PMID: 23978535 DOI: 10.1016/j.ydbio.2013.08.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 08/15/2013] [Accepted: 08/17/2013] [Indexed: 11/27/2022]
Abstract
The GLD-2 class of poly(A) polymerases regulate the timing of translation of stored transcripts by elongating the poly(A) tails of target mRNAs in the cytoplasm. WISPY is a GLD-2 enzyme that acts in the Drosophila female germline and is required for the completion of the egg-to-embryo transition. Though a handful of WISPY target mRNAs have been identified during both oogenesis and early embryogenesis, it was unknown whether WISP simply regulated a small pool of patterning or cell cycle genes, or whether, instead, cytoplasmic polyadenylation was widespread during this developmental transition. To identify the full range of WISPY targets, we carried out microarray analysis to look for maternal mRNAs whose poly(A) tails fail to elongate in the absence of WISP function. We examined the polyadenylated portion of the maternal transcriptome in both stage 14 (mature) oocytes and in early embryos that had completed egg activation. Our analysis shows that the poly(A) tails of thousands of maternal mRNAs fail to elongate in wisp-deficient oocytes and embryos. Furthermore, we have identified specific classes of genes that are highly regulated in this manner at each stage. Our study shows that cytoplasmic polyadenylation is a major regulatory mechanism during oocyte maturation and egg activation.
Collapse
Affiliation(s)
- Jun Cui
- Department of Molecular Biology and Genetics, Biotechnology Bldg., Cornell University, Ithaca, NY 14853, United States
| | | | | | | |
Collapse
|
29
|
Intracellular and extracellular pH and Ca are bound to control mitosis in the early sea urchin embryo via ERK and MPF activities. PLoS One 2013; 8:e66113. [PMID: 23785474 PMCID: PMC3681939 DOI: 10.1371/journal.pone.0066113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/01/2013] [Indexed: 11/19/2022] Open
Abstract
Studies aiming to predict the impact on marine life of ocean acidification and of altered salinity have shown altered development in various species including sea urchins. We have analyzed how external Na, Ca, pH and bicarbonate control the first mitotic divisions of sea urchin embryos. Intracellular free Ca (Cai) and pH (pHi) and the activities of the MAP kinase ERK and of MPF regulate mitosis in various types of cells including oocytes and early embryos. We found that intracellular acidification of fertilized eggs by Na-acetate induces a huge activation of ERK at time of mitosis. This also stops the cell cycle and leads to cell death, which can be bypassed by treatment with the MEK inhibitor U0126. Similar intracellular acidification induced in external medium containing low sodium or 5-(N-Methyl-N-isobutyl) amiloride, an inhibitor of the Na+/H+ exchanger, also stops the cell cycle and leads to cell death. In that case, an increase in Cai and in the phosphorylation of tyr-cdc2 occurs during mitosis, modifications that depend on external Ca. Our results indicate that the levels of pHi and Cai determine accurate levels of Ptyr-Cdc2 and P-ERK capable of ensuring progression through the first mitotic cycles. These intracellular parameters rely on external Ca, Na and bicarbonate, alterations of which during climate changes could act synergistically to perturb the early marine life.
Collapse
|
30
|
Wassmann K. Sister chromatid segregation in meiosis II: deprotection through phosphorylation. Cell Cycle 2013; 12:1352-9. [PMID: 23574717 DOI: 10.4161/cc.24600] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Meiotic divisions (meiosis I and II) are specialized cell divisions to generate haploid gametes. The first meiotic division with the separation of chromosomes is named reductional division. The second division, which takes place immediately after meiosis I without intervening S-phase, is equational, with the separation of sister chromatids, similar to mitosis. This meiotic segregation pattern requires the two-step removal of the cohesin complex holding sister chromatids together: cohesin is removed from chromosome arms that have been subjected to homologous recombination in meiosis I and from the centromere region in meiosis II. Cohesin in the centromere region is protected from removal in meiosis I, but this protection has to be removed--deprotected--for sister chromatid segregation in meiosis II. Whereas the mechanisms of cohesin protection are quite well understood, the mechanisms of deprotection have been largely unknown until recently. In this review I summarize our current knowledge on cohesin deprotection.
