1
|
Toivakka M, Gordon K, Kumar S, Bermudez-Barrientos JR, Abreu-Goodger C, Zamoyska R, Buck AH. miR-7 is recruited to the high molecular weight RNA-induced silencing complex in CD8 + T cells upon activation and suppresses IL-2 signaling. RNA (NEW YORK, N.Y.) 2023; 30:26-36. [PMID: 37879863 PMCID: PMC10726160 DOI: 10.1261/rna.079030.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
Increasing evidence suggests mammalian Argonaute (Ago) proteins partition into distinct complexes within cells, but there is still little biochemical or functional understanding of the miRNAs differentially associated with these complexes. In naïve T cells, Ago2 is found almost exclusively in low molecular weight (LMW) complexes which are associated with miRNAs but not their target mRNAs. Upon T-cell activation, a proportion of these Ago2 complexes move into a newly formed high molecular weight (HMW) RNA-induced silencing complex (RISC), which is characterized by the presence of the GW182 protein that mediates translational repression. Here, we demonstrate distinct partitioning of miRNAs and isomiRs in LMW versus HMW RISCs upon antigen-mediated activation of CD8+ T cells. We identify miR-7 as highly enriched in HMW RISC and demonstrate that miR-7 inhibition leads to increased production of IL-2 and up-regulation of the IL-2 receptor, the transferrin receptor, CD71 and the amino acid transporter, CD98. Our data support a model where recruitment of miR-7 to HMW RISC restrains IL-2 signaling and the metabolic processes regulated by IL-2.
Collapse
Affiliation(s)
- Matilda Toivakka
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Katrina Gordon
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Sujai Kumar
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - José Roberto Bermudez-Barrientos
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Cei Abreu-Goodger
- Institute of Ecology & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Rose Zamoyska
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Amy H Buck
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| |
Collapse
|
2
|
Advances in Understanding Mitochondrial MicroRNAs (mitomiRs) on the Pathogenesis of Triple-Negative Breast Cancer (TNBC). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5517777. [PMID: 33824695 PMCID: PMC8007369 DOI: 10.1155/2021/5517777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Triple-negative breast cancer (TNBC) is characterized by poor outcome and the most challenging breast cancer type to treat worldwide. TNBC manifests distinct profile of mitochondrial functions, which dictates reprogrammed metabolism, fosters tumor progression, and notably serves as therapeutic targets. Mitochondrial microRNAs (mitomiRs) are a group of microRNAs that critically modulate mitochondrial homeostasis. By a pathway-centric manner, mitomiRs tightly orchestrate metabolic reprogramming, redox status, cell apoptosis, mitochondrial dynamics, mitophagy, mitochondrial DNA (mtDNA) maintenance, and calcium balance, leading to an emerging field of study in various cancer types, including TNBC. We herein review the recent insights into the roles and mechanism of mitomiRs in TNBC and highlight its clinical value in diagnosis and prognosis as well as vital advances on therapeutics of preclinical and clinical studies.
Collapse
|
3
|
New Insights into the Role of miR-29a in Hepatocellular Carcinoma: Implications in Mechanisms and Theragnostics. J Pers Med 2021; 11:jpm11030219. [PMID: 33803804 PMCID: PMC8003318 DOI: 10.3390/jpm11030219] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most lethal human cancer globally. For advanced HCC, curable plan for advanced HCC is yet to be established, and the prognosis remains poor. The detail mechanisms underlying the progression of HCC tumorigenicity and the corruption of tumor microenvironment (TME) is complex and inconclusive. A growing body of studies demonstrate microRNAs (miRs) are important regulators in the tumorigenicity and TME development. Notably, mounting evidences indicate miR-29a play a crucial role in exerting hepatoprotective effect on various types of stress and involved in the progression of HCC, which elucidates their potential theragnostic implications. In this review, we reviewed the advanced insights into the detail mechanisms by which miR-29a dictates carcinogenesis, epigenetic program, and metabolic adaptation, and implicated in the sponging activity of competitive endogenous RNAs (ceRNA) and the TME components in the scenario of HCC. Furthermore, we highlighted its clinical significance in diagnosis and prognosis, as well as the emerging therapeutics centered on the activation of miR-29a.
Collapse
|
4
|
Holzner G, Mateescu B, van Leeuwen D, Cereghetti G, Dechant R, Stavrakis S, deMello A. High-throughput multiparametric imaging flow cytometry: toward diffraction-limited sub-cellular detection and monitoring of sub-cellular processes. Cell Rep 2021; 34:108824. [PMID: 33691119 DOI: 10.1016/j.celrep.2021.108824] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/07/2020] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
We present a sheathless, microfluidic imaging flow cytometer that incorporates stroboscopic illumination for blur-free fluorescence detection at ultra-high analytical throughput. The imaging platform is capable of multiparametric fluorescence quantification and sub-cellular localization of these structures down to 500 nm with microscopy image quality. We demonstrate the efficacy of the approach through the analysis and localization of P-bodies and stress granules in yeast and human cells using fluorescence and bright-field detection at analytical throughputs in excess of 60,000 and 400,000 cells/s, respectively. Results highlight the utility of our imaging flow cytometer in directly investigating phase-separated compartments within cellular environments and screening rare events at the sub-cellular level for a range of diagnostic applications.
Collapse
Affiliation(s)
- Gregor Holzner
- Institute for Chemical & Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Bogdan Mateescu
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniel van Leeuwen
- Department of Biology, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Gea Cereghetti
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Reinhard Dechant
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical & Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland.
| | - Andrew deMello
- Institute for Chemical & Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland.
| |
Collapse
|
5
|
Purohit PK, Saini N. Mitochondrial microRNA (MitomiRs) in cancer and complex mitochondrial diseases: current status and future perspectives. Cell Mol Life Sci 2021; 78:1405-1421. [PMID: 33084945 PMCID: PMC11072739 DOI: 10.1007/s00018-020-03670-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/13/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023]
Abstract
Mitochondria are not only important for cellular bioenergetics but also lie at the heart of critical metabolic pathways. They can rapidly adjust themselves in response to changing conditions and the metabolic needs of the cell. Mitochondrial involvement as well as its dysfunction has been found to be associated with variety of pathological processes and diseases. mitomiRs are class of miRNA(s) that regulate mitochondrial gene expression and function. This review sheds light on the role of mitomiRs in regulating different biological processes-mitochondrial dynamics, oxidative stress, cell metabolism, chemoresistance, apoptosis,and their relevance in metabolic diseases, neurodegenerative disorders, and cancer. Insilico analysis of predicted targets of mitomiRs targeting energy metabolism identified several significantly altered pathways (needs in vivo validations) that may provide a new therapeutic approach for the treatment of human diseases. Last part of the review discusses about the clinical aspects of miRNA(s) and mitomiRs in Medicine.
Collapse
Affiliation(s)
- Paresh Kumar Purohit
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201 002, India
| | - Neeru Saini
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India.
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
6
|
Zheng B, Mora RA, Fritzler MJ, Satoh M, Bloch DB, Garcia-De La Torre I, Boylan K, Kohl K, Wener MH, Andrade LEC, Chan EKL. Establishment of international autoantibody reference standards for the detection of autoantibodies directed against PML bodies, GW bodies, and NuMA protein. Clin Chem Lab Med 2020; 59:197-207. [PMID: 32776893 PMCID: PMC7855248 DOI: 10.1515/cclm-2020-0981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/21/2020] [Indexed: 12/16/2022]
Abstract
Objectives: Reference materials are important in the standardization of autoantibody testing and only a few are freely available for many known autoantibodies. Our goal was to develop three reference materials for antibodies to PML bodies/multiple nuclear dots (MND), antibodies to GW bodies (GWB), and antibodies to the nuclear mitotic apparatus (NuMA). Methods: Reference materials for identifying autoantibodies to MND (MND-REF), GWB (GWB-REF), and NuMA (NuMA-REF) were obtained from three donors and validated independently by seven laboratories. The sera were characterized using indirect immunofluorescence assay (IFA) on HEp-2 cell substrates including two-color immunofluorescence using antigen-specific markers, western blot (WB), immunoprecipitation (IP), line immunoassay (LIA), addressable laser bead immunoassay (ALBIA), enzyme-linked immunosorbent assay (ELISA), and immunoprecipitation–mass spectrometry (IP-MS). Results: MND-REF stained 6–20 discrete nuclear dots that colocalized with PML bodies. Antibodies to Sp100 and PML were detected by LIA and antibodies to Sp100 were also detected by ELISA. GWB-REF stained discrete cytoplasmic dots in interphase cells, which were confirmed to be GWB using two-color immunofluorescence. Anti-Ge-1 antibodies were identified in GWB-REF by ALBIA, IP, and IP-MS. All reference materials produced patterns at dilutions of 1:160 or greater. NuMA-REF produced fine speckled nuclear staining in interphase cells and staining of spindle fibers and spindle poles. The presence of antibodies to NuMA was verified by IP, WB, ALBIA, and IP-MS. Conclusions: MND-REF, GWB-REF, and NuMA-REF are suitable reference materials for the corresponding antinuclear antibodies staining patterns and will be accessible to qualified laboratories.
