1
|
Grafinger OR, Hayward JJ, Meng Y, Geddes-McAlister J, Li Y, Mar S, Sheng M, Su B, Thillainadesan G, Lipsman N, Coppolino MG, Trant JF, Jerzak KJ, Leong HS. Cancer cell extravasation requires iplectin-mediated delivery of MT1-MMP at invadopodia. Br J Cancer 2024; 131:931-943. [PMID: 38969866 PMCID: PMC11369281 DOI: 10.1038/s41416-024-02782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Invadopodia facilitate cancer cell extravasation, but the molecular mechanism whereby invadopodia-specific proteases such as MT1-MMP are called to invadopodia is unclear. METHODS Mass spectrometry and immunoprecipitation were used to identify interactors of MT1-MMP in metastatic breast cancer cells. After identification, siRNA and small molecule inhibitors were used to assess the effect these interactors had on cellular invasiveness. The chicken embryo chorioallantoic membrane (CAM) model was used to assess extravasation and invadopodia formation in vivo. RESULTS In metastatic breast cancer cells, MT1-MMP was found to associate with plectin, a cytolinker and scaffolding protein. Complex formation between plectin and MT1-MMP launches invadopodia formation, a subtype we termed iplectin (i = invadopodial). iPlectin delivers MT1-MMP to invadopodia and is indispensable for regulating cell surface levels of the enzyme. Genetic depletion of plectin with siRNA reduced invadopodia formation and cell invasion in vitro. In vivo extravasation efficiency assays and intravital imaging revealed iplectin to be a key contributor to invadopodia ultrastructure and essential for extravasation. Pharmacologic inhibition of plectin using the small molecule Plecstatin-1 (PST-1) abrogated MT1-MMP delivery to invadopodia and extravasation efficiency. CONCLUSIONS Anti-metastasis therapeutic approaches that target invadopodia are possible by disrupting interactions between MT1-MMP and iplectin. CLINICAL TRIAL REGISTRATION NUMBER NCT04608357.
Collapse
Affiliation(s)
- Olivia R Grafinger
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - John J Hayward
- Department of Chemistry, University of Windsor, Windsor, ON, Canada
| | - Ying Meng
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | | | - Yan Li
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sara Mar
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Minzhi Sheng
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Boyang Su
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Gobi Thillainadesan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Marc G Coppolino
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - John F Trant
- Department of Chemistry, University of Windsor, Windsor, ON, Canada
| | - Katarzyna J Jerzak
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Medical Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Hon S Leong
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Mayer P, Hausen A, Steinle V, Bergmann F, Kauczor HU, Loos M, Roth W, Klauss M, Gaida MM. The radiomorphological appearance of the invasive margin in pancreatic cancer is associated with tumor budding. Langenbecks Arch Surg 2024; 409:167. [PMID: 38809279 PMCID: PMC11136832 DOI: 10.1007/s00423-024-03355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE Pancreatic cancer (PDAC) is characterized by infiltrative, spiculated tumor growth into the surrounding non-neoplastic tissue. Clinically, its diagnosis is often established by magnetic resonance imaging (MRI). At the invasive margin, tumor buds can be detected by histology, an established marker associated with poor prognosis in different types of tumors. METHODS We analyzed PDAC by determining the degree of tumor spiculation on T2-weighted MRI using a 3-tier grading system. The grade of spiculation was correlated with the density of tumor buds quantified in histological sections of the respective surgical specimen according to the guidelines of the International Tumor Budding Consensus Conference (n = 28 patients). RESULTS 64% of tumors revealed intermediate to high spiculation on MRI. In over 90% of cases, tumor buds were detected. We observed a significant positive rank correlation between the grade of radiological tumor spiculation and the histopathological number of tumor buds (rs = 0.745, p < 0.001). The number of tumor buds was not significantly associated with tumor stage, presence of lymph node metastases, or histopathological grading (p ≥ 0.352). CONCLUSION Our study identifies a readily available radiological marker for non-invasive estimation of tumor budding, as a correlate for infiltrative tumor growth. This finding could help to identify PDAC patients who might benefit from more extensive peripancreatic soft tissue resection during surgery or stratify patients for personalized therapy concepts.
Collapse
Affiliation(s)
- Philipp Mayer
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, 69120, Germany.
| | - Anne Hausen
- Institute of Pathology, University Medical Center Mainz, JGU-Mainz, Mainz, 55131, Germany.
| | - Verena Steinle
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, 69120, Germany
| | - Frank Bergmann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, 69120, Germany
- Clinical Pathology, Klinikum Darmstadt GmbH, Darmstadt, 64283, Germany
| | - Hans-Ulrich Kauczor
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, 69120, Germany
| | - Martin Loos
- Department of General, Visceral, and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, 69120, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center Mainz, JGU-Mainz, Mainz, 55131, Germany
| | - Miriam Klauss
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, 69120, Germany
| | - Matthias M Gaida
- Institute of Pathology, University Medical Center Mainz, JGU-Mainz, Mainz, 55131, Germany
- Translational Oncology, TRON, the University Medical Center, JGU-Mainz, Mainz, 55131, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, JGU-Mainz, Mainz, 55131, Germany
| |
Collapse
|
3
|
Djakbarova U, Madraki Y, Chan ET, Wu T, Atreaga-Muniz V, Akatay AA, Kural C. Tension-induced adhesion mode switching: the interplay between focal adhesions and clathrin-containing adhesion complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579324. [PMID: 38370749 PMCID: PMC10871318 DOI: 10.1101/2024.02.07.579324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Integrin-based adhesion complexes are crucial in various cellular processes, including proliferation, differentiation, and motility. While the dynamics of canonical focal adhesion complexes (FAs) have been extensively studied, the regulation and physiological implications of the recently identified clathrin-containing adhesion complexes (CCACs) are still not well understood. In this study, we investigated the spatiotemporal mechanoregulations of FAs and CCACs in a breast cancer model. Employing single-molecule force spectroscopy coupled with live-cell fluorescence microscopy, we discovered that FAs and CCACs are mutually exclusive and inversely regulated complexes. This regulation is orchestrated through the modulation of plasma membrane tension, in combination with distinct modes of actomyosin contractility that can either synergize with or counteract this modulation. Our findings indicate that increased membrane tension promotes the association of CCACs at integrin αVβ5 adhesion sites, leading to decreased cancer cell proliferation, spreading, and migration. Conversely, lower membrane tension promotes the formation of FAs, which correlates with the softer membranes observed in cancer cells, thus potentially facilitating cancer progression. Our research provides novel insights into the biomechanical regulation of CCACs and FAs, revealing their critical and contrasting roles in modulating cancer cell progression.
Collapse
Affiliation(s)
- Umida Djakbarova
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Yasaman Madraki
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Emily T. Chan
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Tianyao Wu
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | | | - A. Ata Akatay
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Choi YJ, Choi M, Park J, Park M, Kim MJ, Lee JS, Oh SJ, Lee YJ, Shim WS, Kim JW, Kim MJ, Kim YC, Kang KW. Therapeutic strategy using novel RET/YES1 dual-target inhibitor in lung cancer. Biomed Pharmacother 2024; 171:116124. [PMID: 38198957 DOI: 10.1016/j.biopha.2024.116124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Lung cancer represents a significant global health concern and stands as the leading cause of cancer-related mortality worldwide. The identification of specific genomic alterations such as EGFR and KRAS in lung cancer has paved the way for the development of targeted therapies. While targeted therapies for lung cancer exhibiting EGFR, MET and ALK mutations have been well-established, the options for RET mutations remain limited. Importantly, RET mutations have been found to be mutually exclusive from other genomic mutations and to be related with high incidences of brain metastasis. Given these facts, it is imperative to explore the development of RET-targeting therapies and to elucidate the mechanisms underlying metastasis in RET-expressing lung cancer cells. In this study, we investigated PLM-101, a novel dual-target inhibitor of RET/YES1, which exhibits notable anti-cancer activities against CCDC6-RET-positive cancer cells and anti-metastatic effects against YES1-positive cancer cells. Our findings shed light on the significance of the YES1-Cortactin-actin remodeling pathway in the metastasis of lung cancer cells, establishing YES1 as a promising target for suppression of metastasis. This paper unveils a novel inhibitor that effectively targets both RET and YES1, thereby demonstrating its potential to impede the growth and metastasis of RET rearrangement lung cancer.
Collapse
Affiliation(s)
- Yong June Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Munkyung Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaewoo Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Miso Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Myung Jun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Sun Lee
- R&D Center, PeLeMed, Co. Ltd., Seoul 06100, Republic of Korea
| | - Su-Jin Oh
- R&D Center, PeLeMed, Co. Ltd., Seoul 06100, Republic of Korea
| | - Young Joo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Wan Seob Shim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Won Kim
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Myung Jin Kim
- R&D Center, PeLeMed, Co. Ltd., Seoul 06100, Republic of Korea
| | - Yong-Chul Kim
- R&D Center, PeLeMed, Co. Ltd., Seoul 06100, Republic of Korea; School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Qureshi T, Desale SE, Chidambaram H, Chinnathambi S. Understanding Actin Remodeling in Neuronal Cells Through Podosomes. Methods Mol Biol 2024; 2761:257-266. [PMID: 38427242 DOI: 10.1007/978-1-0716-3662-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Cytoskeletal dysregulation forms an important aspect of many neurodegenerative diseases such as Alzheimer's disease. Cytoskeletal functions require the dynamic activity of the cytoskeletal proteins-actin, tubulin, and the associated proteins. One of such important phenomena is that of actin remodeling, which helps the cell to migrate, navigate, and interact with extracellular materials. Podosomes are complex actin-rich cytoskeletal structures, abundant in proteins that interact and degrade the extracellular matrix, enabling cells to displace and migrate. The formation of podosomes requires extensive actin networks and remodeling. Here we present a novel immunofluorescence-based approach to study actin remodeling in neurons through the medium of podosomes.
Collapse
Affiliation(s)
- Tazeen Qureshi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Hariharakrishnan Chidambaram
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.
| |
Collapse
|
6
|
Lau LN, Cho JH, Jo YH, Yeo ISL. Biological effects of gamma-ray sterilization on 3 mol% yttria-stabilized tetragonal zirconia polycrystal: An in vitro study. J Prosthet Dent 2023; 130:936.e1-936.e9. [PMID: 37802736 DOI: 10.1016/j.prosdent.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/08/2023]
Abstract
STATEMENT OF PROBLEM Selecting the sterilization method is important because sterilization can alter the surface chemistry of implant materials, including zirconia, and influence their cellular biocompatibility. Studies on the biological effects of sterilization on implant materials are lacking. PURPOSE The purpose of this in vitro study was to evaluate the biocompatibility of gamma-ray irradiated 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) compared with unirradiated titanium, 3Y-TZP, and pure gold. MATERIAL AND METHODS Disk-shaped specimens each of commercially pure grade 4 titanium, 3Y-TZP, gamma-rayed 3Y-TZP, and pure gold were prepared and evaluated for osteogenic potential by using a clonal murine cell line of immature osteoblasts derived from mice (MC3T3-E1 cells). The surface topography (n=3), chemical analysis of the disks (n=3), and cell morphology cultured on these surfaces were examined using scanning electron microscopy, confocal laser scanning microscopy, and energy dispersive spectroscopy. Cellular biocompatibility was analyzed for 1 and 3 days after seeding. Cell adhesion and spreading were evaluated using confocal laser scanning microscopy (n=3). Cell proliferation was evaluated using methyl thiazolyl tetrazolium assay (n=3). Kruskal-Wallis and Bonferroni corrections were used to evaluate the statistical significance of the intergroup differences (α=.05). RESULTS Gamma-ray sterilization of 3Y-TZP showed significantly higher surface roughness compared with titanium and gold (P<.002). On day 1, the proliferation and adhesion of MC3T3-E1 cells cultured on gamma-rayed 3Y-TZP were significantly higher than those cultured on gold (P<.05); however, cell spreading was significantly lower than that of titanium on days 1 and 3 (P<.05). On day 3, cell proliferation of gamma-rayed 3Y-TZP was significantly lower than that of unirradiated 3Y-TZP (P<.05). Cell adhesion of gamma-rayed 3Y-TZP was slightly lower than that of zirconia and titanium but without significant difference (P>.05). CONCLUSIONS Gamma-rayed zirconia exhibited increased surface roughness compared with titanium and significantly decreased bioactivity compared with titanium and zirconia. The use of gamma-ray sterilization on zirconia is not promising regarding biocompatibility, and the effect of this sterilization method on implant materials warrants further investigation.