Collapse
|
31
|
Liu W, Yin J, Zhao G, Yun Y, Wu S, Jones K, Lei A. Differential regulation of cyclin B1 degradation between the first and second meiotic divisions of bovine oocytes. Theriogenology 2012; 78:1171-81.e1. [DOI: 10.1016/j.theriogenology.2012.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 11/28/2022]
|
32
|
|
33
|
Jeseta M, Marin M, Tichovska H, Melicharova P, Cailliau-Maggio K, Martoriati A, Lescuyer-Rousseau A, Beaujois R, Petr J, Sedmikova M, Bodart JF. Nitric oxide-donor SNAP induces Xenopus eggs activation. PLoS One 2012; 7:e41509. [PMID: 22911804 PMCID: PMC3402422 DOI: 10.1371/journal.pone.0041509] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 06/22/2012] [Indexed: 12/11/2022] Open
Abstract
Nitric oxide (NO) is identified as a signaling molecule involved in many cellular or physiological functions including meiotic maturation and parthenogenetic activation of mammalian oocytes. We observed that nitric oxide donor SNAP was potent to induce parthenogenetic activation in Xenopus eggs. NO-scavenger CPTIO impaired the effects of SNAP, providing evidence for the effects of the latter to be specific upon NO release. In Xenopus eggs, SNAP treatment induced pigment rearrangement, pronucleus formation and exocytosis of cortical granules. At a biochemical level, SNAP exposure lead to MAPK and Rsk inactivation within 30 minutes whereas MPF remained active, in contrast to calcium ionophore control where MPF activity dropped rapidly. MAPK inactivation could be correlated to pronuclear envelope reformation observed. In SNAP-treated eggs, a strong increase in intracellular calcium level was observed. NO effects were impaired in calcium-free or calcium limited medium, suggesting that that parthenogenetic activation of Xenopus oocytes with a NO donor was mainly calcium-dependent.
Collapse
Affiliation(s)
- Michal Jeseta
- Veterinary Research Institute, Department of Genetics and Reproduction, Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bernhardt ML, Kong BY, Kim AM, O'Halloran TV, Woodruff TK. A zinc-dependent mechanism regulates meiotic progression in mammalian oocytes. Biol Reprod 2012; 86:114. [PMID: 22302686 DOI: 10.1095/biolreprod.111.097253] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Precise coordination of meiotic progression is a critical determinant of an egg's capacity to be fertilized successfully, and zinc has emerged as a key regulatory element in this process. An early manifestation of a regulatory role for this transition metal is the significant increase in total intracellular zinc. This accumulation is essential for meiotic progression beyond telophase I and the establishment of meiotic arrest at metaphase II. The subsequent developmental event, fertilization, induces a rapid expulsion of labile zinc that is a hallmark event in meiotic resumption. In the present study, we show that the zinc fluxes work, in part, by altering the activity of the cytostatic factor (CSF), the cellular activity required for the establishment and maintenance of metaphase II arrest in the mature, unfertilized egg. We propose a model in which zinc exerts concentration-dependent regulation of meiosis through the CSF component EMI2, a zinc-binding protein. Together, the data support the conclusion that zinc itself, through its interaction with EMI2, is a central component of the CSF.
Collapse
Affiliation(s)
- Miranda L Bernhardt
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
35
|
Inhibitor-2 induced M-phase arrest in Xenopus cycling egg extracts is dependent on MAPK activation. Cell Mol Biol Lett 2011; 16:669-88. [PMID: 21956525 PMCID: PMC6275968 DOI: 10.2478/s11658-011-0030-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 09/16/2011] [Indexed: 01/05/2023] Open
Abstract
The evolutionarily-conserved protein phosphatase 1 (PP1) plays a central role in dephosphorylation of phosphoproteins during the M phase of the cell cycle. We demonstrate here that the PP1 inhibitor inhibitor-2 protein (Inh-2) induces an M-phase arrest in Xenopus cycling egg extracts. Interestingly, the characteristics of this M-phase arrest are similar to those of mitogen-activated protein kinase (p42MAPK)-induced M-phase arrest. This prompted us to investigate whether Inh-2-induced M-phase arrest was dependent on activation of the p42MAPK pathway. We demonstrate here that MAPK activity is required for Inh-2-induced M-phase arrest, as inhibition of MAPK by PD98059 allowed cycling extracts to exit M phase, despite the presence of Inh-2. We next investigated whether Inh-2 phosphorylation by the MAPK pathway was required to induce an M-phase arrest. We discovered that while p90Rsk (a MAPK protein required for M-phase arrest) is able to phosphorylate Inh-2, this phosphorylation is not required for Inh-2 function. Overall, our results suggest a novel mechanism linking p42MAPK and PP1 pathways during M phase of the cell cycle.