Collapse
Affiliation(s)
- Bing Zheng
- Department of Oral Biology,University of Florida, Gainesville, FL, USA.,Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Rodrigo A Mora
- Department of Oral Biology,University of Florida, Gainesville, FL, USA
| | - Marvin J Fritzler
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Minoru Satoh
- Department of Clinical Nursing, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Donald B Bloch
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ignacio Garcia-De La Torre
- Department of Immunology and Rheumatology, Hospital General de Occidente and University of Guadalajara, Guadalajara, Mexico
| | - Katherine Boylan
- Scientific & Clinical Affairs, Plasma Services Group Inc., Huntingdon Valley, PA, USA
| | - Kathryn Kohl
- Scientific & Clinical Affairs, Plasma Services Group Inc., Huntingdon Valley, PA, USA
| | - Mark H Wener
- Division of Rheumatology and Department of Laboratory Medicine,University of Washington, Seattle, WA, USA
| | - Luis E C Andrade
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Immunology Division, Fleury Laboratories, São Paulo, Brazil
| | - Edward K L Chan
- Department of Oral Biology,University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Liu Z, Johnson ST, Zhang Z, Corey DR. Expression of TNRC6 (GW182) Proteins Is Not Necessary for Gene Silencing by Fully Complementary RNA Duplexes. Nucleic Acid Ther 2019; 29:323-334. [PMID: 31670606 PMCID: PMC6885777 DOI: 10.1089/nat.2019.0815] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The trinucleotide repeat containing 6 (TNRC6) family of proteins are core components of RNA interference (RNAi) and consist of three paralogs (TNRC6A, TNRC6B, and TNRC6C). The TNRC6 paralogs associate with argonaute (AGO) protein, the core RNAi factor, and bridge its interactions with other proteins. We obtained TNRC6A and TNRC6B single and double knockout cell lines to investigate how the TNRC6 paralogs contribute to RNAi. We found that TNRC6 proteins are not required for gene silencing when duplex RNAs are fully complementary. TNRC6 expression was necessary for regulation by a microRNA. TNRC6A, but not TNRC6B, expression was necessary for transcriptional activation by a duplex RNA targeting a gene promoter. By contrast, AGO2 is required for all three gene expression pathways. TNRC6A can affect the Dicer localization in cytoplasm versus the nucleus, but none of the three TNRC6 paralogs was necessary for nuclear localization of AGO2. Our data suggest that the roles of the TNRC6 paralogs differ in some details and that TNRC6 is not required for clinical therapeutic silencing mechanisms that involve fully complementary duplex RNAs.
Collapse
Affiliation(s)
- Zhongtian Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China.,Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, Texas
| | - Samantha T Johnson
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, Texas
| | - Zhiying Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - David R Corey
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, Texas
| |
Collapse
|
8
|
Wu N, Nguyen XN, Wang L, Appourchaux R, Zhang C, Panthu B, Gruffat H, Journo C, Alais S, Qin J, Zhang N, Tartour K, Catez F, Mahieux R, Ohlmann T, Liu M, Du B, Cimarelli A. The interferon stimulated gene 20 protein (ISG20) is an innate defense antiviral factor that discriminates self versus non-self translation. PLoS Pathog 2019; 15:e1008093. [PMID: 31600344 PMCID: PMC6805002 DOI: 10.1371/journal.ppat.1008093] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/22/2019] [Accepted: 09/18/2019] [Indexed: 01/29/2023] Open
Abstract
ISG20 is a broad spectrum antiviral protein thought to directly degrade viral RNA. However, this mechanism of inhibition remains controversial. Using the Vesicular Stomatitis Virus (VSV) as a model RNA virus, we show here that ISG20 interferes with viral replication by decreasing protein synthesis in the absence of RNA degradation. Importantly, we demonstrate that ISG20 exerts a translational control over a large panel of non-self RNA substrates including those originating from transfected DNA, while sparing endogenous transcripts. This activity correlates with the protein's ability to localize in cytoplasmic processing bodies. Finally, these functions are conserved in the ISG20 murine ortholog, whose genetic ablation results in mice with increased susceptibility to viral infection. Overall, our results posit ISG20 as an important defense factor able to discriminate the self/non-self origins of the RNA through translation modulation.
Collapse
Affiliation(s)
- Nannan Wu
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Shanghai Emerging and Reemerging Infectious Disease Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xuan-Nhi Nguyen
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Li Wang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Romain Appourchaux
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Chengfei Zhang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Baptiste Panthu
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Henri Gruffat
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Chloé Journo
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Sandrine Alais
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Juliang Qin
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Na Zhang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Kevin Tartour
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Frédéric Catez
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Renaud Mahieux
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Theophile Ohlmann
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Mingyao Liu
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bing Du
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- * E-mail: (BD); (AC)
| | - Andrea Cimarelli
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- * E-mail: (BD); (AC)
| |
Collapse
|
9
|
Emerging microRNAs in cancer diagnosis, progression, and immune surveillance. Cancer Lett 2018; 438:126-132. [DOI: 10.1016/j.canlet.2018.09.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/19/2022]
|
10
|
Liu J, Liu Z, Corey DR. The Requirement for GW182 Scaffolding Protein Depends on Whether Argonaute Is Mediating Translation, Transcription, or Splicing. Biochemistry 2018; 57:5247-5256. [PMID: 30086238 DOI: 10.1021/acs.biochem.8b00602] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
GW182 and argonaute 2 (AGO2) are core proteins of the RNA interference complex. GW182 is a scaffolding protein that physically associates with AGO2 and bridges its interactions with other proteins. A fundamental problem in biology is how scaffolding proteins adapt or contribute to differing functional demands within cells. Here we test the necessity for human GW182 proteins (paralogs TNRC6A, TNRC6B, and TNRC6C) for several mechanisms of small duplex RNA-mediated control of gene expression, including translational silencing by miRNAs, translational silencing by siRNAs, transcriptional silencing, transcriptional activation, and splicing. We find that GW182 is required for transcriptional activation and for the activity of miRNAs but is dispensable for the regulation of splicing, transcriptional silencing, and the action of siRNAs. AGO2, by contrast, is necessary for each of these processes. Our data suggest that GW182 does not alter AGO2 to make it active. Instead, GW182 organizes protein complexes around AGO2. Sometimes this higher level of organization is necessary, and sometimes it is not. AGO2 and GW182 offer an example for how a partnership between a scaffolding protein and a functional protein can be powerful but not obligatory.
Collapse
Affiliation(s)
- Jing Liu
- Departments of Pharmacology and Biochemistry , The University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States
| | - Zhongtian Liu
- Departments of Pharmacology and Biochemistry , The University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States.,College of Animal Science and Technology , Northwest A&F University , Shaanxi , China 712100
| | - David R Corey
- Departments of Pharmacology and Biochemistry , The University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States
| |
Collapse
|
11
|
Role of GW182 protein in the cell. Int J Biochem Cell Biol 2018; 101:29-38. [PMID: 29791863 DOI: 10.1016/j.biocel.2018.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/23/2018] [Accepted: 05/17/2018] [Indexed: 12/27/2022]
Abstract
GW182 proteins interact directly with the argonaute proteins and constitute key components of miRNA repressor complexes (miRISC) in metazoans. As argonautes are insufficient for silencing they recruit the GW182 s that act as scaffold proteins inducing downstream translational repression, target mRNA deadenylation and exonucleolytic mRNA degradation. Besides their role as part of repressor complexes inside the cell, they function in wide variety of cellular processes as highlighted in this review. The present review summarises and discusses in detail our current knowledge of the GW182 s and their role inside the cell.