Collapse
Affiliation(s)
- Le Na Lau
- Graduate student, Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jun-Ho Cho
- Clinical Instructor, Department of Prosthodontics, Seoul National University Dental Hospital, Seoul, Republic of Korea
| | - Ye-Hyeon Jo
- Senior Researcher, Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - In-Sung Luke Yeo
- Professor, Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea..
| |
Collapse
|
7
|
Neumann AJ, Prekeris R. A Rab-bit hole: Rab40 GTPases as new regulators of the actin cytoskeleton and cell migration. Front Cell Dev Biol 2023; 11:1268922. [PMID: 37736498 PMCID: PMC10509765 DOI: 10.3389/fcell.2023.1268922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023] Open
Abstract
The regulation of machinery involved in cell migration is vital to the maintenance of proper organism function. When migration is dysregulated, a variety of phenotypes ranging from developmental disorders to cancer metastasis can occur. One of the primary structures involved in cell migration is the actin cytoskeleton. Actin assembly and disassembly form a variety of dynamic structures which provide the pushing and contractile forces necessary for cells to properly migrate. As such, actin dynamics are tightly regulated. Classically, the Rho family of GTPases are considered the major regulators of the actin cytoskeleton during cell migration. Together, this family establishes polarity in the migrating cell by stimulating the formation of various actin structures in specific cellular locations. However, while the Rho GTPases are acknowledged as the core machinery regulating actin dynamics and cell migration, a variety of other proteins have become established as modulators of actin structures and cell migration. One such group of proteins is the Rab40 family of GTPases, an evolutionarily and functionally unique family of Rabs. Rab40 originated as a single protein in the bilaterians and, through multiple duplication events, expanded to a four-protein family in higher primates. Furthermore, unlike other members of the Rab family, Rab40 proteins contain a C-terminally located suppressor of cytokine signaling (SOCS) box domain. Through the SOCS box, Rab40 proteins interact with Cullin5 to form an E3 ubiquitin ligase complex. As a member of this complex, Rab40 ubiquitinates its effectors, controlling their degradation, localization, and activation. Because substrates of the Rab40/Cullin5 complex can play a role in regulating actin structures and cell migration, the Rab40 family of proteins has recently emerged as unique modulators of cell migration machinery.
Collapse
Affiliation(s)
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
8
|
Bouin AP, Kyumurkov A, Planus E, Albiges-Rizo C. [Cellular tension and integrin trafficking]. Med Sci (Paris) 2023; 39:597-599. [PMID: 37695144 DOI: 10.1051/medsci/2023089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Affiliation(s)
- Anne-Pascale Bouin
- Université Grenoble Alpes, Inserm 1209, CNRS UMR5309, Institut pour l'avancée des biosciences, Grenoble, France
| | - Alexander Kyumurkov
- Université Grenoble Alpes, Inserm 1209, CNRS UMR5309, Institut pour l'avancée des biosciences, Grenoble, France
| | - Emmanuelle Planus
- Université Grenoble Alpes, Inserm 1209, CNRS UMR5309, Institut pour l'avancée des biosciences, Grenoble, France
| | - Corinne Albiges-Rizo
- Université Grenoble Alpes, Inserm 1209, CNRS UMR5309, Institut pour l'avancée des biosciences, Grenoble, France
| |
Collapse
|
9
|
Mechanisms of Foreign Body Giant Cell Formation in Response to Implantable Biomaterials. Polymers (Basel) 2023; 15:polym15051313. [PMID: 36904554 PMCID: PMC10007405 DOI: 10.3390/polym15051313] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Long term function of implantable biomaterials are determined by their integration with the host's body. Immune reactions against these implants could impair the function and integration of the implants. Some biomaterial-based implants lead to macrophage fusion and the formation of multinucleated giant cells, also known as foreign body giant cells (FBGCs). FBGCs may compromise the biomaterial performance and may lead to implant rejection and adverse events in some cases. Despite their critical role in response to implants, there is a limited understanding of cellular and molecular mechanisms involved in forming FBGCs. Here, we focused on better understanding the steps and mechanisms triggering macrophage fusion and FBGCs formation, specifically in response to biomaterials. These steps included macrophage adhesion to the biomaterial surface, fusion competency, mechanosensing and mechanotransduction-mediated migration, and the final fusion. We also described some of the key biomarkers and biomolecules involved in these steps. Understanding these steps on a molecular level would lead to enhance biomaterials design and improve their function in the context of cell transplantation, tissue engineering, and drug delivery.
Collapse
|
10
|
Frugtniet BA, Ruge F, Sanders AJ, Owen S, Harding KG, Jiang WG, Martin TA. nWASP Inhibition Increases Wound Healing via TrKb/PLCγ Signalling. Biomolecules 2023; 13:biom13020379. [PMID: 36830748 PMCID: PMC9953671 DOI: 10.3390/biom13020379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/18/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
(1) Background: Chronic wounds represent a major burden to patients and healthcare systems and identifying new therapeutic targets to encourage wound healing is a significant challenge. This study evaluated nWASP as a new therapeutic target in human wound healing and determined how this can be regulated. (2) Methods: Clinical cohorts from patients with chronic wounds were tested for the expression of nWASP and cell models were employed to evaluate the influence of nWASP on cellular functions that are key to the healing process following knockdown and/or the use of nWASP-specific inhibitors. (3) Results: nWASP was significantly elevated at transcript levels in human non-healing chronic wounds versus healing tissues. nWASP inhibitors, wiskostatin and 187-1, along with the knockdown of nWASP, modified both HaCaT and HECV cell behaviour. We then identified two signalling pathways affected by nWASP inhibition: TrkB signalling and downstream PLCγ1 phosphorylation were impaired by nWASP inhibition in HaCaT cells. The healing of wounds in a diabetic murine model was significantly improved with an nWASP inhibitor treatment. (4) Conclusions: This study showed that nWASP activity was related to the non-healing behaviour of chronic wounds and together with the findings in the in vivo models, it strongly suggested nWASP as a therapeutic target in non-healing wounds that are regulated via TrkB and PLCγ1 signalling.
Collapse
Affiliation(s)
- Bethan A. Frugtniet
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Fiona Ruge
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Andrew J. Sanders
- Institute of Biomedical Science, University of Gloucestershire, Cheltenham GL50 2RH, UK
| | - Sioned Owen
- School of Applied Sciences, University of South Wales, Pontypridd CF37 4AT, UK
| | - Keith G. Harding
- Wound Healing Research Unit, Cardiff University School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Wen G. Jiang
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Tracey A. Martin
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
- Correspondence: ; Tel.: +44-(0)202-068-7209
| |
Collapse
|
11
|
Geiger B, Boujemaa-Paterski R, Winograd-Katz SE, Balan Venghateri J, Chung WL, Medalia O. The Actin Network Interfacing Diverse Integrin-Mediated Adhesions. Biomolecules 2023; 13:biom13020294. [PMID: 36830665 PMCID: PMC9953007 DOI: 10.3390/biom13020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
The interface between the cellular actin network and diverse forms of integrin-mediated cell adhesions displays a unique capacity to serve as accurate chemical and mechanical sensors of the cell's microenvironment. Focal adhesion-like structures of diverse cell types, podosomes in osteoclasts, and invadopodia of invading cancer cells display distinct morphologies and apparent functions. Yet, all three share a similar composition and mode of coupling between a protrusive structure (the lamellipodium, the core actin bundle of the podosome, and the invadopodia protrusion, respectively), and a nearby adhesion site. Cytoskeletal or external forces, applied to the adhesion sites, trigger a cascade of unfolding and activation of key adhesome components (e.g., talin, vinculin, integrin), which in turn, trigger the assembly of adhesion sites and generation of adhesion-mediated signals that affect cell behavior and fate. The structural and molecular mechanisms underlying the dynamic crosstalk between the actin cytoskeleton and the adhesome network are discussed.
Collapse
Affiliation(s)
- Benjamin Geiger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Correspondence: (B.G.); (O.M.)
| | - Rajaa Boujemaa-Paterski
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Sabina E. Winograd-Katz
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jubina Balan Venghateri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Wen-Lu Chung
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Correspondence: (B.G.); (O.M.)
| |
Collapse
|
12
|
Linder S, Cervero P, Eddy R, Condeelis J. Mechanisms and roles of podosomes and invadopodia. Nat Rev Mol Cell Biol 2023; 24:86-106. [PMID: 36104625 DOI: 10.1038/s41580-022-00530-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 01/28/2023]
Abstract
Cell invasion into the surrounding extracellular matrix or across tissue boundaries and endothelial barriers occurs in both physiological and pathological scenarios such as immune surveillance or cancer metastasis. Podosomes and invadopodia, collectively called 'invadosomes', are actin-based structures that drive the proteolytic invasion of cells, by forming highly regulated platforms for the localized release of lytic enzymes that degrade the matrix. Recent advances in high-resolution microscopy techniques, in vivo imaging and high-throughput analyses have led to considerable progress in understanding mechanisms of invadosomes, revealing the intricate inner architecture of these structures, as well as their growing repertoire of functions that extends well beyond matrix degradation. In this Review, we discuss the known functions, architecture and regulatory mechanisms of podosomes and invadopodia. In particular, we describe the molecular mechanisms of localized actin turnover and microtubule-based cargo delivery, with a special focus on matrix-lytic enzymes that enable proteolytic invasion. Finally, we point out topics that should become important in the invadosome field in the future.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany.
| | - Pasquale Cervero
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| | - Robert Eddy
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - John Condeelis
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
13
|
Choudhary BS, Chaudhary N, Shah M, Dwivedi N, P K S, Das M, Dalal SN. Lipocalin 2 inhibits actin glutathionylation to promote invasion and migration. FEBS Lett 2023; 597:1086-1097. [PMID: 36650979 DOI: 10.1002/1873-3468.14572] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023]
Abstract
Invasive and metastatic tumor cells show an increase in migration and invasion, making the processes contributing to these phenotypes potential therapeutic targets. Lipocalin 2 (LCN2; also known as neutrophil gelatinase-associated lipocalin) is a putative therapeutic target in multiple tumor types and promotes invasion and migration, although the mechanisms underlying these phenotypes are unclear. The data in this report demonstrate that LCN2 promotes actin polymerization, invasion, and migration by inhibiting actin glutathionylation. LCN2 inhibits actin glutathionylation by decreasing the levels of reactive oxygen species (ROS) and by reducing intracellular iron levels. Inhibiting LCN2 function leads to increased actin glutathionylation, decreased migration, and decreased invasion. These results suggest that LCN2 is a potential therapeutic target in invasive tumors.