Collapse
|
36
|
Chebotareva T, Taylor J, Mullins JJ, Wilmut I. Rat eggs cannot wait: Spontaneous exit from meiotic metaphase-II arrest. Mol Reprod Dev 2011; 78:795-807. [PMID: 21910153 DOI: 10.1002/mrd.21385] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/15/2011] [Indexed: 11/06/2022]
Abstract
Mammalian eggs await fertilisation while arrested at the second metaphase stage of meiotic division. A network of signalling pathways enables the establishment and maintenance of this metaphase-II arrest. In the absence of fertilisation, mammalian eggs can spontaneously exit metaphase II when parthenogenetically stimulated, or sometimes without any obvious stimulation. Ovulated rat eggs abortively release from metaphase-II arrest once removed from egg donors. Spontaneously activated rat eggs extrude the second polar body and proceed to the so-called metaphase III-'like' stage, with clumps of condensed chromatin scattered in the egg cytoplasm. It is still unclear what makes rat eggs susceptible to spontaneous activation; however, a vague picture of the signalling pathways involved in the process of spontaneous activation is beginning to emerge. Such cell cycle instability is one of the major reasons why it is more difficult to establish nuclear transfer in the rat. This review examines the known predisposing factors and biochemical mechanisms involved in spontaneous activation. The strategies used to prevent spontaneous metaphase-II release in rat eggs will also be discussed.
Collapse
Affiliation(s)
- Tatiana Chebotareva
- MRC Centre for Regenerative Medicine, Edinburgh University, Edinburgh, Scotland, UK.
| | | | | | | |
Collapse
|
37
|
Mouguelar VS, Cabada MO, Coux G. The integrin-binding motif RGDS induces protein tyrosine phosphorylation without activation in Bufo arenarum (Amphibia) oocytes. Reproduction 2011; 141:581-93. [DOI: 10.1530/rep-10-0411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Integrins are cell adhesion molecules that are thought to be involved in sperm–oocyte interaction. Nevertheless, their function in mammalian fertilization is still controversial, as different species behave differently. In amphibians, their role is mainly supported byXenopus laevisstudies, where RGDS peptide induces oocyte activation. We recently provided evidence suggesting the presence and involvement of integrins in the interaction of the oocyte plasma membrane (PM) with sperm in the amphibianBufo arenarum. In order to understand the role of integrin homologs in oocytes and their possible contribution to egg activation mechanisms, we examined the presence of integrin subunits and the effect of RGDS peptide on oocytes and during fertilization. Western blot studies detected integrin subunits α5, αV and β1 in oocytes. In sperm, we could detect only the αV integrin subunit. We found that RGDS peptide was unable to elicit egg activation or MAPK dephosphorylation, but can induce reversible inhibition of fertilization. A similar partial inhibition was produced by an anti-β1 integrin antibody. Using an anti-phosphotyrosine antibody we found major changes in phosphotyrosine-containing proteins in egg extracts minutes after fertilization. Cytosol and PMs isolated from oocytes and fertilized eggs showed additional fertilization-induced phosphorylated proteins. Some of these were also present in cytosol and PMs from RGDS-treated oocytes (partially mimicking fertilization). These findings suggest thatB. arenarumfertilization involves integrins (e.g. β1 subunit) as adhesion proteins. Our data support the view that RGDS-binding receptors may function as signaling receptors inB. arenarumoocytes, but integrin engagement by RGDS is not sufficient for oocyte activation.
Collapse
|
38
|
Moshe Y, Bar-On O, Ganoth D, Hershko A. Regulation of the action of early mitotic inhibitor 1 on the anaphase-promoting complex/cyclosome by cyclin-dependent kinases. J Biol Chem 2011; 286:16647-57. [PMID: 21454540 DOI: 10.1074/jbc.m111.223339] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell cycle regulation is characterized by alternating activities of cyclin-dependent kinases (CDKs) and of the ubiquitin ligase anaphase promoting complex/cyclosome (APC/C). During S-phase APC/C is inhibited by early mitotic inhibitor 1 (Emi1) to allow the accumulation of cyclins A and B and to prevent re-replication. Emi1 is degraded at prophase by a Plk1-dependent pathway. Recent studies in which the degradation pathway of Emi1 was disrupted have shown that APC/C is activated at mitotic entry despite stabilization of Emi1. These results suggested the possibility of additional mechanisms other than degradation of Emi1, which release APC/C from inhibition by Emi1 upon entry into mitosis. In this study we report one such mechanism, by which the ability of Emi1 to inhibit APC/C is negatively regulated by CDKs. We show that in Plk1-inhibited cells Emi1 is stabilized and phosphorylated, that Emi1 is phosphorylated by CDKs in mitotic but not S-phase cell extracts, and that Emi1 phosphorylation by mitotic cell extracts or purified CDKs markedly reduces the ability of Emi1 to bind and to inhibit APC/C. Finally, we show that the addition of extracts from S-phase cells to extracts from mitotic cells protects Emi1 from CDK-mediated inactivation.