Collapse
|
12
|
Cieplak-Rotowska MK, Tarnowski K, Rubin M, Fabian MR, Sonenberg N, Dadlez M, Niedzwiecka A. Structural Dynamics of the GW182 Silencing Domain Including its RNA Recognition motif (RRM) Revealed by Hydrogen-Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:158-173. [PMID: 29080206 PMCID: PMC5785596 DOI: 10.1007/s13361-017-1830-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/08/2017] [Accepted: 10/01/2017] [Indexed: 06/07/2023]
Abstract
The human GW182 protein plays an essential role in micro(mi)RNA-dependent gene silencing. miRNA silencing is mediated, in part, by a GW182 C-terminal region called the silencing domain, which interacts with the poly(A) binding protein and the CCR4-NOT deadenylase complex to repress protein synthesis. Structural studies of this GW182 fragment are challenging due to its predicted intrinsically disordered character, except for its RRM domain. However, detailed insights into the properties of proteins containing disordered regions can be provided by hydrogen-deuterium exchange mass spectrometry (HDX/MS). In this work, we applied HDX/MS to define the structural state of the GW182 silencing domain. HDX/MS analysis revealed that this domain is clearly divided into a natively unstructured part, including the CCR4-NOT interacting motif 1, and a distinct RRM domain. The GW182 RRM has a very dynamic structure, since water molecules can penetrate the whole domain in 2 h. The finding of this high structural dynamics sheds new light on the RRM structure. Though this domain is one of the most frequently occurring canonical protein domains in eukaryotes, these results are - to our knowledge - the first HDX/MS characteristics of an RRM. The HDX/MS studies show also that the α2 helix of the RRM can display EX1 behavior after a freezing-thawing cycle. This means that the RRM structure is sensitive to environmental conditions and can change its conformation, which suggests that the state of the RRM containing proteins should be checked by HDX/MS in regard of the conformational uniformity. Graphical Abstract.
Collapse
Affiliation(s)
- Maja K Cieplak-Rotowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089, Warsaw, Poland
| | - Krzysztof Tarnowski
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, PL-02106, Warsaw, Poland
| | - Marcin Rubin
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089, Warsaw, Poland
| | - Marc R Fabian
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
- Goodman Cancer Center, McGill University, Montréal, Québec, Canada
| | - Michal Dadlez
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, PL-02106, Warsaw, Poland
| | - Anna Niedzwiecka
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland.
| |
Collapse
|
13
|
Zielezinski A, Karlowski WM. Early origin and adaptive evolution of the GW182 protein family, the key component of RNA silencing in animals. RNA Biol 2016; 12:761-70. [PMID: 26106978 PMCID: PMC4615383 DOI: 10.1080/15476286.2015.1051302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The GW182 proteins are a key component of the miRNA-dependent post-transcriptional silencing pathway in animals. They function as scaffold proteins to mediate the interaction of Argonaute (AGO)-containing complexes with cytoplasmic poly(A)-binding proteins (PABP) and PAN2-PAN3 and CCR4-NOT deadenylases. The AGO-GW182 complexes mediate silencing of the target mRNA through induction of translational repression and/or mRNA degradation. Although the GW182 proteins are a subject of extensive experimental research in the recent years, very little is known about their origin and evolution. Here, based on complex functional annotation and phylogenetic analyses, we reveal 448 members of the GW182 protein family from the earliest animals to humans. Our results indicate that a single-copy GW182/TNRC6C progenitor gene arose with the emergence of multicellularity and it multiplied in the last common ancestor of vertebrates in 2 rounds of whole genome duplication (WGD) resulting in 3 genes. Before the divergence of vertebrates, both the AGO- and CCR4-NOT-binding regions of GW182s showed significant acceleration in the accumulation of amino acid changes, suggesting functional adaptation toward higher specificity to the molecules of the silencing complex. We conclude that the silencing ability of the GW182 proteins improves with higher position in the taxonomic classification and increasing complexity of the organism. The first reconstruction of the molecular journey of GW182 proteins from the ancestral metazoan protein to the current mammalian configuration provides new insight into development of the miRNA-dependent post-transcriptional silencing pathway in animals.
Collapse
Affiliation(s)
- Andrzej Zielezinski
- a Department of Computational Biology; Institute of Molecular Biology and Biotechnology; Adam Mickiewicz University ; Poznan , Poland
| | | |
Collapse
|
14
|
Iwakawa HO, Tomari Y. The Functions of MicroRNAs: mRNA Decay and Translational Repression. Trends Cell Biol 2015; 25:651-665. [PMID: 26437588 DOI: 10.1016/j.tcb.2015.07.011] [Citation(s) in RCA: 543] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are a class of endogenous small noncoding RNAs, which regulate complementary mRNAs by inducing translational repression and mRNA decay. Although this dual repression system seems to operate in both animals and plants, genetic and biochemical studies suggest that the mechanism underlying the miRNA-mediated silencing is different in the two kingdoms. Here, we review the recent progress in our understanding of how miRNAs mediate translational repression and mRNA decay, and discuss the contributions of the two silencing modes to the overall silencing effect in both kingdoms.
Collapse
Affiliation(s)
- Hiro-Oki Iwakawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
15
|
Bilbao-Aldaiturriaga N, Gutierrez-Camino A, Martin-Guerrero I, Pombar-Gomez M, Zalacain-Diez M, Patiño-Garcia A, Lopez-Lopez E, Garcia-Orad A. Polymorphisms in miRNA processing genes and their role in osteosarcoma risk. Pediatr Blood Cancer 2015; 62:766-9. [PMID: 25663449 DOI: 10.1002/pbc.25416] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND The possible associations between genetic variants and osteosarcoma risk have been analyzed without conclusive results. Those studies were focused mainly on genes of biologically plausible pathways. However, recently, another pathway has acquired relevance in cellular transformation and tumorigenesis, the microRNA (miRNA) processing pathway. Dysregulation of the expression levels of genes in this pathway has been described in cancer. Consequently, single nucleotide polymorphisms (SNPs) in genes that codify for proteins involved in the miRNA processing pathway may affect miRNAs, and therefore their target genes, which might be associated with cancer development and progression. The aim of this study was to evaluate whether SNPs in miRNA processing genes confer predisposition to osteosarcoma. PROCEDURE We analyzed 72 SNPs in 21 miRNA processing genes in a total of 99 osteosarcoma patients and 387 controls. RESULTS A total of three SNPs were associated with osteosarcoma susceptibility. Interestingly, these SNPs were located in miRNA processing genes (CNOT1, CNOT4 and SND1) which are part of the RISC complex. Among them, the association of rs11866002 in CNOT1 was nearly significant after Bonferroni correction. CONCLUSIONS This study suggests that SNPs in RISC complex genes may be involved in osteosarcoma susceptibility, especially rs11866002 in CNOT1.
Collapse
Affiliation(s)
- Nerea Bilbao-Aldaiturriaga
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Odontology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Keppeke GD, Calise SJ, Chan EKL, Andrade LEC. Assembly of IMPDH2-based, CTPS-based, and mixed rod/ring structures is dependent on cell type and conditions of induction. J Genet Genomics 2015; 42:287-99. [PMID: 26165495 DOI: 10.1016/j.jgg.2015.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 02/07/2023]
Abstract
Inhibition of guanosine triphosphate (GTP) and cytidine triphosphate (CTP) biosynthetic pathways induces cells to assemble rod/ring (RR) structures, also named cytoophidia, which consist of the enzymes cytidine triphosphate synthase (CTPS) and inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). We aim to explore the interaction of CTPS and IMPDH2 in the generation of RR structures. HeLa and COS-7 cells were cultured in normal conditions or in the presence of 6-diazo-5-oxo-L-norleucine (DON), ribavirin, or mycophenolic acid (MPA). Over 90% of DON-treated cells presented RR structures. In HeLa cells, 35% of the RR structures were positive for IMPDH2 alone, 26% were CTPS alone, and 31% were IMPDH2/CTPS mixed, while in COS-7 cells, 42% of RR were IMPDH2 alone, 41% were CTPS alone, and 10% were IMPDH2/CTPS mixed. Ribavirin and MPA treatments induced only IMPDH2-based RR. Cells were also transfected with an N-terminal hemagglutinin (NHA)-tagged CTPS1 construct. Over 95% of NHA-CTPS1 transfected cells with DON treatment presented IMPDH2-based RR and almost 100% presented CTPS1-based RR; when treated with ribavirin, over 94% of transfected cells presented IMPDH2-based RR and 37% presented CTPS1-based RR, whereas 2% of untreated transfected cells presented IMPDH2-based RR and 28% presented CTPS1-based RR. These results may help in understanding the relationship between CTP and GTP biosynthetic pathways, especially concerning the formation of filamentous RR structures.