Collapse
Affiliation(s)
- Bhagya Shree Choudhary
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Nazia Chaudhary
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Manya Shah
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Nehanjali Dwivedi
- Molecular Immunology, Mazumdar Shaw Medical Foundation, Bommasandra, Bangalore, India
| | - Smitha P K
- Product Research Group, Mazumdar Shaw Medical Foundation, Bommasandra, Bangalore, India
| | - Manjula Das
- Molecular Immunology, Mazumdar Shaw Medical Foundation, Bommasandra, Bangalore, India
| | - Sorab Nariman Dalal
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
14
|
Qu M, Yu K, Rehman Aziz AU, Zhang H, Zhang Z, Li N, Liu B. The role of Actopaxin in tumor metastasis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:90-102. [PMID: 36150525 DOI: 10.1016/j.pbiomolbio.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/06/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Actopaxin is a newly discovered focal adhesions (FAs) protein, actin-binding protein and pseudopodia-enriched molecule. It can not only bind to a variety of FAs proteins (such as Paxillin, ILK and PINCH) and non-FAs proteins (such as TESK1, CdGAP, β2-adaptin, G3BP2, ADAR1 and CD29), but also participates in multiple signaling pathways. Thus, it plays a crucial role in regulating important processes of tumor metastasis, including matrix degradation, migration, and invasion, etc. This review covers the latest progress in the structure and function of Actopaxin, its interaction with other proteins as well as its involvement in regulating tumor development and metastasis. Additionally, the current limitations for Actopaxin related studies and the possible research directions on it in the future are also discussed. It is hoped that this review can assist relevant researchers to obtain a deep understanding of the role that Actopaxin plays in tumor progression, and also enlighten further research and development of therapeutic approaches for the treatment of tumor metastasis.
Collapse
Affiliation(s)
- Manrong Qu
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China
| | - Kehui Yu
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China
| | - Aziz Ur Rehman Aziz
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China
| | - Zhengyao Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Na Li
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China.
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China.
| |
Collapse
|
15
|
Medina‐Moreno A, Henríquez JP. Maturation of a postsynaptic domain: Role of small Rho GTPases in organising nicotinic acetylcholine receptor aggregates at the vertebrate neuromuscular junction. J Anat 2022; 241:1148-1156. [PMID: 34342888 PMCID: PMC9558164 DOI: 10.1111/joa.13526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
The neuromuscular junction (NMJ) is the peripheral synapse formed between a motor axon and a skeletal muscle fibre that allows muscle contraction and the coordinated movement in many species. A main hallmark of the mature NMJ is the assembly of nicotinic acetylcholine receptor (nAChR) aggregates in the muscle postsynaptic domain, that distributes in perfect apposition to presynaptic motor terminals. To assemble its unique functional architecture, initial embryonic NMJs undergo an early postnatal maturation process characterised by the transformation of homogenous nAChR-containing plaques to elaborate and branched pretzel-like structures. In spite of a detailed morphological characterisation, the molecular mechanisms controlling the intracellular scaffolding that organises a postsynaptic domain at the mature NMJ have not been fully elucidated. In this review, we integrate evidence of key processes and molecules that have shed light on our current understanding of the NMJ maturation process. On the one hand, we consider in vitro studies revealing the potential role of podosome-like structures to define discrete low nAChR-containing regions to consolidate a plaque-to-pretzel transition at the NMJ. On the other hand, we focus on in vitro and in vivo evidence demonstrating that members of the Ras homologous (Rho) protein family of small GTPases (small Rho GTPases) play indispensable roles on NMJ maturation by regulating the stability of nAChR aggregates. We combine this evidence to propose that small Rho GTPases are key players in the assembly of podosome-like structures that drive the postsynaptic maturation of vertebrate NMJs.
Collapse
Affiliation(s)
- Angelymar Medina‐Moreno
- Laboratory of Neuromuscular Studies (NeSt Lab)Department of Cell BiologyFaculty of Biological SciencesCenter for Advanced Microscopy (CMA BioBio)Universidad de ConcepciónConcepciónChile
| | - Juan Pablo Henríquez
- Laboratory of Neuromuscular Studies (NeSt Lab)Department of Cell BiologyFaculty of Biological SciencesCenter for Advanced Microscopy (CMA BioBio)Universidad de ConcepciónConcepciónChile
| |
Collapse
|
16
|
Kyumurkov A, Bouin AP, Boissan M, Manet S, Baschieri F, Proponnet-Guerault M, Balland M, Destaing O, Régent-Kloeckner M, Calmel C, Nicolas A, Waharte F, Chavrier P, Montagnac G, Planus E, Albiges-Rizo C. Force tuning through regulation of clathrin-dependent integrin endocytosis. J Cell Biol 2022; 222:213549. [PMID: 36250940 PMCID: PMC9579986 DOI: 10.1083/jcb.202004025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/22/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Integrin endocytosis is essential for many fundamental cellular processes. Whether and how the internalization impacts cellular mechanics remains elusive. Whereas previous studies reported the contribution of the integrin activator, talin, in force development, the involvement of inhibitors is less documented. We identified ICAP-1 as an integrin inhibitor involved in mechanotransduction by co-working with NME2 to control clathrin-mediated endocytosis of integrins at the edge of focal adhesions (FA). Loss of ICAP-1 enables β3-integrin-mediated force generation independently of β1 integrin. β3-integrin-mediated forces were associated with a decrease in β3 integrin dynamics stemming from their reduced diffusion within adhesion sites and slow turnover of FA. The decrease in β3 integrin dynamics correlated with a defect in integrin endocytosis. ICAP-1 acts as an adaptor for clathrin-dependent endocytosis of integrins. ICAP-1 controls integrin endocytosis by interacting with NME2, a key regulator of dynamin-dependent clathrin-coated pits fission. Control of clathrin-mediated integrin endocytosis by an inhibitor is an unprecedented mechanism to tune forces at FA.
Collapse
Affiliation(s)
- Alexander Kyumurkov
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Anne-Pascale Bouin
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Mathieu Boissan
- University Sorbonne, INSERM UMR_S 938, Saint-Antoine Research Center, CRSA, Paris, France,Laboratory of Biochemistry and Hormonology, Tenon Hospital, AP-HP, Paris, France
| | - Sandra Manet
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Francesco Baschieri
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | | | - Martial Balland
- Laboratoire Interdisciplinaire de Physique, UMR CNRS 5588, University Grenoble Alpes, Grenoble, France
| | - Olivier Destaing
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Myriam Régent-Kloeckner
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Claire Calmel
- University Sorbonne, INSERM UMR_S 938, Saint-Antoine Research Center, CRSA, Paris, France,Laboratory of Biochemistry and Hormonology, Tenon Hospital, AP-HP, Paris, France
| | - Alice Nicolas
- University Grenoble Alpes, CNRS, CEA/LETIMinatec, Grenoble Institute of Technology, Microelectronics Technology Laboratory, Grenoble, France
| | - François Waharte
- University Sorbonne, INSERM UMR_S 938, Saint-Antoine Research Center, CRSA, Paris, France,Laboratory of Biochemistry and Hormonology, Tenon Hospital, AP-HP, Paris, France
| | - Philippe Chavrier
- Institut Curie, UMR144, Université de Recherche Paris Sciences et Lettres, Centre Universitaire, Paris, France
| | - Guillaume Montagnac
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Emmanuelle Planus
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France,Correspondence to Emmanuelle Planus: mailto:
| | - Corinne Albiges-Rizo
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France,Corinne Albiges-Rizo:
| |
Collapse
|
17
|
Bera K, Kiepas A, Zhang Y, Sun SX, Konstantopoulos K. The interplay between physical cues and mechanosensitive ion channels in cancer metastasis. Front Cell Dev Biol 2022; 10:954099. [PMID: 36158191 PMCID: PMC9490090 DOI: 10.3389/fcell.2022.954099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Physical cues have emerged as critical influencers of cell function during physiological processes, like development and organogenesis, and throughout pathological abnormalities, including cancer progression and fibrosis. While ion channels have been implicated in maintaining cellular homeostasis, their cell surface localization often places them among the first few molecules to sense external cues. Mechanosensitive ion channels (MICs) are especially important transducers of physical stimuli into biochemical signals. In this review, we describe how physical cues in the tumor microenvironment are sensed by MICs and contribute to cancer metastasis. First, we highlight mechanical perturbations, by both solid and fluid surroundings typically found in the tumor microenvironment and during critical stages of cancer cell dissemination from the primary tumor. Next, we describe how Piezo1/2 and transient receptor potential (TRP) channels respond to these physical cues to regulate cancer cell behavior during different stages of metastasis. We conclude by proposing alternative mechanisms of MIC activation that work in tandem with cytoskeletal components and other ion channels to bestow cells with the capacity to sense, respond and navigate through the surrounding microenvironment. Collectively, this review provides a perspective for devising treatment strategies against cancer by targeting MICs that sense aberrant physical characteristics during metastasis, the most lethal aspect of cancer.
Collapse
Affiliation(s)
- Kaustav Bera
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
| | - Alexander Kiepas
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Alexander Kiepas, ; Konstantinos Konstantopoulos,
| | - Yuqi Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
| | - Sean X. Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Oncology, The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Alexander Kiepas, ; Konstantinos Konstantopoulos,
| |
Collapse
|
18
|
Ain U, Firdaus H. Parvin: A hub of intracellular signalling pathways regulating cellular behaviour and disease progression. Acta Histochem 2022; 124:151935. [PMID: 35932544 DOI: 10.1016/j.acthis.2022.151935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022]
Abstract
α-actinin superfamily houses the family of parvins, comprising α, β and γ isoforms in the vertebrates and a single orthologue in the invertebrates. Parvin as an adaptor protein is a member of the ternary IPP-complex including Integrin Linked Kinase (ILK) and particularly-interesting-Cys-His-rich protein (PINCH). Each of the complex proteins showed a conserved lineage and was principally used by the evolutionarily primitive integrin-adhesome machinery to regulate cellular behaviour and signalling pathways. Parvin facilitated integrin mediated integration of the extracellular matrix with cytoskeletal framework culminating in regulation of cellular adhesion and spreading, cytoskeleton reorganisation and cell survival. Studies have established role of parvin in pregnancy, lactation, matrix degradation, blood vessel formation and in several diseases such as cancer, NAFLD and cardiac diseases etc. This review narrates the history of parvin discovery, its elaborate gene structure and conservation across phyla including cellular expression, localisation and interacting partners in vertebrates as well as invertebrates. The review further discusses how parvin acts as an epicentre of signalling pathways, its associated mutants and diseased conditions.