Collapse
Affiliation(s)
- Yakir Moshe
- Unit of Biochemistry, the Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | |
Collapse
|
39
|
Chang HY, Jennings PC, Stewart J, Verrills NM, Jones KT. Essential role of protein phosphatase 2A in metaphase II arrest and activation of mouse eggs shown by okadaic acid, dominant negative protein phosphatase 2A, and FTY720. J Biol Chem 2011; 286:14705-12. [PMID: 21383018 DOI: 10.1074/jbc.m110.193227] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vertebrate eggs arrest at second meiotic metaphase. The fertilizing sperm causes meiotic exit through Ca(2+)-mediated activation of the anaphase-promoting complex/cyclosome (APC/C). Although the loss in activity of the M-phase kinase CDK1 is known to be an essential downstream event of this process, the contribution of phosphatases to arrest and meiotic resumption is less apparent, especially in mammals. Therefore, we explored the role of protein phosphatase 2A (PP2A) in mouse eggs using pharmacological inhibition and activation as well as a functionally dominant-negative catalytic PP2A subunit (dn-PP2Ac-L199P) coupled with live cell imaging. We observed that PP2A inhibition using okadaic acid induced events normally observed at fertilization: degradation of the APC/C substrates cyclin B1 and securin resulting from loss of the APC/C inhibitor Emi2. Although sister chromatids separated, chromatin remained condensed, and polar body extrusion was blocked as a result of a rapid spindle disruption, which could be ameliorated by non-degradable cyclin B1, suggesting that spindle integrity was affected by CDK1 loss. Similar cell cycle effects to okadaic acid were also observed using dominant-negative PP2Ac. Preincubation of eggs with the PP2A activator FTY720 could block many of the actions of okadaic acid, including Emi2, cyclin B1, and securin degradation and sister chromatid separation. Therefore, in conclusion, we used okadaic acid, dn-PP2Ac-L199P, and FTY720 on mouse eggs to demonstrate that PP2A is needed to for both continued metaphase arrest and successful exit from meiosis.
Collapse
Affiliation(s)
- Heng-Yu Chang
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | | | | | | | | |
Collapse
|
40
|
Dumollard R, Levasseur M, Hebras C, Huitorel P, Carroll M, Chambon JP, McDougall A. Mos limits the number of meiotic divisions in urochordate eggs. Development 2011; 138:885-95. [DOI: 10.1242/dev.057133] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mos kinase is a universal mediator of oocyte meiotic maturation and is produced during oogenesis and destroyed after fertilization. The hallmark of maternal meiosis is that two successive M phases (meiosis I and II) drive two rounds of asymmetric cell division (ACD). However, how the egg limits the number of meioses to just two, thereby preventing gross aneuploidy, is poorly characterized. Here, in urochordate eggs, we show that loss of Mos/MAPK activity is necessary to prevent entry into meiosis III. Remarkably, maintaining the Mos/MAPK pathway active after fertilization at near physiological levels induces additional rounds of meiotic M phase (meiosis III, IV and V). During these additional rounds of meiosis, the spindle is positioned asymmetrically resulting in further rounds of ACD. In addition, inhibiting meiotic exit with Mos prevents pronuclear formation, cyclin A accumulation and maintains sperm-triggered Ca2+ oscillations, all of which are hallmarks of the meiotic cell cycle in ascidians. It will be interesting to determine whether Mos availability in mammals can also control the number of meioses as it does in the urochordates. Our results demonstrate the power of urochordate eggs as a model to dissect the egg-to-embryo transition.