Collapse
Affiliation(s)
- Gerson Dierley Keppeke
- Rheumatology Division, Federal University of Sao Paulo, Sao Paulo SP 04023-062, Brazil; Department of Oral Biology, University of Florida, Gainesville FL 32610-0424, USA.
| | - S John Calise
- Department of Oral Biology, University of Florida, Gainesville FL 32610-0424, USA
| | - Edward K L Chan
- Department of Oral Biology, University of Florida, Gainesville FL 32610-0424, USA
| | - Luis Eduardo C Andrade
- Rheumatology Division, Federal University of Sao Paulo, Sao Paulo SP 04023-062, Brazil; Immunology Division, Fleury Medicine and Health Laboratories, Sao Paulo SP 04102-050, Brazil.
| |
Collapse
|
17
|
Keppeke GD, Andrade LEC, Grieshaber SS, Chan EKL. Microinjection of specific anti-IMPDH2 antibodies induces disassembly of cytoplasmic rods/rings that are primarily stationary and stable structures. Cell Biosci 2015; 5:1. [PMID: 25601894 PMCID: PMC4298086 DOI: 10.1186/2045-3701-5-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/18/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Our laboratory previously reported interesting rods 3-10 μm long and rings 2-5 μm diameter (RR) in the cytoplasm of mammalian cells. Experimental evidence show that both inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) and cytidine triphosphate synthetase (CTPS) are components of RR structures. Several cell types, including mouse embryonic stem cells, and cell lines, such as mouse 3 T3 and rat NRK, naturally present RR structures, while other cells can present RR when treated with compounds interfering with GTP/CTP biosynthetic pathways. In this study, we aimed to investigate the dynamic behavior of these RR in live cells. RESULTS RR were detected in >90% of COS-7 and HeLa cells treated with 1 mM ribavirin or 6-Diazo-5-oxo-L-norleucine (DON) for 24 h, and in 75% of COS-7 cells treated with 1 mM mycophenolic acid (MPA) for the same period of time. Microinjection of affinity-purified anti-IMPDH2 antibodies in live COS-7 cells treated with ribavirin, DON, or MPA showed mature forms of RR presented as stable and stationary structures in 71% of cells. In the remaining 29% of cells, RR acquired erratic movement and progressively disassembled into fragments and disappeared within 10 min. The specific stationary state and antibody-dependent disassembling of RR structures was independently confirmed in COS-7 and HeLa cells transfected with GFP-tagged IMPDH2. CONCLUSIONS This is the first demonstration of disassembly of RR structures upon microinjection of anti-IMPDH2 antibodies that led to the disappearance of the molecular aggregates. The disassembly of RR after microinjection of anti-IMPDH2 antibody further strengthens the notion that IMPDH2 are major building blocks of RR. Using two independent methods, this study demonstrated that the induced RR are primarily stationary structures in live cells and that IMPDH2 is a key component of RR.
Collapse
Affiliation(s)
- Gerson Dierley Keppeke
- />Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL 32610-0424 USA
- />Rheumatology Division, Universidade Federal de São Paulo, Rua Botucatu 740, São Paulo, SP 04023-062 Brazil
| | - Luís Eduardo C Andrade
- />Rheumatology Division, Universidade Federal de São Paulo, Rua Botucatu 740, São Paulo, SP 04023-062 Brazil
- />Immunology Division, Fleury Medicine and Health Laboratories, Avenida Gal Waldomiro Lima 508, São Paulo, SP 04102-050 Brazil
| | - Scott S Grieshaber
- />Department of Biological Sciences, University of Idaho, 875 Center Drive, Moscow, ID 83844 USA
| | - Edward K L Chan
- />Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL 32610-0424 USA
| |
Collapse
|
18
|
MicroRNAs: Critical Regulators of mRNA Traffic and Translational Control with Promising Biotech and Therapeutic Applications. IRANIAN JOURNAL OF BIOTECHNOLOGY 2013. [DOI: 10.5812/ijb.11081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
An SNP in the trinucleotide repeat region of the TNRC6A gene maps to a major TNGW1 autoepitope in patients with autoantibodies to GW182. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:243-59. [PMID: 23224974 DOI: 10.1007/978-1-4614-5107-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
GW/P bodies contain two TNRC6A protein isoforms (GW182 and TNGW1) that function as translational repressors of mRNA through Ago2-mediated RNA silencing. Autoantibodies to GW/P body components GW182, Ge-1 and Ago2 have previously been correlated with clinical autoimmune diseases including neurological disease, Sjögren's syndrome, systemic lupus erythematosus, rheumatoid arthritis and primary biliary cirrhosis. No studies were published to date examining if patients with autoantibodies directed against GW/P bodies contain autoantibodies to the trinucleotide repeat (TNR) region of TNGW1, which differs from GW182 only by the addition of an N-terminal QP-rich 253 amino acid sequence. Our data show that 85.7% of GW/P body positive plasma contain autoantibodies to various epitopes in the TNR region of TNGW1. Given the association of neurological diseases with autoantibodies directed to the TNR region on exon 5 of TNRC6A, this study examined whether there were TNR expansions as described in other neurological diseases and/or mutations in the nucleotide sequence of the CAG/CCA/G-rich region in seven anti-GW/P body positive patients, six control and eight breast cancer patients. Although a TNR expansion was not identified, 28.6% of patients containing autoantibodies to the TNR of TNGW1 were shown to have a single nucleotide polymorphism (SNP) at c.344C > A in the CAG/CCA/G-rich region of TNRC6A, which when translated, would produce a protein variant of p.Pro115Gln. The amino acid change may alter the structure of TNGW1 and/or perturb its miRNA regulatory function although this has not been examined experimentally. A putative change in protein structure may lead to a loss of tolerance to the TNGW1 protein or result in a "neo-antigen" in patients containing the specific TNRC6A SNPs. Further studies of a larger cohort of GW/P body positive patients and structure-function relationships of the variant TNRC6A are required to fully understand the role that such SNPs play in GW/P body autoantibody production and/or pathogenesis of related autoimmune diseases.
Collapse
|
20
|
Fritzler MJ, Chan EKL. The Discovery of GW Bodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:5-21. [DOI: 10.1007/978-1-4614-5107-5_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
21
|
Reflections on ten years of history of, and future prospects for, GW182 and GW/P body research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:261-70. [PMID: 23224975 DOI: 10.1007/978-1-4614-5107-5_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Moser JJ, Fritzler MJ. Relationship of other cytoplasmic ribonucleoprotein bodies (cRNPB) to GW/P bodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:213-42. [PMID: 23224973 DOI: 10.1007/978-1-4614-5107-5_13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
GW/P body components are involved in the post-transcriptional -processing of messenger RNA (mRNA) through the RNA interference and 5' → 3' mRNA degradation pathways, as well as functioning in mRNA transport and stabilization. It is currently thought that the relevant mRNA silencing and degrading factors are partitioned to these cytoplasmic microdomains thus effecting post-transcriptional regulation and the prevention of accidental degradation of functional mRNA. Although much attention has focused on GW/P bodies, a variety of other cytoplasmic RNP bodies (cRNPB) also have highly specialized functions and have been shown to interact or co-localize with components of GW/P bodies. These cRNPB include neuronal transport RNP granules, stress granules, RNP-rich cytoplasmic germline granules or chromatoid bodies, sponge bodies, cytoplasmic prion protein-induced RNP granules, U bodies and TAM bodies. Of clinical relevance, autoantibodies directed against protein and miRNA components of GW/P bodies have been associated with autoimmune diseases, neurological diseases and cancer. Understanding the molecular function of GW/P bodies and their interactions with other cRNPB may provide clues to the etiology or pathogenesis of diseases associated with autoantibodies directed to these structures. This chapter will focus on the similarities and differences of the various cRNPB as an approach to understanding their functional relationships to GW/P bodies.
Collapse
Affiliation(s)
- Joanna J Moser
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | | |
Collapse
|
23
|
Braun JE, Huntzinger E, Izaurralde E. The role of GW182 proteins in miRNA-mediated gene silencing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:147-63. [PMID: 23224969 DOI: 10.1007/978-1-4614-5107-5_9] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
GW182 family proteins are essential for microRNA-mediated gene silencing in animal cells. They are recruited to miRNA targets through direct interactions with Argonaute proteins and promote target silencing. They do so by repressing translation and enhancing mRNA turnover. Although the precise mechanism of action of GW182 proteins is not fully understood, these proteins have been shown to interact with the cytoplasmic poly(A)-binding protein (PABP) and with the PAN2-PAN3 and CCR4-NOT deadenylase complexes. These findings suggest that GW182 proteins function as scaffold proteins for the assembly of the multiprotein complex that silences miRNA targets.