Collapse
Affiliation(s)
- Ushashi Ain
- Department of Life Sciences, Central University of Jharkhand, CTI Campus, Ratu-Lohardaga Road, Ranchi 835205, India
| | - Hena Firdaus
- Department of Life Sciences, Central University of Jharkhand, CTI Campus, Ratu-Lohardaga Road, Ranchi 835205, India.
| |
Collapse
|
19
|
Eslami-Kaliji F, Mirahmadi-Zare SZ, Nazem S, Shafie N, Ghaedi R, Asadian-Esfahani MH. A label-free SPR biosensor for specific detection of TLR4 expression; introducing of 10-HDA as an antagonist. Int J Biol Macromol 2022; 217:142-149. [PMID: 35817233 DOI: 10.1016/j.ijbiomac.2022.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 11/05/2022]
Abstract
Toll-like receptor 4 (TLR4) is actively involved in many health-related problems, including transplantation rejection and autoimmune diseases. Therefore, it is important to identify an antagonist to inhibit the TLR4-induced immune cell activation. In our previous study, 10-hydroxy-2-decanoic acid (10-HDA) was introduced as a potential antagonist for TLR4; however, possible interaction between 10-HDA and TLR4 needed to be detected. Due to the ability of surface plasmon resonance (SPR) biosensor to confirm the specific interactions between receptors and ligands, a new configuration of SPR biosensor proposed to detect the possible interaction between 10-HDA and TLR4. Hence, 10-HDA was immobilized using the (3-aminopropyl) triethoxysilane (APTES) polymer as a crosslinking agent on the Ag-MgF2 surface. Besides, genetically modified HEK293T cells with high TLR4 expression were used to study the possible interaction between 10-HDA and TLR4. Surprisingly, the SPR angle was significantly reduced in the presence of HEK cells expressing TLR4, while HEK cells without TLR4 did not affect the SPR angle. So, the proposed SPR biosensor successfully detected the interaction betweenTLR4 and 10-HDA. The sensitivity and detection limit of the biosensor were achieved at 0.05 and 0.5 million cells expressing TLR4, respectively, with a two-fold dynamic range.
Collapse
Affiliation(s)
- Farshid Eslami-Kaliji
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran
| | - Seyede Zohreh Mirahmadi-Zare
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran.
| | - Saeid Nazem
- Department of Physics, Faculty of Science, University of Isfahan, Isfahan, Iran
| | - Negar Shafie
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran
| | - Rassoul Ghaedi
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran
| | | |
Collapse
|
20
|
Oprescu A, Michel D, Antkowiak A, Vega E, Viaud J, Courtneidge SA, Eckly A, de la Salle H, Chicanne G, Léon C, Payrastre B, Gaits-Iacovoni F. Megakaryocytes form linear podosomes devoid of digestive properties to remodel medullar matrix. Sci Rep 2022; 12:6255. [PMID: 35428815 PMCID: PMC9012751 DOI: 10.1038/s41598-022-10215-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/01/2022] [Indexed: 12/20/2022] Open
Abstract
Bone marrow megakaryocytes (MKs) undergo a maturation involving contacts with the microenvironment before extending proplatelets through sinusoids to deliver platelets in the bloodstream. We demonstrated that MKs assemble linear F-actin-enriched podosomes on collagen I fibers. Microscopy analysis evidenced an inverse correlation between the number of dot-like versus linear podosomes over time. Confocal videomicroscopy confirmed that they derived from each-other. This dynamics was dependent on myosin IIA. Importantly, MKs progenitors expressed the Tks4/5 adaptors, displayed a strong gelatinolytic ability and did not form linear podosomes. While maturing, MKs lost Tks expression together with digestive ability. However, those MKs were still able to remodel the matrix by exerting traction on collagen I fibers through a collaboration between GPVI, ß1 integrin and linear podosomes. Our data demonstrated that a change in structure and composition of podosomes accounted for the shift of function during megakaryopoiesis. These data highlight the fact that members of the invadosome family could correspond to different maturation status of the same entity, to adapt to functional responses required by differentiation stages of the cell that bears them.
Collapse
Affiliation(s)
- Antoine Oprescu
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Déborah Michel
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Adrien Antkowiak
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Elodie Vega
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Julien Viaud
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Sara A Courtneidge
- Department of Cell, Development and Cancer Biology, Oregon Health & Science University, Oregon, USA
| | - Anita Eckly
- INSERM, UMR_S1255, Université de Strasbourg, Etablissement Français du Sang-GEST, Strasbourg, France
| | - Henri de la Salle
- INSERM, UMR_S1255, Université de Strasbourg, Etablissement Français du Sang-GEST, Strasbourg, France
| | - Gaëtan Chicanne
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Catherine Léon
- INSERM, UMR_S1255, Université de Strasbourg, Etablissement Français du Sang-GEST, Strasbourg, France
| | - Bernard Payrastre
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France.,CHU de Toulouse, laboratoire d'Hématologie, Toulouse, France
| | - Frédérique Gaits-Iacovoni
- INSERM, UMR1297, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France. .,Molecular, Cellular and Developmental Biology Department (MCD, UMR5077), Centre de Biologie Intégrative (CBI, FR3743), University of Toulouse, CNRS, UPS, 31062, Toulouse, France.
| |
Collapse
|
21
|
Kumar R, Rao GN. Novel Role of Prereplication Complex Component Cell Division Cycle 6 in Retinal Neovascularization. Arterioscler Thromb Vasc Biol 2022; 42:407-427. [PMID: 35236105 PMCID: PMC8957605 DOI: 10.1161/atvbaha.121.317182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The major aim of this study is to investigate whether CDC6 (cell division cycle 6), a replication origin recognition complex component, plays a role in retinal neovascularization, and if so, to explore the underlying mechanisms. METHODS In this study, we used a variety of approaches including cellular and moleculer biological methodologies as well as global and tissue-specific knockout mice in combination with an oxygen-induced retinopathy model to study the role of CDC6 in retinal neovascularization. RESULTS VEGFA (vascular endothelial growth factor A)-induced CDC6 expression in a time-dependent manner in human retinal microvascular endothelial cells. In addition, VEGFA-induced CDC6 expression was dependent on PLCβ3 (phospholipase Cβ3)-mediated NFATc1 (nuclear factor of activated T cells c1) activation. Furthermore, while siRNA-mediated depletion of PLCβ3, NFATc1, or CDC6 levels blunted VEGFA-induced human retinal microvascular endothelial cell angiogenic events such as proliferation, migration, sprouting, and tube formation, CDC6 overexpression rescued these effects in NFATc1-deficient mouse retinal microvascular endothelial cells. In accordance with these observations, global knockdown of PLCβ3 or endothelial cell-specific deletion of NFATc1 or siRNA-mediated depletion of CDC6 levels substantially inhibited oxygen-induced retinopathy-induced retinal sprouting and neovascularization. In addition, retroviral-mediated overexpression of CDC6 rescued oxygen-induced retinopathy-induced retinal neovascularization from inhibition in PLCβ3 knockout mice and in endothelial cell-specific NFATc1-deficient mice. CONCLUSIONS The above observations clearly reveal that PLCβ3-mediated NFATc1 activation-dependent CDC6 expression plays a crucial role in VEGFA/oxygen-induced retinopathy-induced retinal neovascularization.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| |
Collapse
|
22
|
Weber K, Hey S, Cervero P, Linder S. The circle of life: Phases of podosome formation, turnover and reemergence. Eur J Cell Biol 2022; 101:151218. [PMID: 35334303 DOI: 10.1016/j.ejcb.2022.151218] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/06/2023] Open
Abstract
Podosomes are highly dynamic actin-rich structures in a variety of cell types, especially monocytic cells. They fulfill multiple functions such as adhesion, mechanosensing, or extracellular matrix degradation, thus allowing cells to detect and respond to a changing environment. These abilities are based on an intricate architecture that enables podosomes to sense mechanical properties of their substratum and to transduce them intracellularly in order to generate an appropriate cellular response. These processes are enabled through the tightly orchestrated interplay of more than 300 different components that are dynamically recruited during podosome formation and turnover. In this review, we discuss the different phases of the podosome life cycle and the current knowledge on regulatory factors that impact on the genesis, activity, dissolution and reemergence of podosomes. We also highlight mechanoregulatory processes that become important during these different stages, on the level of individual podosomes, and also at podosome sub- and superstructures.
Collapse
Affiliation(s)
- Kathrin Weber
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Sven Hey
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Pasquale Cervero
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
23
|
Harford TJ, Rezaee F, Dye BR, Fan J, Spence JR, Piedimonte G. RSV-induced changes in a 3-dimensional organoid model of human fetal lungs. PLoS One 2022; 17:e0265094. [PMID: 35263387 PMCID: PMC8906588 DOI: 10.1371/journal.pone.0265094] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/22/2022] [Indexed: 12/27/2022] Open
Abstract
We have shown that respiratory syncytial virus (RSV) can spread hematogenously from infected airways of a pregnant woman to the developing fetal lungs in utero. This study sought to measure RSV replication, cytopathic effects, and protein expression in human lung organoids (HLOs) reproducing architecture and transcriptional profiles of human fetal lungs during the 1st trimester of gestation. HLOs derived from human pluripotent stem cells were microinjected after 50 or 100 days in culture with medium or recombinant RSV-A2 expressing the red fluorescent protein gene (rrRSV). Infection was monitored by fluorescent microscopy and PCR. Immunohistochemistry and proteomic analysis were performed. RSV infected HLOs in a dose- and time-dependent manner. RSV-infected HLOs increased expression of CC10 (Club cells), but had sparse FOXJ1 (ciliated cells). Disruption of F-actin cytoskeleton was consistent with proteomic data showing a significant increase in Rho GTPases proteins. RSV upregulated the transient receptor potential vanilloid 1 (TRPV1) channel and, while β2 adrenergic receptor (β2AR) expression was decreased overall, its phosphorylated form increased. Our data suggest that prenatal RSV infection produces profound changes in fetal lungs' architecture and expression profiles and maybe an essential precursor of chronic airway dysfunction. expression profiles, and possibly be an important precursor of chronic airway dysfunction.