Collapse
Affiliation(s)
- Rémi Dumollard
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Mark Levasseur
- Institute of Cell and Molecular Bioscences, The Medical School, Framlington Place, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK
| | - Céline Hebras
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Philippe Huitorel
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Michael Carroll
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Jean-Philippe Chambon
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Alex McDougall
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| |
Collapse
|
41
|
Choi T. Dimethyl sulfoxide inhibits spontaneous oocyte fragmentation and delays inactivation of maturation promoting factor (MPF) during the prolonged culture of ovulated murine oocytes in vitro. Cytotechnology 2011; 63:279-84. [PMID: 21336963 DOI: 10.1007/s10616-011-9339-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 01/28/2011] [Indexed: 01/19/2023] Open
Abstract
In this study, the effects of dimethyl sulfoxide (DMSO) on the spontaneous aging of ovulated murine oocyte were evaluated in vitro. When ovulated oocytes were cultured continuously in vitro without fertilization stimulation, they underwent several phenotypic changes, including non-activation, activation, fragmentation, and lysis. To investigate the effects of DMSO on these changes, I cultured ovulated oocytes with various concentrations of DMSO and evaluated the phenotypic changes for up to 3 days. After 3 days of culture, the frequency of oocyte fragmentation was significantly lower in oocytes treated with 2 and 4% DMSO (7 and 5%, respectively) than in control oocytes (80%). All control oocytes were activated or fragmented after 3 days of culture in vitro. However, more than 80% of the oocytes cultured with 4% DMSO for 3 days contained spindles and condensed chromosomes, although they displayed abnormal spindle structures. Next Cdk1 activity in DMSO-treated oocytes was examined. The results showed that DMSO treatment prevented the reduction in Cdk1 activity during prolonged culture. Moreover, DMSO inhibited the degradation of cyclin B. These results suggest that DMSO inhibits spontaneous oocyte fragmentation and maintains Cdk1 activity in ovulated murine oocytes during prolonged culture in vitro, possibly by inhibiting cyclin B degradation.
Collapse
Affiliation(s)
- Taesaeng Choi
- Department of Microbiology, College of Medicine, Dankook University, Anseo, Cheonan, 330-714, Korea,
| |
Collapse
|
42
|
Combelles CMH, Kearns WG, Fox JH, Racowsky C. Cellular and genetic analysis of oocytes and embryos in a human case of spontaneous oocyte activation. Hum Reprod 2011; 26:545-52. [PMID: 21224285 DOI: 10.1093/humrep/deq363] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Unusual and consistent defects in infertility patients merit attention as these may indicate an underlying genetic abnormality, in turn necessitating tailored management strategies. We describe a case of repeated early pregnancy loss from in vivo conceptions, followed by cancelled embryo transfers after one IVF and one ICSI/PGD cycle. Following the unexpected presence of cleaved embryos at the fertilization check in the first IVF attempt, oocytes and embryos were subsequently analyzed in an ICSI/PGD case. Part of the oocyte cohort was fixed at retrieval for a cellular evaluation of microtubules, microfilaments and chromatin. The remaining oocytes were injected with sperm, and resultant embryos were biopsied for genetic analysis by fluorescence in situ hybridization (FISH), single-nucleotide polymorphism (SNP) microarray for 23 chromosome pairs, as well as with PCR for sex chromosomes. The presence of interphase microtubule networks and pronuclear structures indicated that oocytes were spontaneously activated by the time of retrieval. FISH revealed aneuploidy in all seven blastomeres analyzed, with all but two lacking Y chromosomes. Microarray SNP analysis showed an exclusively maternal origin of all blastomeres analyzed, which was further confirmed by PCR. From our multi-faceted analyses, we conclude that spontaneous activation, or parthenogenesis, was probably the pathology underlying our patient's recurrent inability to maintain a normal pregnancy. Such analyses may prove beneficial not only in diagnosing case-specific aberrations for other patients with similar or related failures, but also for furthering our general understanding of oocyte activation.