Collapse
Affiliation(s)
- Joerg E Braun
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| | | | | |
Collapse
|
24
|
Yao B, Li S, Chan EKL. Function of GW182 and GW bodies in siRNA and miRNA pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:71-96. [PMID: 23224966 DOI: 10.1007/978-1-4614-5107-5_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
GW182 is an 182 kDa protein with multiple glycine/tryptophan repeats (GW or WG) playing a central role in siRNA- and miRNA-mediated gene silencing. GW182 interacts with its functional partner Argonaute proteins (AGO) via multiple domains to exert its silencing activity in both pathways. In siRNA-mediated silencing, knockdown either GW182 or Ago2 causes loss of silencing activity correlating with the disassembly of GWBs. In contrast, GW182 and its longer isoform TNGW1 appear to be downstream repressors that function independent of Ago2, whereas the Ago2-GW182 interaction is critical for the localization of Ago2 in the cytoplasmic foci and its repression function. GW182 contains two non-overlapping repression domains that can trigger translational repression with mild effect on mRNA decay. Collectively, GW182 plays a critical role in miRNA-mediated gene silencing.
Collapse
Affiliation(s)
- Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
25
|
Lee S, Vasudevan S. Post-transcriptional stimulation of gene expression by microRNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:97-126. [PMID: 23224967 DOI: 10.1007/978-1-4614-5107-5_7] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs are small noncoding RNA regulatory molecules that control gene expression by guiding associated effector complexes to other RNAs via sequence-specific recognition of target sites. Misregulation of microRNAs leads to a wide range of diseases including cancers, inflammatory and developmental disorders. MicroRNAs were found to mediate deadenylation-dependent decay and translational repression of messages through partially complementary microRNA target sites in the 3'-UTR (untranslated region). A growing series of studies has demonstrated that microRNAs and their associated complexes (microRNPs) elicit alternate functions that enable stimulation of gene expression in addition to their assigned repressive roles. These reports, discussed in this chapter, indicate that microRNA-mediated effects via natural 3' and 5'-UTRs can be selective and controlled, dictated by the RNA sequence context, associated complex, and cellular conditions. Similar to the effects of repression, upregulated gene expression by microRNAs varies from small refinements to significant amplifications in expression. An emerging theme from this literature is that microRNAs have a versatile range of abilities to manipulate post-transcriptional control mechanisms leading to controlled gene expression. These studies reveal new potentials for microRNPs in gene expression control that develop as responses to specific cellular conditions.
Collapse
|
26
|
Yao B, La LB, Chen YC, Chang LJ, Chan EKL. Defining a new role of GW182 in maintaining miRNA stability. EMBO Rep 2012; 13:1102-8. [PMID: 23090477 DOI: 10.1038/embor.2012.160] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 09/25/2012] [Accepted: 09/25/2012] [Indexed: 01/23/2023] Open
Abstract
GW182 binds to Argonaute (AGO) proteins and has a central role in miRNA-mediated gene silencing. Using lentiviral shRNA-induced GW182 knockdown in HEK293 cells, this study identifies a new role of GW182 in regulating miRNA stability. Stably knocking down GW182 or its paralogue TNRC6B reduces transfected miRNA-mimic half-lives. Replenishment of GW182 family proteins, as well as one of its domain Δ12, significantly restores the stability of transfected miRNA-mimic. GW182 knockdown reduces miRNA secretion via secretory exosomes. Targeted siRNA screening identifies a 3'-5' exoribonuclease complex responsible for the miRNA degradation only when GW182 is knocked down. Immunoprecipitation further confirms that the presence of GW182 in the RISC complex is critical in protecting Argonaute-bound miRNA.
Collapse
Affiliation(s)
- Bing Yao
- Department of Oral Biology, University of Florida, Gainesville, Florida 32610-0424, USA
| | | | | | | | | |
Collapse
|
27
|
Castilla-Llorente V, Spraggon L, Okamura M, Naseeruddin S, Adamow M, Qamar S, Liu J. Mammalian GW220/TNGW1 is essential for the formation of GW/P bodies containing miRISC. ACTA ACUST UNITED AC 2012; 198:529-44. [PMID: 22891262 PMCID: PMC3514032 DOI: 10.1083/jcb.201201153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The microRNA (miRNA)-induced silencing complex (miRISC) controls gene expression by a posttranscriptional mechanism involving translational repression and/or promoting messenger RNA (mRNA) deadenylation and degradation. The GW182/TNRC6 (GW) family proteins are core components of the miRISC and are essential for miRNA function. We show that mammalian GW proteins have distinctive functions in the miRNA pathway, with GW220/TNGW1 being essential for the formation of GW/P bodies containing the miRISC. miRISC aggregation and formation of GW/P bodies sequestered and stabilized translationally repressed target mRNA. Depletion of GW220 led to the loss of GW/P bodies and destabilization of miRNA-targeted mRNA. These findings support a model in which the cellular localization of the miRISC regulates the fate of the target mRNA.
Collapse
Affiliation(s)
- Virginia Castilla-Llorente
- Cell Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Jung HM, Phillips BL, Patel RS, Cohen DM, Jakymiw A, Kong WW, Cheng JQ, Chan EKL. Keratinization-associated miR-7 and miR-21 regulate tumor suppressor reversion-inducing cysteine-rich protein with kazal motifs (RECK) in oral cancer. J Biol Chem 2012; 287:29261-72. [PMID: 22761427 DOI: 10.1074/jbc.m112.366518] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that posttranscriptionally regulate gene expression during many biological processes. Recently, the aberrant expressions of miRNAs have become a major focus in cancer research. The purpose of this study was to identify deregulated miRNAs in oral cancer and further focus on specific miRNAs that were related to patient survival. Here, we report that miRNA expression profiling provided more precise information when oral squamous cell carcinomas were subcategorized on the basis of clinicopathological parameters (tumor primary site, histological subtype, tumor stage, and HPV16 status). An innovative radar chart analysis method was developed to depict subcategories of cancers taking into consideration the expression patterns of multiple miRNAs combined with the clinicopathological parameters. Keratinization of tumors and the high expression of miR-21 were the major factors related to the poor prognosis of patients. Interestingly, a majority of the keratinized tumors expressed high levels of miR-21. Further investigations demonstrated the regulation of the tumor suppressor gene reversion-inducing cysteine-rich protein with kazal motifs (RECK) by two keratinization-associated miRNAs, miR-7 and miR-21. Transfection of miR-7 and miR-21-mimics reduced the expression of RECK through direct miRNA-mediated regulation, and these miRNAs were inversely correlated with RECK in CAL 27 orthotopic xenograft tumors. Furthermore, a similar inverse correlation was demonstrated in CAL 27 cells treated in vitro by different external stimuli such as trypsinization, cell density, and serum concentration. Taken together, our data show that keratinization is associated with poor prognosis of oral cancer patients and keratinization-associated miRNAs mediate deregulation of RECK which may contribute to the aggressiveness of tumors.
Collapse
Affiliation(s)
- Hyun Min Jung
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Vasudevan S. Posttranscriptional upregulation by microRNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:311-30. [PMID: 22072587 DOI: 10.1002/wrna.121] [Citation(s) in RCA: 341] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MicroRNAs are small non-coding RNA guide molecules that regulate gene expression via association with effector complexes and sequence-specific recognition of target sites on other RNAs; misregulated microRNA expression and functions are linked to a variety of tumors, developmental disorders, and immune disease. MicroRNAs have primarily been demonstrated to mediate posttranscriptional downregulation of expression; translational repression, and deadenylation-dependent decay of messages through partially complementary microRNA target sites in mRNA untranslated regions (UTRs). However, an emerging assortment of studies, discussed in this review, reveal that microRNAs and their associated protein complexes (microribonucleoproteins or microRNPs) can additionally function to posttranscriptionally stimulate gene expression by direct and indirect mechanisms. These reports indicate that microRNA-mediated effects can be selective, regulated by the RNA sequence context, and associated with RNP factors and cellular conditions. Like repression, translation upregulation by microRNAs has been observed to range from fine-tuning effects to significant alterations in expression. These studies uncover remarkable, new abilities of microRNAs and associated microRNPs in gene expression control and underscore the importance of regulation, in cis and trans, in directing appropriate microRNP responses.