Collapse
Affiliation(s)
- Terri J. Harford
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Fariba Rezaee
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children’s, Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Briana R. Dye
- Departments of Internal Medicine and Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jia Fan
- Department of Biochemistry and Molecular Biology, Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Jason R. Spence
- Departments of Internal Medicine and Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Giovanni Piedimonte
- Department of Biochemistry and Molecular Biology, Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| |
Collapse
|
24
|
The Calcium-Sensing Receptor Stabilizes Podocyte Function in Proteinuric Humans and Mice. Kidney Int 2022; 101:1186-1199. [DOI: 10.1016/j.kint.2022.01.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/15/2021] [Accepted: 01/21/2022] [Indexed: 12/30/2022]
|
25
|
Pal K, Tu Y, Wang X. Single-Molecule Force Imaging Reveals That Podosome Formation Requires No Extracellular Integrin-Ligand Tensions or Interactions. ACS NANO 2022; 16:2481-2493. [PMID: 35073043 PMCID: PMC9129048 DOI: 10.1021/acsnano.1c09105] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Podosomes are integrin-mediated cell adhesion units involved in many cellular and physiological processes. Integrins likely transmit tensions critical for podosome functions, but such force remains poorly characterized. DNA-based tension sensors are powerful in visualizing integrin tensions but subject to degradation by podosomes which ubiquitously recruit DNase. Here, using a DNase-resistant tension sensor based on a DNA/PNA (peptide nucleic acid) duplex, we imaged podosomal integrin tensions (PIT) in the adhesion rings of podosomes on solid substrates with single molecular tension sensitivity. PIT was shown to be generated by both actomyosin contractility and actin polymerization in podosomes. Importantly, by monitoring PIT and podosome structure in parallel, we showed that extracellular integrin-ligand tensions, despite being critical for the formation of focal adhesions, are dispensable for podosome formation, as PIT reduction or elimination has an insignificant impact on structure formation and FAK (focal adhesion kinase) phosphorylation in podosomes. We further verified that even integrin-ligand interaction is dispensable for podosome formation, as macrophages form podosomes normally on passivated surfaces that block integrin-ligand interaction but support macrophage adhesion through electrostatic adsorption or Fc receptor-immunoglobin G interaction. In contrast, focal adhesions are unable to form on these passivated surfaces.
Collapse
Affiliation(s)
- Kaushik Pal
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Ying Tu
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Xuefeng Wang
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
- Molecular, Cellular, and Developmental Biology interdepartmental program, Ames, IA 50011, USA
- To whom correspondence may be addressed. Xuefeng Wang, Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
26
|
Brunetti RM, Kockelkoren G, Raghavan P, Bell GR, Britain D, Puri N, Collins SR, Leonetti MD, Stamou D, Weiner OD. WASP integrates substrate topology and cell polarity to guide neutrophil migration. J Cell Biol 2022; 221:e202104046. [PMID: 34964841 PMCID: PMC8719638 DOI: 10.1083/jcb.202104046] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/19/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
To control their movement, cells need to coordinate actin assembly with the geometric features of their substrate. Here, we uncover a role for the actin regulator WASP in the 3D migration of neutrophils. We show that WASP responds to substrate topology by enriching to sites of inward, substrate-induced membrane deformation. Superresolution imaging reveals that WASP preferentially enriches to the necks of these substrate-induced invaginations, a distribution that could support substrate pinching. WASP facilitates recruitment of the Arp2/3 complex to these sites, stimulating local actin assembly that couples substrate features with the cytoskeleton. Surprisingly, WASP only enriches to membrane deformations in the front half of the cell, within a permissive zone set by WASP's front-biased regulator Cdc42. While WASP KO cells exhibit relatively normal migration on flat substrates, they are defective at topology-directed migration. Our data suggest that WASP integrates substrate topology with cell polarity by selectively polymerizing actin around substrate-induced membrane deformations in the front half of the cell.
Collapse
Affiliation(s)
- Rachel M. Brunetti
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Center for Geometrically Engineered Cellular Membranes, University of California, San Francisco, San Francisco, CA
| | - Gabriele Kockelkoren
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- Center for Geometrically Engineered Cellular Membranes, University of Copenhagen, Copenhagen, Denmark
| | - Preethi Raghavan
- University of California, Berkeley–University of California, San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| | - George R.R. Bell
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA
| | - Derek Britain
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Center for Geometrically Engineered Cellular Membranes, University of California, San Francisco, San Francisco, CA
| | - Natasha Puri
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Sean R. Collins
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA
| | | | - Dimitrios Stamou
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- Center for Geometrically Engineered Cellular Membranes, University of Copenhagen, Copenhagen, Denmark
| | - Orion D. Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Center for Geometrically Engineered Cellular Membranes, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
27
|
Platelet Membrane: An Outstanding Factor in Cancer Metastasis. MEMBRANES 2022; 12:membranes12020182. [PMID: 35207103 PMCID: PMC8875259 DOI: 10.3390/membranes12020182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/02/2022]
Abstract
In addition to being biological barriers where the internalization or release of biomolecules is decided, cell membranes are contact structures between the interior and exterior of the cell. Here, the processes of cell signaling mediated by receptors, ions, hormones, cytokines, enzymes, growth factors, extracellular matrix (ECM), and vesicles begin. They triggering several responses from the cell membrane that include rearranging its components according to the immediate needs of the cell, for example, in the membrane of platelets, the formation of filopodia and lamellipodia as a tissue repair response. In cancer, the cancer cells must adapt to the new tumor microenvironment (TME) and acquire capacities in the cell membrane to transform their shape, such as in the case of epithelial−mesenchymal transition (EMT) in the metastatic process. The cancer cells must also attract allies in this challenging process, such as platelets, fibroblasts associated with cancer (CAF), stromal cells, adipocytes, and the extracellular matrix itself, which limits tumor growth. The platelets are enucleated cells with fairly interesting growth factors, proangiogenic factors, cytokines, mRNA, and proteins, which support the development of a tumor microenvironment and support the metastatic process. This review will discuss the different actions that platelet membranes and cancer cell membranes carry out during their relationship in the tumor microenvironment and metastasis.
Collapse
|
28
|
Kim MC, Li R, Abeyaratne R, Kamm RD, Asada HH. A computational modeling of invadopodia protrusion into an extracellular matrix fiber network. Sci Rep 2022; 12:1231. [PMID: 35075179 PMCID: PMC8786978 DOI: 10.1038/s41598-022-05224-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/06/2022] [Indexed: 11/17/2022] Open
Abstract
Invadopodia are dynamic actin-rich membrane protrusions that have been implicated in cancer cell invasion and metastasis. In addition, invasiveness of cancer cells is strongly correlated with invadopodia formation, which are observed during extravasation and colonization of metastatic cancer cells at secondary sites. However, quantitative understanding of the interaction of invadopodia with extracellular matrix (ECM) is lacking, and how invadopodia protrusion speed is associated with the frequency of protrusion-retraction cycles remains unknown. Here, we present a computational framework for the characterization of invadopodia protrusions which allows two way interactions between intracellular branched actin network and ECM fibers network. We have applied this approach to predicting the invasiveness of cancer cells by computationally knocking out actin-crosslinking molecules, such as α-actinin, filamin and fascin. The resulting simulations reveal distinct invadopodia dynamics with cycles of protrusion and retraction. Specifically, we found that (1) increasing accumulation of MT1-MMP at tips of invadopodia as the duration of protrusive phase is increased, and (2) the movement of nucleus toward the leading edge of the cell becomes unstable as duration of the retractile phase (or myosin turnover time) is longer than 1 min.
Collapse
Affiliation(s)
- Min-Cheol Kim
- Departments of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Ran Li
- Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, 02114, USA
| | - Rohan Abeyaratne
- Departments of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Roger D Kamm
- Departments of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - H Harry Asada
- Departments of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
29
|
Balmik AA, Chinnathambi S. Inter-relationship of Histone Deacetylase-6 with cytoskeletal organization and remodeling. Eur J Cell Biol 2022; 101:151202. [DOI: 10.1016/j.ejcb.2022.151202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/30/2022] Open
|
30
|
Tadijan A, Humphries JD, Samaržija I, Stojanović N, Zha J, Čuljak K, Tomić M, Paradžik M, Nestić D, Kang H, Humphries MJ, Ambriović-Ristov A. The Tongue Squamous Carcinoma Cell Line Cal27 Primarily Employs Integrin α6β4-Containing Type II Hemidesmosomes for Adhesion Which Contribute to Anticancer Drug Sensitivity. Front Cell Dev Biol 2021; 9:786758. [PMID: 34977030 PMCID: PMC8716755 DOI: 10.3389/fcell.2021.786758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Integrins are heterodimeric cell surface glycoproteins used by cells to bind to the extracellular matrix (ECM) and regulate tumor cell proliferation, migration and survival. A causative relationship between integrin expression and resistance to anticancer drugs has been demonstrated in different tumors, including head and neck squamous cell carcinoma. Using a Cal27 tongue squamous cell carcinoma model, we have previously demonstrated that de novo expression of integrin αVβ3 confers resistance to several anticancer drugs (cisplatin, mitomycin C and doxorubicin) through a mechanism involving downregulation of active Src, increased cell migration and invasion. In the integrin αVβ3 expressing Cal27-derived cell clone 2B1, αVβ5 expression was also increased, but unrelated to drug resistance. To identify the integrin adhesion complex (IAC) components that contribute to the changes in Cal27 and 2B1 cell adhesion and anticancer drug resistance, we isolated IACs from both cell lines. Mass spectrometry (MS)-based proteomics analysis indicated that both cell lines preferentially, but not exclusively, use integrin α6β4, which is classically found in hemidesmosomes. The anticancer drug resistant cell clone 2B1 demonstrated an increased level of α6β4 accompanied with increased deposition of a laminin-332-containing ECM. Immunofluorescence and electron microscopy demonstrated the formation of type II hemidesmosomes by both cell types. Furthermore, suppression of α6β4 expression in both lines conferred resistance to anticancer drugs through a mechanism independent of αVβ3, which implies that the cell clone 2B1 would have been even more resistant had the upregulation of α6β4 not occurred. Taken together, our results identify a key role for α6β4-containing type II hemidesmosomes in regulating anticancer drug sensitivity.
Collapse
Affiliation(s)
- Ana Tadijan
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Jonathan D. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Ivana Samaržija
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Nikolina Stojanović
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Junzhe Zha
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Kristina Čuljak
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Marija Tomić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Mladen Paradžik
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Davor Nestić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, South Korea
| | - Martin J. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
31
|
Hülsemann M, Sanchez C, Verkhusha PV, Des Marais V, Mao SPH, Donnelly SK, Segall JE, Hodgson L. TC10 regulates breast cancer invasion and metastasis by controlling membrane type-1 matrix metalloproteinase at invadopodia. Commun Biol 2021; 4:1091. [PMID: 34531530 PMCID: PMC8445963 DOI: 10.1038/s42003-021-02583-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 08/23/2021] [Indexed: 01/12/2023] Open
Abstract
During breast cancer metastasis, cancer cell invasion is driven by actin-rich protrusions called invadopodia, which mediate the extracellular matrix degradation required for the success of the invasive cascade. In this study, we demonstrate that TC10, a member of a Cdc42 subfamily of p21 small GTPases, regulates the membrane type 1 matrix metalloproteinase (MT1-MMP)-driven extracellular matrix degradation at invadopodia. We show that TC10 is required for the plasma membrane surface exposure of MT1-MMP at these structures. By utilizing our Förster resonance energy transfer (FRET) biosensor, we demonstrate the p190RhoGAP-dependent regulation of spatiotemporal TC10 activity at invadopodia. We identified a pathway that regulates invadopodia-associated TC10 activity and function through the activation of p190RhoGAP and the downstream interacting effector Exo70. Our findings reveal the role of a previously unknown regulator of vesicular fusion at invadopodia, TC10 GTPase, in breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- Maren Hülsemann
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Colline Sanchez
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Polina V Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Vera Des Marais
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Serena P H Mao
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Sara K Donnelly
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jeffrey E Segall
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
32
|
Rivier P, Mubalama M, Destaing O. Small GTPases all over invadosomes. Small GTPases 2021; 12:429-439. [PMID: 33487105 PMCID: PMC8583085 DOI: 10.1080/21541248.2021.1877081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/30/2020] [Accepted: 01/10/2021] [Indexed: 12/19/2022] Open
Abstract
Cell invasion is associated with numerous patho-physiologic states including cell development and metastatic dissemination. This process couples the activation of cell motility with the capacity to degrade the extracellular matrix, thereby permitting cells to pass through basal membranes. Invasion is sustained by the actions of invadosomes, an ensemble of subcellular structures with high functional homology. Invadosomes are 3D acto-adhesive structures that can also mediate local extracellular matrix degradation through the controlled delivery of proteases. Intracellular RHO GTPases play a central role in the regulation of invadosomes where their complex interplay regulates multiple invadosome functions. This review aims to provide an overview of the synergistic activities of the small GTPases in invadosome biology. This broad-based review also reinforces the importance of the spatiotemporal regulation of small GTPases and the impact of this process on invadosome dynamics.