Collapse
|
43
|
Kaláb P, Solc P, Motlík J. The role of RanGTP gradient in vertebrate oocyte maturation. Results Probl Cell Differ 2011; 53:235-67. [PMID: 21630149 DOI: 10.1007/978-3-642-19065-0_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The maturation of vertebrate oocyte into haploid gamete, the egg, consists of two specialized asymmetric cell divisions with no intervening S-phase. Ran GTPase has an essential role in relaying the active role of chromosomes in their own segregation by the meiotic process. In addition to its conserved role as a key regulator of macromolecular transport between nucleus and cytoplasm, Ran has important functions during cell division, including in mitotic spindle assembly and in the assembly of nuclear envelope at the exit from mitosis. The cellular functions of Ran are mediated by RanGTP interactions with nuclear transport receptors (NTRs) related to importin β and depend on the existence of chromosome-centered RanGTP gradient. Live imaging with FRET biosensors indeed revealed the existence of RanGTP gradient throughout mouse oocyte maturation. NTR-dependent transport of cell cycle regulators including cyclin B1, Wee2, and Cdc25B between the oocyte cytoplasm and germinal vesicle (GV) is required for normal resumption of meiosis. After GVBD in mouse oocytes, RanGTP gradient is required for timely meiosis I (MI) spindle assembly and provides long-range signal directing egg cortex differentiation. However, RanGTP gradient is not required for MI spindle migration and may be dispensable for MI spindle function in chromosome segregation. In contrast, MII spindle assembly and function in maturing mouse and Xenopus laevis eggs depend on RanGTP gradient, similar to X. laevis MII-derived egg extracts.
Collapse
Affiliation(s)
- Petr Kaláb
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892-4256, USA.
| | | | | |
Collapse
|
44
|
Bernhardt ML, Kim AM, O'Halloran TV, Woodruff TK. Zinc requirement during meiosis I-meiosis II transition in mouse oocytes is independent of the MOS-MAPK pathway. Biol Reprod 2010; 84:526-36. [PMID: 21076080 DOI: 10.1095/biolreprod.110.086488] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Zinc is essential for many biological processes, including proper functioning of gametes. We recently reported that zinc levels rise by over 50% during oocyte maturation and that attenuation of zinc availability during this period could be achieved using the membrane-permeable heavy metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN). This zinc insufficiency resulted in formation of large polar bodies, failure to establish metaphase II arrest, and impaired establishment of cortical polarity. As these phenotypes resemble those of MOS null oocytes, we examined the impact of zinc insufficiency on the MOS-MAPK pathway. Reduced levels of both MOS protein and phosphorylation of MAP2K1/2 are observed in zinc-insufficient oocytes; however, these differences appear only after completion of the first meiotic division. In addition, activation of the downstream effector of the MOS pathway, MAPK3/1, is not affected by zinc insufficiency, and reduced MOS levels are observed only with the presence of TPEN after the first polar body extrusion. These data are inconsistent with the hypothesis that reduced MOS mediates the observed phenotype. Finally, MOS overexpression does not rescue the phenotype of zinc-insufficient oocytes, confirming that the observed disruption of asymmetric division and spindle abnormalities cannot be attributed to impaired MOS signaling. Zinc-insufficient oocytes do not increase maturation promoting factor (MPF) activity following the first meiotic division, and increasing MPF activity through expression of nondegradable cyclin B1 partially rescues the ability of zinc-insufficient oocytes to enter metaphase II. Although we have shown that zinc has a novel role in the meiotic cell cycle, it is not mediated through the MOS-MAPK pathway.
Collapse
Affiliation(s)
- Miranda L Bernhardt
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
45
|
Suzuki T, Suzuki E, Yoshida N, Kubo A, Li H, Okuda E, Amanai M, Perry ACF. Mouse Emi2 as a distinctive regulatory hub in second meiotic metaphase. Development 2010; 137:3281-91. [PMID: 20724447 DOI: 10.1242/dev.052480] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The oocytes of vertebrates are typically arrested at metaphase II (mII) by the cytostatic factor Emi2 until fertilization. Regulatory mechanisms in Xenopus Emi2 (xEmi2) are understood in detail but contrastingly little is known about the corresponding mechanisms in mammals. Here, we analyze Emi2 and its regulatory neighbours at the molecular level in intact mouse oocytes. Emi2, but not xEmi2, exhibited nuclear targeting. Unlike xEmi2, separable N- and C-terminal domains of mouse Emi2 modulated metaphase establishment and maintenance, respectively, through indirect and direct mechanisms. The C-terminal activity was mapped to the potential phosphorylation target Tx(5)SxS, a destruction box (D-box), a lattice of Zn(2+)-coordinating residues and an RL domain. The minimal region of Emi2 required for its cytostatic activity was mapped to a region containing these motifs, from residue 491 to the C terminus. The cytostatic factor Mos-MAPK promoted Emi2-dependent metaphase establishment, but Mos autonomously disappeared from meiotically competent mII oocytes. The N-terminal Plx1-interacting phosphodegron of xEmi2 was apparently shifted to within a minimal fragment (residues 51-300) of mouse Emi2 that also contained a calmodulin kinase II (CaMKII) phosphorylation motif and which was efficiently degraded during mII exit. Two equimolar CaMKII gamma isoform variants were present in mII oocytes, neither of which phosphorylated Emi2 in vitro, consistent with the involvement of additional factors. No evidence was found that calcineurin is required for mouse mII exit. These data support a model in which mammalian meiotic establishment, maintenance and exit converge upon a modular Emi2 hub via evolutionarily conserved and divergent mechanisms.