Collapse
|
30
|
Ceribelli A, Yao B, Dominguez-Gutierrez PR, Nahid MA, Satoh M, Chan EKL. MicroRNAs in systemic rheumatic diseases. Arthritis Res Ther 2011; 13:229. [PMID: 21787439 PMCID: PMC3239341 DOI: 10.1186/ar3377] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous, non-coding, single-stranded RNAs about 21 nucleotides in length. miRNAs have been shown to regulate gene expression and thus influence a wide range of physiological and pathological processes. Moreover, they are detected in a variety of sources, including tissues, serum, and other body fluids, such as saliva. The role of miRNAs is evident in various malignant and nonmalignant diseases, and there is accumulating evidence also for an important role of miRNAs in systemic rheumatic diseases. Abnormal expression of miRNAs has been reported in autoimmune diseases, mainly in systemic lupus erythematosus and rheumatoid arthritis. miRNAs can be aberrantly expressed even in the different stages of disease progression, allowing miRNAs to be important biomarkers, to help understand the pathogenesis of the disease, and to monitor disease activity and effects of treatment. Different groups have demonstrated a link between miRNA expression and disease activity, as in the case of renal flares in lupus patients. Moreover, miRNAs are emerging as potential targets for new therapeutic strategies of autoimmune disorders. Taken together, recent data demonstrate that miRNAs can influence mechanisms involved in the pathogenesis, relapse, and specific organ involvement of autoimmune diseases. The ultimate goal is the identification of a miRNA target or targets that could be manipulated through specific therapies, aiming at activation or inhibition of specific miRNAs responsible for the development of disease.
Collapse
Affiliation(s)
- Angela Ceribelli
- Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, Florida 32610-0424, USA
| | | | | | | | | | | |
Collapse
|
31
|
Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011; 12:99-110. [PMID: 21245828 DOI: 10.1038/nrg2936] [Citation(s) in RCA: 1731] [Impact Index Per Article: 123.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite their widespread roles as regulators of gene expression, important questions remain about target regulation by microRNAs. Animal microRNAs were originally thought to repress target translation, with little or no influence on mRNA abundance, whereas the reverse was thought to be true in plants. Now, however, it is clear that microRNAs can induce mRNA degradation in animals and, conversely, translational repression in plants. Recent studies have made important advances in elucidating the relative contributions of these two different modes of target regulation by microRNAs. They have also shed light on the specific mechanisms of target silencing, which, although it differs fundamentally between plants and animals, shares some common features between the two kingdoms.
Collapse
|
32
|
Yao B, Li S, Lian SL, Fritzler MJ, Chan EKL. Mapping of Ago2-GW182 functional interactions. Methods Mol Biol 2011; 725:45-62. [PMID: 21528446 DOI: 10.1007/978-1-61779-046-1_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
MicroRNA (miRNA)-mediated posttranscriptional regulation of gene expression has become a major focus in understanding fine-tuning controls in many biological processes. Argonaute 2 protein (Ago2), a core component of RNA-induced silencing complex, directly binds miRNA and functions in both RNAi and miRNA pathways. GW182 is a marker protein of GW bodies (GWB, also known as mammalian P-bodies) and is known to bind the Ago2 protein. This Ago2-GW182 interaction is crucial for Ago2-miRNA-mediated translational silencing as well as the recruitment of Ago2 into GWB. Translational silencing of tethered Ago2 to a 3'UTR reporter requires GW182 for function, whereas tethered GW182 exerts a stronger repression than tethered Ago2 and does not apparently require Ago2. This chapter describes in detail the methods used in mapping Ago2-GW182 interactions.
Collapse
Affiliation(s)
- Bing Yao
- Department of Oral Biology, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
33
|
When Cellular Networks Run Out of Control. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 102:165-242. [DOI: 10.1016/b978-0-12-415795-8.00006-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Yao B, Li S, Jung HM, Lian SL, Abadal GX, Han F, Fritzler MJ, Chan EKL. Divergent GW182 functional domains in the regulation of translational silencing. Nucleic Acids Res 2010; 39:2534-47. [PMID: 21131274 PMCID: PMC3074120 DOI: 10.1093/nar/gkq1099] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNA (miRNA)-mediated gene regulation has become a major focus in many biological processes. GW182 and its long isoform TNGW1 are marker proteins of GW/P bodies and bind to Argonaute proteins of the RNA induced silencing complex. The goal of this study is to further define and distinguish the repression domain(s) in human GW182/TNGW1. Two non-overlapping regions, Δ12 (amino acids 896–1219) containing the Ago hook and Δ5 (amino acids 1670–1962) containing the RRM, both induced comparable silencing in a tethering assay. Mapping data showed that the RRM and its flanking sequences in Δ5, but not the Ago hook in Δ12, were important for silencing. Repression mediated by Δ5 or Δ12 was not differentially affected when known endogenous repressors RCK/p54, GW182/TNGW1, TNRC6B were depleted. Transfected Δ5, but not Δ12, enhanced Ago2-mediated repression in a tethering assay. Transfected Δ12, but not Δ5, released endogenous miRNA reporter silencing without affecting siRNA function. Alanine substitution showed that GW/WG motifs in Δ12 (Δ12a, amino acids 896–1045) were important for silencing activity. Although Δ12 appeared to bind PABPC1 more efficiently than Δ5, neither Δ5 nor Δ12 significantly enhanced reporter mRNA degradation. These different functional characteristics of Δ5 and Δ12 suggest that their roles are distinct, and possibly dynamic, in human GW182-mediated silencing.
Collapse
Affiliation(s)
- Bing Yao
- Department of Oral Biology, University of Florida, Gainesville, FL 32610-0424, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Application of phi29 motor pRNA for targeted therapeutic delivery of siRNA silencing metallothionein-IIA and survivin in ovarian cancers. Mol Ther 2010; 19:386-94. [PMID: 21063391 DOI: 10.1038/mt.2010.243] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer is a highly metastatic and lethal disease, making it imperative to find treatments that target late-stage malignant tumors. The packaging RNA (pRNA) of bacteriophage phi29 DNA-packaging motor has been reported to function as a highly versatile vehicle to carry small interference RNA (siRNA) for silencing of survivin. In this article, we explore the potential of pRNA as a vehicle to carry siRNA specifically targeted to metallothionein-IIa (MT-IIA) messenger RNA (mRNA), and compare it to survivin targeting pRNA. These two anti-apoptotic cell survival factors promote tumor cell viability, and are overexpressed in recurrent tumors. We find that pRNA chimeras targeting MT-IIA are processed into double-stranded siRNA by dicer, are localized within the GW/P-bodies, and are more potent than siRNA alone in silencing MT-IIA expression. Moreover, knockdown of both survivin and MT-IIA expression simultaneously results in more potent effects on cell proliferation in the aggressive ovarian tumor cell lines than either alone, suggesting that therapeutic approaches that target multiple genes are essential for molecular therapy. The folate receptor-targeted delivery of siRNA by the folate-pRNA dimer emphasizes the cancer cell-specific aspect of this system. The pRNA system, which has the capability to assemble into multivalent nanoparticles, has immense promise as a highly potent therapeutic agent.
Collapse
|
36
|
Moser JJ, Fritzler MJ. The microRNA and messengerRNA profile of the RNA-induced silencing complex in human primary astrocyte and astrocytoma cells. PLoS One 2010; 5:e13445. [PMID: 20976148 PMCID: PMC2956662 DOI: 10.1371/journal.pone.0013445] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 09/14/2010] [Indexed: 12/18/2022] Open
Abstract
Background GW/P bodies are cytoplasmic ribonucleoprotein-rich foci involved in microRNA (miRNA)-mediated messenger RNA (mRNA) silencing and degradation. The mRNA regulatory functions within GW/P bodies are mediated by GW182 and its binding partner hAgo2 that bind miRNA in the RNA-induced silencing complex (RISC). To date there are no published reports of the profile of miRNA and mRNA targeted to the RISC or a comparison of the RISC-specific miRNA/mRNA profile differences in malignant and non-malignant cells. Methodology/Principal Findings RISC mRNA and miRNA components were profiled by microarray analysis of malignant human U-87 astrocytoma cells and its non-malignant counterpart, primary human astrocytes. Total cell RNA as well as RNA from immunoprecipitated RISC was analyzed. The novel findings were fourfold: (1) miRNAs were highly enriched in astrocyte RISC compared to U-87 astrocytoma RISC, (2) astrocytoma and primary astrocyte cells each contained unique RISC miRNA profiles as compared to their respective cellular miRNA profiles, (3) miR-195, 10b, 29b, 19b, 34a and 455-3p levels were increased and the miR-181b level was decreased in U-87 astrocytoma RISC as compared to astrocyte RISC, and (4) the RISC contained decreased levels of mRNAs in primary astrocyte and U-87 astrocytoma cells. Conclusions/Significance The observation that miR-34a and miR-195 levels were increased in the RISC of U-87 astrocytoma cells suggests an oncogenic role for these miRNAs. Differential regulation of mRNAs by specific miRNAs is evidenced by the observation that three miR34a-targeted mRNAs and two miR-195-targeted mRNAs were downregulated while one miR-195-targeted mRNA was upregulated. Biological pathway analysis of RISC mRNA components suggests that the RISC plays a pivotal role in malignancy and other conditions. This study points to the importance of the RISC and ultimately GW/P body composition and function in miRNA and mRNA deregulation in astrocytoma cells and possibly in other malignancies.