Collapse
Affiliation(s)
- Paul Rivier
- Team DYSAD, Dept2, Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Grenoble, France
| | - Michel Mubalama
- Team DYSAD, Dept2, Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Grenoble, France
| | - Olivier Destaing
- Team DYSAD, Dept2, Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Grenoble, France
| |
Collapse
|
33
|
Gilardi M, Bersini S, Valtorta S, Proietto M, Crippa M, Boussommier-Calleja A, Labelle M, Moresco RM, Vanoni M, Kamm RD, Moretti M. The driving role of the Cdk5/Tln1/FAK S732 axis in cancer cell extravasation dissected by human vascularized microfluidic models. Biomaterials 2021; 276:120975. [PMID: 34333365 DOI: 10.1016/j.biomaterials.2021.120975] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Understanding the molecular mechanisms of metastatic dissemination, the leading cause of death in cancer patients, is required to develop novel, effective therapies. Extravasation, an essential rate-limiting process in the metastatic cascade, includes three tightly coordinated steps: cancer cell adhesion to the endothelium, trans-endothelial migration, and early invasion into the secondary site. Focal adhesion proteins, including Tln1 and FAK, regulate the cytoskeleton dynamics: dysregulation of these proteins is often associated with metastatic progression and poor prognosis. METHODS Here, we studied the previously unexplored role of these targets in each extravasation step using engineered 3D in vitro models, which recapitulate the physiological vascular niche experienced by cancer cells during hematogenous metastasis. RESULTS Human breast cancer and fibrosarcoma cell lines respond to Cdk5/Tln1/FAK axis perturbation, impairing their metastatic potential. Vascular breaching requires actin polymerization-dependent invadopodia formation. Invadopodia generation requires the structural function of FAK and Tln1 rather than their activation through phosphorylation. Our data support that the inhibition of FAKS732 phosphorylation delocalizes ERK from the nucleus, decreasing ERK phosphorylated form. These findings indicate the critical role of these proteins in driving trans-endothelial migration. In fact, both knock-down experiments and chemical inhibition of FAK dramatically reduces lung colonization in vivo and TEM in microfluidic setting. Altogether, these data indicate that engineered 3D in vitro models coupled to in vivo models, genetic, biochemical, and imaging tools represent a powerful weapon to increase our understanding of metastatic progression. CONCLUSIONS These findings point to the need for further analyses of previously overlooked phosphorylation sites of FAK, such as the serine 732, and foster the development of new effective antimetastatic treatments targeting late events of the metastatic cascade.
Collapse
Affiliation(s)
- Mara Gilardi
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy; Institute of Pathology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland.
| | - Simone Bersini
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy; Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, Lugano, Switzerland.
| | - Silvia Valtorta
- Università Degli Studi di Milano-Bicocca, Department of Medicine and Surgery and Tecnomed Foundation, Monza, Italy; Institute of Bioimaging and Molecular Physiology of National Researches Council (IBFM-CNR), Segrate, Italy.
| | - Marco Proietto
- Department of Biology-University of California - San Diego, La Jolla, CA, USA.
| | - Martina Crippa
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, Lugano, Switzerland; Laboratory of Biological Structures Mechanics, Chemistry, Material and Chemical Engineering Department "Giulio Natta", Politecnico di Milano, Milan, Italy.
| | - Alexandra Boussommier-Calleja
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA.
| | - Myriam Labelle
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Rosa Maria Moresco
- Università Degli Studi di Milano-Bicocca, Department of Medicine and Surgery and Tecnomed Foundation, Monza, Italy; Institute of Bioimaging and Molecular Physiology of National Researches Council (IBFM-CNR), Segrate, Italy.
| | - Marco Vanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy; ISBE.IT/ Centre of Systems Biology, Milano, Italy.
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA.
| | - Matteo Moretti
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy; Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, Lugano, Switzerland; Euler Institute, Biomedical Sciences Faculty, Università Della Svizzera Italiana, Lugano, Switzerland.
| |
Collapse
|
34
|
Lin SS, Su YA, Chuang MC, Liu YW. Probing invadosomes: technologies for the analysis of invadosomes. FEBS J 2021; 289:5850-5863. [PMID: 34196119 DOI: 10.1111/febs.16098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/19/2021] [Accepted: 06/30/2021] [Indexed: 12/22/2022]
Abstract
Invadosomes are protrusive and mechanosensitive actin devices critical for cell migration, invasion, and extracellular matrix remodeling. The dynamic, proteolytic, and protrusive natures of invadosomes have made these structures fascinating and attracted many scientists to develop new technologies for their analysis. With these exciting methodologies, many biochemical and biophysical properties of invadosomes have been well characterized and appreciated, and those discoveries elegantly explained the biological and pathological effects of invadosomes in human health and diseases. In this review, we focus on these commonly used or newly developed methods for invadosome analysis and effort to reason some discrepancies among those assays. Finally, we explore the opposite regulatory mechanisms among invadosomes and focal adhesions, another actin-rich adhesive structures, and speculate a potential rule for their switch.
Collapse
Affiliation(s)
- Shan-Shan Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - You-An Su
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Chun Chuang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
35
|
Yang K, Luo M, Li H, Abdulrehman G, Kang L. Effects of jasplakinolide on cytotoxicity, cytoskeleton and apoptosis in two different colon cancer cell lines treated with m-THPC-PDT. Photodiagnosis Photodyn Ther 2021; 35:102425. [PMID: 34214686 DOI: 10.1016/j.pdpdt.2021.102425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/25/2021] [Accepted: 06/25/2021] [Indexed: 12/28/2022]
Abstract
Colorectal cancer (CRC) is a common malignant tumor, and metastasis is one of the most important challenges in the treatment of CRC. Photodynamic therapy (PDT) is a novel and non-invasive treatment that influence cytoskeleton and to reduce cancer metastases. In addition, cytoskeleton is related to cancer metastases. Two isogenic colorectal cancer cell lines SW480 and SW620 were used in the present study, we found that m-THPC mediated PDT changed the cytotoxicity, apoptosis and cytoskeleton in both cell lines. Interestingly, the expression of intermediate filaments protein cytokeratin18 were different in the two cell lines. In order to further confirm the relationship between cytoskeleton and cell migration, we combined with microfilament stabilizer jasplakinolide (JASP) to observe the effects of microfilaments on cell migration, cytotoxicity and apoptosis. Taken together, these findings suggest that m-THPC-PDT could induce cytoplasmic cytoskeleton destruction in both types of cells, especially on microfilaments and microtubules. Moreover, in SW480 cells, microtubules may participate in the apoptosis process induced by m-THPC-PDT, while microfilaments may participate in the process of m-THPC-PDT inhibiting cell migration. But in SW620 cells, only microfilaments may be involved in m-THPC-PDT induced apoptosis and inhibition of cell migration.
Collapse
Affiliation(s)
- Kaizhen Yang
- Teaching & Research Department, The First People's Hospital of Urumqi, 1 Jiankang Road, Urumqi, Xinjiang Uygur Autonomous Region, China.
| | - Mengyu Luo
- School of Public Health, Xinjiang Medical University, 567 SHangde North Road, Urumqi, Xinjiang Uygur Autonomous Region, China.
| | - Hongxia Li
- School of Public Health, Xinjiang Medical University, 567 SHangde North Road, Urumqi, Xinjiang Uygur Autonomous Region, China.
| | - Gulinur Abdulrehman
- Cancer Hospital of The Third Affiliated Hospital of Xinjiang Medical University, 789 Suzhou East Road, Urumqi, Xinjiang Uygur Autonomous Region, China.
| | - Ling Kang
- School of Public Health, Xinjiang Medical University, 567 SHangde North Road, Urumqi, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
36
|
Linfield DT, Gao N, Raduka A, Harford TJ, Piedimonte G, Rezaee F. RSV attenuates epithelial cell restitution by inhibiting actin cytoskeleton-dependent cell migration. Am J Physiol Lung Cell Mol Physiol 2021; 321:L189-L203. [PMID: 34010080 DOI: 10.1152/ajplung.00118.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The airway epithelium's ability to repair itself after injury, known as epithelial restitution, is an essential mechanism enabling the respiratory tract's normal functions. Respiratory Syncytial Virus (RSV) is the leading cause of lower respiratory tract infections worldwide. We sought to determine whether RSV delays the airway epithelium wound repair process both in vitro and in vivo. We found that RSV infection attenuated epithelial cell migration, a step in wound repair, promoted stress fiber formation, and mediated assembly of large focal adhesions (FA). Inhibition of Rho kinase (ROCK), a master regulator of actin function, reversed these effects. There was increased RhoA and phospho-myosin light chain (pMLC2) following RSV infection. In vivo, mice were intraperitoneally inoculated with naphthalene to induce lung injury, followed by RSV infection. RSV infection delayed re-epithelialization. There were increased concentrations of pMLC2 in day 7 naphthalene plus RSV animals which normalized by day 14. This study suggests a key mechanism by which RSV infection delays wound healing.
Collapse
Affiliation(s)
| | - Nannan Gao
- Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, United States
| | - Andjela Raduka
- Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, United States
| | - Terri J Harford
- Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, United States
| | | | - Fariba Rezaee
- Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, United States.,Center for Pediatric Pulmonology, Cleveland Clinic Children's, Cleveland, Ohio, United States
| |
Collapse
|
37
|
Pal K, Zhao Y, Wang Y, Wang X. Ubiquitous membrane-bound DNase activity in podosomes and invadopodia. J Cell Biol 2021; 220:212028. [PMID: 33904858 PMCID: PMC8082437 DOI: 10.1083/jcb.202008079] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/02/2020] [Accepted: 04/05/2021] [Indexed: 12/13/2022] Open
Abstract
Podosomes and invadopodia, collectively termed invadosomes, are adhesive and degradative membrane structures formed in many types of cells and are well known for recruiting various proteases. However, another major class of degradative enzymes, deoxyribonuclease (DNase), remains unconfirmed and not studied in invadosomes. Here, using surface-immobilized nuclease sensor (SNS), we demonstrated that invadosomes recruit DNase to their core regions, which degrade extracellular double-stranded DNA. We further identified the DNase as GPI-anchored membrane-bound DNase X. DNase recruitment is ubiquitous and consistent in invadosomes of all tested cell types. DNase activity exhibits within a minute after actin nucleation, functioning concomitantly with protease in podosomes but preceding it in invadopodia. We further showed that macrophages form DNase-active podosome rosettes surrounding bacteria or micropatterned antigen islets, and the podosomes directly degrade bacterial DNA on a surface, exhibiting an apparent immunological function. Overall, this work reports DNase in invadosomes for the first time, suggesting a richer arsenal of degradative enzymes in invadosomes than known before.