Collapse
Affiliation(s)
- Toru Suzuki
- Laboratory of Mammalian Molecular Embryology, Bath Centre for Regenerative Medicine, and Development of Biology and Biochemistry, University of Bath, Bath, UK
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
After DNA or spindle damage, p53-defective tumor cells undergo a complex cycle of reversible polyploidy. How this process occurs and more importantly, why, has recently become the focus of several research groups, prompting this review in which we discuss two related phenomena that accompany the reversible polyploidy of tumor cells: the induction of meiosis genes such as MOS and the decrease in genomic instability observed during the reversion from polyploidy to para-diploidy. The reversible polyploidy likely provides the means through which the balance between increased chromosome instability (CIN), driving genetic variation and decreased CIN, necessary for perpetuating these malignant clones, is maintained. These concepts are integrated with recent findings that many meiotic and self-renewal genes become activated during reversible polyploidy and lead us to the hypothesis that tumor cell immortality may be achieved through germline-like transmission.
Collapse
Affiliation(s)
- J Erenpreisa
- Latvian Biomedicine Research and Study Centre, Riga, Latvia
| | | |
Collapse
|
47
|
Tang W, Wu JQ, Chen C, Yang CS, Guo JY, Freel CD, Kornbluth S. Emi2-mediated inhibition of E2-substrate ubiquitin transfer by the anaphase-promoting complex/cyclosome through a D-box-independent mechanism. Mol Biol Cell 2010; 21:2589-97. [PMID: 20534816 PMCID: PMC2912346 DOI: 10.1091/mbc.e09-08-0708] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) inhibitor Emi2 contains a destruction box (D-box) found in APC/C substrates, but does not appear to inhibit the APC/C by a “pseudosubstrate” mechanism. Rather, it inhibits transfer of ubiquitin from the E2 to substrates. The D-box promotes Emi2-APC/C association, but the zinc-binding region plays the critical role in APC/C inhibition. Vertebrate eggs are arrested at Metaphase II by Emi2, the meiotic anaphase-promoting complex/cyclosome (APC/C) inhibitor. Although the importance of Emi2 during oocyte maturation has been widely recognized and its regulation extensively studied, its mechanism of action remained elusive. Many APC/C inhibitors have been reported to act as pseudosubstrates, inhibiting the APC/C by preventing substrate binding. Here we show that a previously identified zinc-binding region is critical for the function of Emi2, whereas the D-box is largely dispensable. We further demonstrate that instead of acting through a “pseudosubstrate” mechanism as previously hypothesized, Emi2 can inhibit Cdc20-dependent activation of the APC/C substoichiometrically, blocking ubiquitin transfer from the ubiquitin-charged E2 to the substrate. These findings provide a novel mechanism of APC/C inhibition wherein the final step of ubiquitin transfer is targeted and raise the interesting possibility that APC/C is inhibited by Emi2 in a catalytic manner.
Collapse
Affiliation(s)
- Wanli Tang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Tripathi A, Kumar KVP, Chaube SK. Meiotic cell cycle arrest in mammalian oocytes. J Cell Physiol 2010; 223:592-600. [PMID: 20232297 DOI: 10.1002/jcp.22108] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Meiotic cell cycle in mammalian oocytes is a dynamic process that involves several stop/go channels. The cell cycle arrest in oocyte occurs at various stages such as diplotene, metaphase-I (M-I), metaphase-II (M-II), and so called metaphase-like arrest (M-III). Leutinizing hormone surge induces meiotic resumption from diplotene arrest in follicular microenvironment by overriding several factors responsible for the maintenance of meiotic arrest. The inhibitory factors are synthesized in oocyte or in the associated follicular somatic cells and transferred to the oocyte. The major factors include hypoxanthine, cyclic adenosine 3', 5'-monophosphate, cyclic guanosine 3', 5'-monophosphate, reactive oxygen species, protein kinase A, and protein kinase C. In the presence of active protein kinases, epidermal-like growth factors are produced that activate mitogen-activated protein kinase in cumulus granulosa cells. The maturation promoting factor, cytostatic factors, and spindle assembly checkpoint proteins are also involved in that maintenance of arrest at various stages of meiotic cell cycle in mammalian oocytes. In this review, we briefly summarize the role of these factors in the maintenance of meiotic cell cycle arrest in mammalian oocytes.