Collapse
Affiliation(s)
- Joanna J. Moser
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marvin J. Fritzler
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
37
|
Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010; 11:597-610. [PMID: 20661255 DOI: 10.1038/nrg2843] [Citation(s) in RCA: 3573] [Impact Index Per Article: 238.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a large family of post-transcriptional regulators of gene expression that are approximately 21 nucleotides in length and control many developmental and cellular processes in eukaryotic organisms. Research during the past decade has identified major factors participating in miRNA biogenesis and has established basic principles of miRNA function. More recently, it has become apparent that miRNA regulators themselves are subject to sophisticated control. Many reports over the past few years have reported the regulation of miRNA metabolism and function by a range of mechanisms involving numerous protein-protein and protein-RNA interactions. Such regulation has an important role in the context-specific functions of miRNAs.
Collapse
Affiliation(s)
- Jacek Krol
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland
| | | | | |
Collapse
|
38
|
Chekulaeva M, Parker R, Filipowicz W. The GW/WG repeats of Drosophila GW182 function as effector motifs for miRNA-mediated repression. Nucleic Acids Res 2010; 38:6673-83. [PMID: 20530530 PMCID: PMC2965232 DOI: 10.1093/nar/gkq501] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The control of messenger RNA (mRNA) function by micro RNAs (miRNAs) in animal cells requires the GW182 protein. GW182 is recruited to the miRNA repression complex via interaction with Argonaute protein, and functions downstream to repress protein synthesis. Interaction with Argonaute is mediated by GW/WG repeats, which are conserved in many Argonaute-binding proteins involved in RNA interference and miRNA silencing, from fission yeast to mammals. GW182 contains at least three effector domains that function to repress target mRNA. Here, we analyze the functions of the N-terminal GW182 domain in repression and Argonaute1 binding, using tethering and immunoprecipitation assays in Drosophila cultured cells. We demonstrate that its function in repression requires intact GW/WG repeats, but does not involve interaction with the Argonaute1 protein, and is independent of the mRNA polyadenylation status. These results demonstrate a novel role for the GW/WG repeats as effector motifs in miRNA-mediated repression.
Collapse
Affiliation(s)
- Marina Chekulaeva
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland.
| | | | | |
Collapse
|
39
|
Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA Translation and Stability by microRNAs. Annu Rev Biochem 2010; 79:351-79. [PMID: 20533884 DOI: 10.1146/annurev-biochem-060308-103103] [Citation(s) in RCA: 2382] [Impact Index Per Article: 158.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marc Robert Fabian
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, Quebec, H3G 1Y6, Canada;
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, Quebec, H3G 1Y6, Canada;
| | - Witold Filipowicz
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland;
| |
Collapse
|
40
|
Role of GW182 proteins and PABPC1 in the miRNA pathway: a sense of déjà vu. Nat Rev Mol Cell Biol 2010; 11:379-84. [PMID: 20379206 DOI: 10.1038/nrm2885] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GW182 proteins have emerged as key components of microRNA (miRNA) silencing complexes in animals. Although the precise molecular function of GW182 proteins is not fully understood, new findings indicate that they act as poly(A)-binding protein (PABP)-interacting proteins (PAIPs) that promote gene silencing, at least in part, by interfering with cytoplasmic PABP1 (PABPC1) function during translation and mRNA stabilization. This recent discovery paves the way for future studies of miRNA silencing mechanisms.
Collapse
|
41
|
Johnston M, Geoffroy MC, Sobala A, Hay R, Hutvagner G. HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells. Mol Biol Cell 2010; 21:1462-9. [PMID: 20237157 PMCID: PMC2861606 DOI: 10.1091/mbc.e09-10-0885] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The cancer drug geldanamycin, an HSP90 inhibitor, decreases the stability of key components of the miRNA regulatory pathway, the efficacy of siRNAs, and the formation of P-bodies without affecting endogenous miRNA function. Key components of the miRNA-mediated gene regulation pathway are localized in cytoplasmic processing bodies (P-bodies). Mounting evidence suggests that the presence of microscopic P-bodies are not always required for miRNA-mediated gene regulation. Here we have shown that geldanamycin, a well-characterized HSP90 inhibitor, abolishes P-bodies and significantly reduces Argonaute and GW182 protein levels but does not affect the miRNA level and the efficiency of miRNA-mediated gene repression; however, it significantly impairs siRNA loading and the efficacy of exogenous siRNA. Our data suggests that HSP90 protein chaperones Argonautes before binding RNA and may facilitate efficient loading of small RNA.
Collapse
Affiliation(s)
- Michael Johnston
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | | | |
Collapse
|
42
|
Wu PH, Nelson N, Tseng Y. A general method for improving spatial resolution by optimization of electron multiplication in CCD imaging. OPTICS EXPRESS 2010; 18:5199-212. [PMID: 20389533 PMCID: PMC2872937 DOI: 10.1364/oe.18.005199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 01/22/2010] [Accepted: 02/06/2010] [Indexed: 05/20/2023]
Abstract
The electron-multiplying charge-coupled device (EMCCD) camera possesses an electron multiplying function that can effectively convert the weak incident photon signal to amplified electron output, thereby greatly enhancing the contrast of the acquired images. This device has become a popular photon detector in single-cell biophysical assays to enhance subcellular images. However, the quantitative relationship between the resolution in such measurements and the electron multiplication setting in the EMCCD camera is not well-understood. We therefore developed a method to characterize the exact dependence of the signal-to-noise-ratio (SNR) on EM gain settings over a full range of incident light intensity. This information was further used to evaluate the EMCCD performance in subcellular particle tracking. We conclude that there are optimal EM gain settings for achieving the best SNR and the best spatial resolution in these experiments. If it is not used optimally, electron multiplication can decrease the SNR and increases spatial error.
Collapse
Affiliation(s)
- Pei-Hsun Wu
- Department of Chemical Engineering, Museum Road, University of Florida, Gainesville, Florida 32611,
USA
- National Cancer Institute-Physical Science Oncology Center, Chemical Engineering Building, Museum Road, Gainesville, FL 32611,
USA
| | - Nathaniel Nelson
- Department of Chemical Engineering, Museum Road, University of Florida, Gainesville, Florida 32611,
USA
| | - Yiider Tseng
- Department of Chemical Engineering, Museum Road, University of Florida, Gainesville, Florida 32611,
USA
- National Cancer Institute-Physical Science Oncology Center, Chemical Engineering Building, Museum Road, Gainesville, FL 32611,
USA
| |
Collapse
|
43
|
Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 2009; 11:1143-9. [PMID: 19684575 DOI: 10.1038/ncb1929] [Citation(s) in RCA: 771] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 05/28/2009] [Indexed: 12/11/2022]
Abstract
In animals, P-bodies or GW-bodies appear to cause the congregation of proteins involved in microRNA (miRNA)-mediated post-transcriptional silencing. The localization of P-bodies does not overlap with that of known organelles and are thus considered independent of lipid bilayers. Nonetheless, an miRNA effector protein, argonaute 2 (AGO2), was initially identified as membrane-associated, and some miRNAs have been found in secreted vesicles (exosomes) that derive from endo-lysosomal compartments called multivesicular bodies (MVBs). Proteins can be sorted in a ubiquitin-dependent manner into MVBs by three heteromeric subcomplexes, collectively termed ESCRT (endosomal sorting complex required for transport), to be further secreted in exosomes and/or degraded by the lysosome. Here we show that GW-bodies containing GW182 and AGO2, two main components of the RNA-induced silencing complex (RISC), are distinct from P-bodies due to their congregation with endosomes and MVBs. Moreover, miRNAs and miRNA-repressible mRNAs are enriched at these cellular membranes, suggesting that endosomes and/or MVBs are sites of miRNA-loaded RISC (miRISC) accumulation and, possibly, action. We further show that purified exosome-like vesicles secreted by MVBs are considerably enriched in GW182, but not P-body components, AGO2 or miRNA-repressible mRNA. Moreover, cells depleted of some ESCRT components show compromised miRNA-mediated gene silencing and over-accumulate GW182, which associates with ubiquitylated proteins. Therefore, GW182, possibly in association with a fraction of miRNA-loaded AGO2, is sorted into MVBs for secretion and/or lysosomal degradation. We propose that this process promotes continuous assembly or disassembly of membrane-associated miRISCs, which is possibly required for miRNA loading or target recognition and subsequent silencing.