Collapse
Affiliation(s)
- Kaushik Pal
- Department of Physics and Astronomy, Iowa State University, Ames, IA
| | - Yuanchang Zhao
- Department of Physics and Astronomy, Iowa State University, Ames, IA
| | - Yongliang Wang
- Department of Physics and Astronomy, Iowa State University, Ames, IA
| | - Xuefeng Wang
- Department of Physics and Astronomy, Iowa State University, Ames, IA.,Molecular, Cellular, and Developmental Biology Interdepartmental Program, Iowa State University, Ames, IA
| |
Collapse
|
38
|
Differential Effects of Gold Nanoparticles and Ionizing Radiation on Cell Motility between Primary Human Colonic and Melanocytic Cells and Their Cancerous Counterparts. Int J Mol Sci 2021; 22:ijms22031418. [PMID: 33572551 PMCID: PMC7866826 DOI: 10.3390/ijms22031418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
This study examined the effects of gold nanoparticles (AuNPs) and/or ionizing radiation (IR) on the viability and motility of human primary colon epithelial (CCD841) and colorectal adenocarcinoma (SW48) cells as well as human primary epidermal melanocytes (HEM) and melanoma (MM418-C1) cells. AuNPs up to 4 mM had no effect on the viability of these cell lines. The viability of the cancer cells was ~60% following exposure to 5 Gy. Exposure to 5 Gy X-rays or 1 mM AuNPs showed the migration of the cancer cells ~85% that of untreated controls, while co-treatment with AuNPs and IR decreased migration to ~60%. In the non-cancerous cell lines gap closure was enhanced by ~15% following 1 mM AuNPs or 5 Gy treatment, while for co-treatment it was ~22% greater than that for the untreated controls. AuNPs had no effect on cell re-adhesion, while IR enhanced only the re-adhesion of the cancer cell lines but not their non-cancerous counterparts. The addition of AuNPs did not enhance cell adherence. This different reaction to AuNPs and IR in the cancer and normal cells can be attributed to radiation-induced adhesiveness and metabolic differences between tumour cells and their non-cancerous counterparts.
Collapse
|
39
|
Wang Q, Yuan W, Yang X, Wang Y, Li Y, Qiao H. Role of Cofilin in Alzheimer's Disease. Front Cell Dev Biol 2020; 8:584898. [PMID: 33324642 PMCID: PMC7726191 DOI: 10.3389/fcell.2020.584898] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/26/2020] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative neurological disease and has an inconspicuous onset and progressive development. Clinically, it is characterized by severe dementia manifestations, including memory impairment, aphasia, apraxia, loss of recognition, impairment of visual-spatial skills, executive dysfunction, and changes in personality and behavior. Its etiology is unknown to date. However, several cellular biological signatures of AD have been identified such as synaptic dysfunction, β-amyloid plaques, hyperphosphorylated tau, cofilin-actin rods, and Hirano bodies which are related to the actin cytoskeleton. Cofilin is one of the most affluent and common actin-binding proteins and plays a role in cell motility, migration, shape, and metabolism. They also play an important role in severing actin filament, nucleating, depolymerizing, and bundling activities. In this review, we summarize the structure of cofilins and their functional and regulating roles, focusing on the synaptic dysfunction, β-amyloid plaques, hyperphosphorylated tau, cofilin-actin rods, and Hirano bodies of AD.
Collapse
Affiliation(s)
- Qiang Wang
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
| | - Wei Yuan
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
| | - Xiaohang Yang
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yuan Wang
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
| | - Yongfeng Li
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
| | - Haifa Qiao
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
- Xianyang Key Laboratory of Neurobiology and Acupuncture, Xi’an, China
| |
Collapse
|
40
|
Designed nanomolar small-molecule inhibitors of Ena/VASP EVH1 interaction impair invasion and extravasation of breast cancer cells. Proc Natl Acad Sci U S A 2020; 117:29684-29690. [PMID: 33184177 PMCID: PMC7703624 DOI: 10.1073/pnas.2007213117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protein–protein interactions mediated by proline-rich motifs are involved in regulation of many important signaling cascades. These motifs belong to the most abundant recognition motifs in the eukaryotic genome and preferentially adopt a left-handed polyproline helix II, a secondary structure element that has been notoriously difficult to mimic with small molecules. Here, we present a structure-guided design effort yielding a toolkit of chemical entities that enables rational construction of selective small molecule inhibitors for these protein domains. We succeeded in developing an inhibitor for the Ena/VASP protein family that is active in vivo and reduces extravasation of invasive breast cancer cells in a zebrafish model. Battling metastasis through inhibition of cell motility is considered a promising approach to support cancer therapies. In this context, Ena/VASP-depending signaling pathways, in particular interactions with their EVH1 domains, are promising targets for pharmaceutical intervention. However, protein–protein interactions involving proline-rich segments are notoriously difficult to address by small molecules. Hence, structure-based design efforts in combination with the chemical synthesis of additional molecular entities are required. Building on a previously developed nonpeptidic micromolar inhibitor, we determined 22 crystal structures of ENAH EVH1 in complex with inhibitors and rationally extended our library of conformationally defined proline-derived modules (ProMs) to succeed in developing a nanomolar inhibitor (Kd=120 nM,MW=734 Da). In contrast to the previous inhibitor, the optimized compounds reduced extravasation of invasive breast cancer cells in a zebrafish model. This study represents an example of successful, structure-guided development of low molecular weight inhibitors specifically and selectively addressing a proline-rich sequence-recognizing domain that is characterized by a shallow epitope lacking defined binding pockets. The evolved high-affinity inhibitor may now serve as a tool in validating the basic therapeutic concept, i.e., the suppression of cancer metastasis by inhibiting a crucial protein–protein interaction involved in actin filament processing and cell migration.
Collapse
|
41
|
Posa F, Baha-Schwab EH, Wei Q, Di Benedetto A, Neubauer S, Reichart F, Kessler H, Spatz JP, Albiges-Rizo C, Mori G, Cavalcanti-Adam EA. Surface Co-presentation of BMP-2 and integrin selective ligands at the nanoscale favors α 5β 1 integrin-mediated adhesion. Biomaterials 2020; 267:120484. [PMID: 33142116 DOI: 10.1016/j.biomaterials.2020.120484] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022]
Abstract
Here we present the use of surface nanopatterning of covalently immobilized BMP-2 and integrin selective ligands to determine the specificity of their interactions in regulating cell adhesion and focal adhesion assembly. Gold nanoparticle arrays carrying single BMP-2 dimers are prepared by block-copolymer micellar nanolithography and azide-functionalized integrin ligands (cyclic-RGD peptides or α5β1 integrin peptidomimetics) are immobilized on the surrounding polyethylene glycol alkyne by click chemistry. Compared to BMP-2 added to the media, surface immobilized BMP-2 (iBMP-2) favors the spatial segregation of adhesion clusters and enhances focal adhesion (FA) size in cells adhering to α5β1 integrin selective ligands. Moreover, iBMP-2 copresented with α5β1 integrin ligands induces the recruitment of αvβ3 integrins in FAs. When copresented with RGD, iBMP-2 induces the assembly of a higher number of FAs, which are not affected by α5β1 integrin blocking. Our dual-functionalized platforms offer the possibility to study the crosstalk between integrins and BMP receptors, and more in general they could be used to address the spatial regulation of growth factors and adhesion receptors crosstalk on biomimetic surfaces.
Collapse
Affiliation(s)
- Francesca Posa
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, Heidelberg, 69120, Germany
| | - Elisabeth H Baha-Schwab
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, Heidelberg, 69120, Germany
| | - Qiang Wei
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, Heidelberg, 69120, Germany
| | - Adriana Di Benedetto
- University of Foggia, Department of Clinical and Experimental Medicine, viale Pinto 1, Foggia, 71122, Italy
| | - Stefanie Neubauer
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, Garching, 85748, Germany
| | - Florian Reichart
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, Garching, 85748, Germany
| | - Horst Kessler
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, Garching, 85748, Germany
| | - Joachim P Spatz
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, Heidelberg, 69120, Germany
| | - Corinne Albiges-Rizo
- Institut Albert Bonniot, Université Joseph Fourier, INSERM U823, CNRS ERL 5284, Grenoble Alpessite Santé, Grenoble Cedex, 09, F38042, France
| | - Giorgio Mori
- University of Foggia, Department of Clinical and Experimental Medicine, viale Pinto 1, Foggia, 71122, Italy
| | - Elisabetta Ada Cavalcanti-Adam
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, Heidelberg, 69120, Germany.
| |
Collapse
|
42
|
Masi I, Caprara V, Bagnato A, Rosanò L. Tumor Cellular and Microenvironmental Cues Controlling Invadopodia Formation. Front Cell Dev Biol 2020; 8:584181. [PMID: 33178698 PMCID: PMC7593604 DOI: 10.3389/fcell.2020.584181] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
During the metastatic progression, invading cells might achieve degradation and subsequent invasion into the extracellular matrix (ECM) and the underlying vasculature using invadopodia, F-actin-based and force-supporting protrusive membrane structures, operating focalized proteolysis. Their formation is a dynamic process requiring the combined and synergistic activity of ECM-modifying proteins with cellular receptors, and the interplay with factors from the tumor microenvironment (TME). Significant advances have been made in understanding how invadopodia are assembled and how they progress in degradative protrusions, as well as their disassembly, and the cooperation between cellular signals and ECM conditions governing invadopodia formation and activity, holding promise to translation into the identification of molecular targets for therapeutic interventions. These findings have revealed the existence of biochemical and mechanical interactions not only between the actin cores of invadopodia and specific intracellular structures, including the cell nucleus, the microtubular network, and vesicular trafficking players, but also with elements of the TME, such as stromal cells, ECM components, mechanical forces, and metabolic conditions. These interactions reflect the complexity and intricate regulation of invadopodia and suggest that many aspects of their formation and function remain to be determined. In this review, we will provide a brief description of invadopodia and tackle the most recent findings on their regulation by cellular signaling as well as by inputs from the TME. The identification and interplay between these inputs will offer a deeper mechanistic understanding of cell invasion during the metastatic process and will help the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Ilenia Masi
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Caprara
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy.,Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| |
Collapse
|
43
|
Nagano M, Hoshino D, Toshima J, Seiki M, Koshikawa N. NH 2 -terminal fragment of ZF21 protein suppresses tumor invasion via inhibiting the interaction of ZF21 with FAK. Cancer Sci 2020; 111:4393-4404. [PMID: 32976654 PMCID: PMC7734166 DOI: 10.1111/cas.14665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022] Open
Abstract
Cellular migration, coupled with the degradation of the extracellular matrix (ECM), is a key step in tumor invasion and represents a promising therapeutic target in malignant tumors. Focal adhesions (FAs) and invadopodia, which are distinct actin-based cellular structures, play key roles in cellular migration and ECM degradation, respectively. The molecular machinery coordinating the dynamics between FAs and invadopodia is not fully understood, although several lines of evidence suggest that the disassembly of FAs is an important step in triggering the formation of invadopodia. In a previous study, we identified the ZF21 protein as a regulator of both FA turnover and invadopodia-dependent ECM degradation. ZF21 interacts with multiple factors for FA turnover, including focal adhesion kinase (FAK), microtubules, m-Calpain, and Src homology region 2-containing protein tyrosine phosphatase 2 (SHP-2). In particular, the dephosphorylation of FAK by ZF21 is a key event in tumor invasion. However, the precise role of ZF21 binding to FAK remains unclear. We established a method to disrupt the interaction between ZF21 and FAK using the FAK-binding NH2 -terminal region of ZF21. Tumor cells expressing the ZF21-derived polypeptide had significantly decreased FA turnover, migration, invadopodia-dependent ECM degradation, and Matrigel invasion. Furthermore, the expression of the polypeptide inhibited an early step of experimental lung metastasis in mice. These findings indicate that the interaction of ZF21 with FAK is necessary for FA turnover as well as ECM degradation at the invadopodia. Thus, ZF21 is a potential regulator that coordinates the equilibrium between FA turnover and invadopodia activity by interacting with FAK.