Collapse
Affiliation(s)
- Anima Tripathi
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | | | |
Collapse
|
49
|
Vogt E, Sanhaji M, Klein W, Seidel T, Wordeman L, Eichenlaub-Ritter U. MCAK is present at centromeres, midspindle and chiasmata and involved in silencing of the spindle assembly checkpoint in mammalian oocytes. Mol Hum Reprod 2010; 16:665-84. [PMID: 20406800 DOI: 10.1093/molehr/gaq025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitotic centromere-associated kinesin (MCAK) is an ATP-dependent microtubule (MT) depolymerase regulated by Aurora kinase (AURK) phosphorylation and implicated in resolution of improper MT attachments in mitosis. Distribution of MCAK was studied in oocyte maturation by anti-MCAK antibody, anti-tubulin antibody, anti-AURKB antibody and anti-centromere antibody (ACA) and by the expression of MCAK-enhanced green fluorescent protein fusion protein in maturing mouse oocytes. Function was assessed by knockdown of MCAK and Mad2, by inhibiting AURK or the proteasome, by live imaging with polarization microscope and by chromosomal analysis. The results show that MCAK is transiently recruited to the nucleus and transits to spindle poles, ACA-positive domains and chiasmata at prometaphase I. At metaphase I and II, it is present at centrosomes and centromeres next to AURKB and checkpoint proteins Mad2 and BubR1. It is retained at centromeres at telophase I and also at the midbody. Knockdown of MCAK causes a delay in chromosome congression but does not prevent bipolar spindle assembly. MCAK knockdown also induces a meiosis I arrest, which is overcome by knockdown of Mad2 resulting in chiasma resolution, chromosome separation, formation of aberrant meiosis II spindles and increased hypoploidy. In conclusion, MCAK appears to possess a unique distribution and function in oocyte maturation. It is required for meiotic progression from meiosis I to meiosis II associated with silencing of the spindle assembly checkpoint. Alterations in abundance and activity of MCAK, as implicated in aged oocytes, may therefore contribute to the loss of control of cell cycle and chromosome behaviour, thus increasing risk for errors in chromosome segregation and aneuploidy.
Collapse
Affiliation(s)
- E Vogt
- Faculty of Biology, Gene Technology/Microbiology, University Bielefeld, Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Wu CF, Wang R, Liang Q, Liang J, Li W, Jung SY, Qin J, Lin SH, Kuang J. Dissecting the M phase-specific phosphorylation of serine-proline or threonine-proline motifs. Mol Biol Cell 2010; 21:1470-81. [PMID: 20219976 PMCID: PMC2861607 DOI: 10.1091/mbc.e09-06-0486] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
M phase induction in eukaryotic cell cycles is associated with a burst of protein phosphorylation, primarily at serine or threonine followed by proline (S/TP motif). The mitotic phosphoprotein antibody MPM-2 recognizes a significant subset of mitotically phosphorylated S/TP motifs; however, the required surrounding sequences of and the key kinases that phosphorylate these S/TP motifs remain to be determined. By mapping the mitotic MPM-2 epitopes in Xenopus Cdc25C and characterizing the mitotic MPM-2 epitope kinases in Xenopus oocytes and egg extracts, we have determined that phosphorylation of TP motifs that are surrounded by hydrophobic residues at both -1 and +1 positions plays a dominant role in M phase-associated burst of MPM-2 reactivity. Although mitotic Cdk and MAPK may phosphorylate subsets of these motifs that have a basic residue at the +2 position and a proline residue at the -2 position, respectively, the majority of these motifs that are preferentially phosphorylated in mitosis do not have these features. The M phase-associated burst of MPM-2 reactivity can be induced in Xenopus oocytes and egg extracts in the absence of MAPK or Cdc2 activity. These findings indicate that the M phase-associated burst of MPM-2 reactivity represents a novel type of protein phosphorylation in mitotic regulation.
Collapse
Affiliation(s)
- Chuan Fen Wu
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|