Collapse
|
44
|
Eulalio A, Tritschler F, Izaurralde E. The GW182 protein family in animal cells: new insights into domains required for miRNA-mediated gene silencing. RNA (NEW YORK, N.Y.) 2009; 15:1433-42. [PMID: 19535464 PMCID: PMC2714752 DOI: 10.1261/rna.1703809] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
GW182 family proteins interact directly with Argonaute proteins and are required for miRNA-mediated gene silencing in animal cells. The domains of the GW182 proteins have recently been studied to determine their role in silencing. These studies revealed that the middle and C-terminal regions function as an autonomous domain with a repressive function that is independent of both the interaction with Argonaute proteins and of P-body localization. Such findings reinforce the idea that GW182 proteins are key components of miRNA repressor complexes in metazoa.
Collapse
Affiliation(s)
- Ana Eulalio
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
45
|
Moser JJ, Chan EKL, Fritzler MJ. Optimization of immunoprecipitation-western blot analysis in detecting GW182-associated components of GW/P bodies. Nat Protoc 2009; 4:674-85. [PMID: 19373232 DOI: 10.1038/nprot.2009.34] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Characterizing the components of GW/processing bodies is key to elucidating RNA interference and messenger RNA processing pathways. This protocol addresses challenges in isolating a low-abundance protein GW182 and GW body (GWB)-associated proteins by building on previous reports that used polyclonal sera containing autoantibodies to GW/P body components. This protocol uses commercially available monoclonal antibodies to GW182 that are covalently coupled to Protein A or G sepharose beads and then used to immunoprecipitate GW182 and associated proteins from cell extracts. Immunoprecipitates are separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose membranes and probed by western blot with antibodies directed to proteins of interest. This protocol, which is expected to take 4-5 d, provides a biochemical approach for detecting GW182 and associated proteins in biological samples and thus facilitates the elucidation of the diverse functions of GWBs. It is expected that this protocol can be adapted to the detection of other RNA-binding complexes.
Collapse
Affiliation(s)
- Joanna J Moser
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
46
|
Lazzaretti D, Tournier I, Izaurralde E. The C-terminal domains of human TNRC6A, TNRC6B, and TNRC6C silence bound transcripts independently of Argonaute proteins. RNA (NEW YORK, N.Y.) 2009; 15:1059-66. [PMID: 19383768 PMCID: PMC2685519 DOI: 10.1261/rna.1606309] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 03/17/2009] [Indexed: 05/24/2023]
Abstract
Proteins of the GW182 family are essential components of the miRNA pathway in animal cells. Vertebrate genomes encode three GW182 paralogs (TNRC6A, TNRC6B, and TNRC6C), which may be functionally redundant. Here, we show that the N-terminal GW-repeat-containing regions of all three TNRC6s interact with the four human Argonaute proteins (AGO1-AGO4). We also show that TNRC6A, TNRC6B, and TNRC6C silence the expression of bound mRNAs. This activity is mediated by their C-terminal silencing domains, and thus, is independent of the interaction with AGO1-AGO4. Silencing by TNRC6A, TNRC6B, and TNRC6C is effected by changes in protein expression and mRNA stability that can, in part, be attributed to deadenylation. Our findings indicate that TNRC6A, TNRC6B, and TNRC6C are recruited to miRNA targets through an interaction between their N-terminal domain and an Argonaute protein; the TNRC6s then promote translational repression and/or degradation of miRNA targets through a C-terminal silencing domain.
Collapse
Affiliation(s)
- Daniela Lazzaretti
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
47
|
Chekulaeva M, Filipowicz W. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 2009; 21:452-60. [PMID: 19450959 DOI: 10.1016/j.ceb.2009.04.009] [Citation(s) in RCA: 537] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/16/2009] [Accepted: 04/17/2009] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are 20-nt-long to 24-nt-long noncoding RNAs acting as post-transcriptional regulators of gene expression in animals and plants. In mammals, more than 50% of mRNAs are predicted to be the subject of miRNA-mediated control but mechanistic aspects of the regulation are not fully understood and different studies have produced often-contradictory results. miRNAs can affect both the translation and stability of mRNAs. In this report, we review current progress in understanding how miRNAs execute these effects in animals and we discuss some of the controversies regarding different modes of miRNA function.
Collapse
Affiliation(s)
- Marina Chekulaeva
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland.
| | | |
Collapse
|
48
|
Chekulaeva M, Filipowicz W, Parker R. Multiple independent domains of dGW182 function in miRNA-mediated repression in Drosophila. RNA (NEW YORK, N.Y.) 2009; 15:794-803. [PMID: 19304924 PMCID: PMC2673071 DOI: 10.1261/rna.1364909] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 01/22/2009] [Indexed: 05/19/2023]
Abstract
miRNA-mediated repression affects a wide range of biological processes including development and human pathologies. The GW182 protein is a key component of miRNA repression complex, recruited by Argonaute and functioning downstream to repress translation and accelerate mRNA degradation, but little is known about how GW182 proteins act. Using both tethered function and complementation assays, we identify three independent domains of the Drosophila GW182 protein (also termed Gawky) that are sufficient to repress mRNA. Each of these domains also functions independently of poly(A) tails. These results indicate that miRNA-mediated repression is facilitated by multiple domains of GW182.
Collapse
Affiliation(s)
- Marina Chekulaeva
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
49
|
Lian SL, Li S, Abadal GX, Pauley BA, Fritzler MJ, Chan EKL. The C-terminal half of human Ago2 binds to multiple GW-rich regions of GW182 and requires GW182 to mediate silencing. RNA (NEW YORK, N.Y.) 2009; 15:804-13. [PMID: 19324964 PMCID: PMC2673069 DOI: 10.1261/rna.1229409] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
MicroRNA (miRNA)-mediated silencing is a post-transcriptional mechanism that regulates translation of mRNAs primarily via their 3'-UTR. Ago2 binds miRNA directly and is the core component of miRNA-induced silencing complex. GW182 is another important factor in miRNA-mediated silencing, and its interaction with Ago2 is evolutionarily conserved. However, the GW182-Ago2 interaction in humans has not been characterized thoroughly, and the role of GW182 in the mammalian miRNA pathway remains unclear. In the current study, we generated a set of GST-, green fluorescence protein (GFP)-, or 3xFlag-tagged deletion constructs of GW182 and Ago2 to further analyze GW182-Ago2 interactions. The C-terminal half of Ago2 interacted with four nonoverlapping GW-rich regions of GW182, and this interaction recruited Ago2 to GWB. Furthermore, the interaction with GW182 was observed in all four human Ago proteins. Most interestingly, tethering the C-terminal half of Ago2 to the 3'-UTR of reporter mRNA recapitulated translational repression comparable to that of tethered Ago2, and this repression was greatly impaired upon GW182 knockdown. In comparison, the N-terminal half of Ago2 did not bind GW182 and did not retain the repression function of Ago2. Our data strongly support a model in which Ago2 recruits GW182 to the 3'-UTR of mRNA to mediate silencing, and suggest that GW182 may contribute to enhancement in translational repression by interacting with multiple Ago proteins from multiple miRNA target sites in the same or adjacent 3'UTR.
Collapse
Affiliation(s)
- Shang L Lian
- Department of Oral Biology, University of Florida, Gainesville, Florida 32610-0424, USA
| | | | | | | | | | | |
Collapse
|
50
|
Zipprich JT, Bhattacharyya S, Mathys H, Filipowicz W. Importance of the C-terminal domain of the human GW182 protein TNRC6C for translational repression. RNA (NEW YORK, N.Y.) 2009; 15:781-93. [PMID: 19304925 PMCID: PMC2673060 DOI: 10.1261/rna.1448009] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Proteins of the GW182 family play an important role in the execution of microRNA repression in metazoa. They interact directly with Argonaute proteins, components of microRNPs, and also form part of P-bodies, structures implicated in translational repression and mRNA degradation. Recent results demonstrated that Drosophila GW182 has the potential to both repress translation and accelerate mRNA deadenylation and decay. In contrast to a single GW182 protein in Drosophila, the three GW182 paralogs TNRC6A, TNRC6B, and TNRC6C are encoded in mammalian genomes. In this study, we provide evidence that TNRC6C, like TNRC6A and TNRC6B, is important for efficient miRNA repression. We further demonstrate that tethering of each of the human TNRC6 proteins to a reporter mRNA has a dramatic inhibitory effect on protein synthesis. The repression is due to a combination of effects on the mRNA level and mRNA translation. Through deletion and mutagenesis, we identified the C-terminal part of TNRC6C encompassing the RRM RNA-binding motif as a key effector domain mediating protein synthesis repression by TNRC6C.
Collapse
Affiliation(s)
- Jakob T Zipprich
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | | | | | |
Collapse
|