Collapse
Affiliation(s)
- Makoto Nagano
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Daisuke Hoshino
- Division of Cancer Cell Research, Kanagawa Cancer Center Research Institute, Yokohama, Japan.,Organoid Biology Unit, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Motoharu Seiki
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Japan
| | - Naohiko Koshikawa
- Division of Cancer Cell Research, Kanagawa Cancer Center Research Institute, Yokohama, Japan.,Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
44
|
Lin SS, Hsieh TL, Liou GG, Li TN, Lin HC, Chang CW, Wu HY, Yao CK, Liu YW. Dynamin-2 Regulates Postsynaptic Cytoskeleton Organization and Neuromuscular Junction Development. Cell Rep 2020; 33:108310. [DOI: 10.1016/j.celrep.2020.108310] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 11/30/2022] Open
|
45
|
Mierke CT. Mechanical Cues Affect Migration and Invasion of Cells From Three Different Directions. Front Cell Dev Biol 2020; 8:583226. [PMID: 33043017 PMCID: PMC7527720 DOI: 10.3389/fcell.2020.583226] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Cell migration and invasion is a key driving factor for providing essential cellular functions under physiological conditions or the malignant progression of tumors following downward the metastatic cascade. Although there has been plentiful of molecules identified to support the migration and invasion of cells, the mechanical aspects have not yet been explored in a combined and systematic manner. In addition, the cellular environment has been classically and frequently assumed to be homogeneous for reasons of simplicity. However, motility assays have led to various models for migration covering only some aspects and supporting factors that in some cases also include mechanical factors. Instead of specific models, in this review, a more or less holistic model for cell motility in 3D is envisioned covering all these different aspects with a special emphasis on the mechanical cues from a biophysical perspective. After introducing the mechanical aspects of cell migration and invasion and presenting the heterogeneity of extracellular matrices, the three distinct directions of cell motility focusing on the mechanical aspects are presented. These three different directions are as follows: firstly, the commonly used invasion tests using structural and structure-based mechanical environmental signals; secondly, the mechano-invasion assay, in which cells are studied by mechanical forces to migrate and invade; and thirdly, cell mechanics, including cytoskeletal and nuclear mechanics, to influence cell migration and invasion. Since the interaction between the cell and the microenvironment is bi-directional in these assays, these should be accounted in migration and invasion approaches focusing on the mechanical aspects. Beyond this, there is also the interaction between the cytoskeleton of the cell and its other compartments, such as the cell nucleus. In specific, a three-element approach is presented for addressing the effect of mechanics on cell migration and invasion by including the effect of the mechano-phenotype of the cytoskeleton, nucleus and the cell's microenvironment into the analysis. In precise terms, the combination of these three research approaches including experimental techniques seems to be promising for revealing bi-directional impacts of mechanical alterations of the cellular microenvironment on cells and internal mechanical fluctuations or changes of cells on the surroundings. Finally, different approaches are discussed and thereby a model for the broad impact of mechanics on cell migration and invasion is evolved.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
46
|
Samaržija I, Dekanić A, Humphries JD, Paradžik M, Stojanović N, Humphries MJ, Ambriović-Ristov A. Integrin Crosstalk Contributes to the Complexity of Signalling and Unpredictable Cancer Cell Fates. Cancers (Basel) 2020; 12:E1910. [PMID: 32679769 PMCID: PMC7409212 DOI: 10.3390/cancers12071910] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
Integrins are heterodimeric cell surface receptors composed of α and β subunits that control adhesion, proliferation and gene expression. The integrin heterodimer binding to ligand reorganises the cytoskeletal networks and triggers multiple signalling pathways that can cause changes in cell cycle, proliferation, differentiation, survival and motility. In addition, integrins have been identified as targets for many different diseases, including cancer. Integrin crosstalk is a mechanism by which a change in the expression of a certain integrin subunit or the activation of an integrin heterodimer may interfere with the expression and/or activation of other integrin subunit(s) in the very same cell. Here, we review the evidence for integrin crosstalk in a range of cellular systems, with a particular emphasis on cancer. We describe the molecular mechanisms of integrin crosstalk, the effects of cell fate determination, and the contribution of crosstalk to therapeutic outcomes. Our intention is to raise awareness of integrin crosstalk events such that the contribution of the phenomenon can be taken into account when researching the biological or pathophysiological roles of integrins.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| | - Ana Dekanić
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Jonathan D. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK; (J.D.H.); (M.J.H.)
| | - Mladen Paradžik
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| | - Nikolina Stojanović
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| | - Martin J. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK; (J.D.H.); (M.J.H.)
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| |
Collapse
|
47
|
Leverrier-Penna S, Destaing O, Penna A. Insights and perspectives on calcium channel functions in the cockpit of cancerous space invaders. Cell Calcium 2020; 90:102251. [PMID: 32683175 DOI: 10.1016/j.ceca.2020.102251] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Development of metastasis causes the most serious clinical consequences of cancer and is responsible for over 90 % of cancer-related deaths. Hence, a better understanding of the mechanisms that drive metastasis formation appears critical for drug development designed to prevent the spread of cancer and related mortality. Metastasis dissemination is a multistep process supported by the increased motility and invasiveness capacities of tumor cells. To succeed in overcoming the mechanical constraints imposed by the basement membrane and surrounding tissues, cancer cells reorganize their focal adhesions or extend acto-adhesive cellular protrusions, called invadosomes, that can both contact the extracellular matrix and tune its degradation through metalloprotease activity. Over the last decade, accumulating evidence has demonstrated that altered Ca2+ channel activities and/or expression promote tumor cell-specific phenotypic changes, such as exacerbated migration and invasion capacities, leading to metastasis formation. While several studies have addressed the molecular basis of Ca2+ channel-dependent cancer cell migration, we are still far from having a comprehensive vision of the Ca2+ channel-regulated mechanisms of migration/invasion. This is especially true regarding the specific context of invadosome-driven invasion. This review aims to provide an overview of the current evidence supporting a central role for Ca2+ channel-dependent signaling in the regulation of these dynamic degradative structures. It will present available data on the few Ca2+ channels that have been studied in that specific context and discuss some potential interesting actors that have not been fully explored yet.
Collapse
Affiliation(s)
| | - Olivier Destaing
- Institute for Advanced BioSciences, CNRS UMR 5309, INSERM U1209, Institut Albert Bonniot, University Grenoble Alpes, 38700 Grenoble, France.
| | - Aubin Penna
- STIM, CNRS ERL7003, University of Poitiers, 86000 Poitiers, France.
| |
Collapse
|
48
|
Zhou Y, Feng Z, Cao F, Liu X, Xia X, Yu CH. Abl-mediated PI3K activation regulates macrophage podosome formation. J Cell Sci 2020; 133:jcs234385. [PMID: 32393599 DOI: 10.1242/jcs.234385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Podosomes play crucial roles in macrophage adhesion and migration. Wiskott-Aldrich syndrome protein (WASP; also known as WAS)-mediated actin polymerization is one of the key events initiating podosome formation. Nevertheless, membrane signals to trigger WASP activation at macrophage podosomes remain unclear. Here, we show that phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3] lipids are enriched at the podosome and stably recruit WASP rather than the WASP-5KE mutant. Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit β (PIK3CB) is spatially located at the podosome core. Inhibition of PIK3CB and overexpression of phosphatase and tensin homolog (PTEN) impede F-actin polymerization of the podosome. PIK3CB activation is regulated by Abl1 and Src family kinases. At the podosome core, Src and Hck promote the phosphorylation of Tyr488 in the consensus Y-x-x-M motif of Abl1, which enables the association of phosphoinositide 3-kinase (PI3K) regulatory subunits. Knockdown of Abl1 rather than Abl2 suppresses the PI3K/Akt pathway, regardless of Src and Hck activities. Reintroduction of wild-type Abl1 rather than the Abl1-Y488F mutant rescues PI3KR1 recruitment and PI3K activation. When PIK3CB, Abl1 or Src/Hck is suppressed, macrophage podosome formation, matrix degradation and chemotactic migration are inhibited. Thus, Src/Hck-mediated phosphorylation of Abl1 Tyr488 triggers PIK3CB-dependent PI(3,4,5)P3 production and orchestrates the assembly and function of macrophage podosomes.
Collapse
Affiliation(s)
- Yuhuan Zhou
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Zhen Feng
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Fakun Cao
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Xiaoting Liu
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Xiaojie Xia
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Cheng-Han Yu
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| |
Collapse
|
49
|
The podosome cap: past, present, perspective. Eur J Cell Biol 2020; 99:151087. [DOI: 10.1016/j.ejcb.2020.151087] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 05/04/2020] [Accepted: 05/16/2020] [Indexed: 12/22/2022] Open
|
50
|
Abbaszadegan MR, Mojarrad M, Moghbeli M. Role of extra cellular proteins in gastric cancer progression and metastasis: an update. Genes Environ 2020; 42:18. [PMID: 32467737 PMCID: PMC7227337 DOI: 10.1186/s41021-020-00157-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Gastric cancer (GC) is one of the most common cancers in the world with a high ratio of mortality. Regarding the late diagnosis, there is a high ratio of distant metastasis among GC cases. Despite the recent progresses in therapeutic modalities, there is not still an efficient therapeutic method to increase survival rate of metastatic GC cases. Main body Apart from the various intracellular signaling pathways which are involved in tumor cell migration and metastasis, the local microenvironment is also a critical regulator of tumor cell migration. Indeed, the intracellular signaling pathways also exert their final metastatic roles through regulation of extra cellular matrix (ECM). Therefore, it is required to assess the role of extra cellular components in biology of GC. Conclusion In the present review, we summarize 48 of the significant ECM components including 17 ECM modifying enzymes, seven extracellular angiogenic factors, 13 cell adhesion and cytoskeletal organizers, seven matricellular proteins and growth factors, and four proteoglycans and extra cellular glycoproteins. This review paves the way of determination of a specific extra cellular diagnostic and prognostic panel marker for the GC patients.
Collapse
Affiliation(s)
| | - Majid Mojarrad
- 2Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- 2Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|