1
|
Abdelghany TM, Hedya SA, Charlton A, Aljehani FA, Alanazi K, Budastour AA, Marin L, Wright MC. Undifferentiated HepaRG cells show reduced sensitivity to the toxic effects of M8OI through a combination of CYP3A7-mediated oxidation and a reduced reliance on mitochondrial function. Food Chem Toxicol 2024; 188:114681. [PMID: 38677401 DOI: 10.1016/j.fct.2024.114681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
The methylimidazolium ionic liquid M8OI (1-octyl-3-methylimidazolium chloride, also known as [C8mim]Cl) has been detected in the environment and may represent a hazard trigger for the autoimmune liver disease primary biliary cholangitis, based in part on studies using a rat liver progenitor cell. The effect of M8OI on an equivalent human liver progenitor (undifferentiated HepaRG cells; u-HepaRG) was therefore examined. u-HepaRG cells were less sensitive (>20-fold) to the toxic effects of M8OI. The relative insensitivity of u-HepaRG cells to M8OI was in part, associated with a detoxification by monooxygenation via CYP3A7 followed by further oxidation to a carboxylic acid. Expression of CYP3A7 - in contrast to the related adult hepatic CYP3A4 and CYP3A5 forms - was confirmed in u-HepaRG cells. However, blocking M8OI metabolism with ketoconazole only partly sensitized u-HepaRG cells. Despite similar proliferation rates, u-HepaRG cells consumed around 75% less oxygen than B-13 cells, reflective of reduced dependence on mitochondrial activity (Crabtree effect). Replacing glucose with galactose, resulted in an increase in u-HepaRG cell sensitivity to M8OI, near similar to that seen in B-13 cells. u-HepaRG cells therefore show reduced sensitivity to the toxic effects of M8OI through a combination of metabolic detoxification and their reduced reliance on mitochondrial function.
Collapse
Affiliation(s)
- Tarek M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt; Institute of Education in Healthcare and Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresthill, Aberdeen, AB25 2ZD, United Kingdom
| | - Shireen A Hedya
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Alex Charlton
- School of Natural and Environmental Sciences, Bedson Building, Newcastle University, NE1 8QB, United Kingdom
| | - Fahad A Aljehani
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom; Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid Alanazi
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Alaa A Budastour
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Larissa Marin
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Matthew C Wright
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom.
| |
Collapse
|
2
|
Hedya S, Charlton A, Leitch AC, Aljehani FA, Pinker B, Wright MC, Abdelghany TM. The methylimidazolium ionic liquid M8OI is a substrate for OCT1 and p-glycoprotein-1 in rat. Toxicol In Vitro 2023; 88:105550. [PMID: 36603777 DOI: 10.1016/j.tiv.2022.105550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
The methylimidazolium ionic liquid M8OI was recently found to be present in both the environment and man. In this study, M8OI disposition and toxicity were examined in an established rat progenitor-hepatocyte model. The progenitor B-13 cell was approx. 13 fold more sensitive to the toxic effects of M8OI than the hepatocyte B-13/H cell. However, this difference in sensitivity was not associated with a difference in metabolic capacities. M8OI toxicity was significantly decreased in a dose-dependent manner by co-addition of the OCT1 (SLC22A1) inhibitor clonidine, but not by OCT2 or OCT3 inhibitors in B-13 cells. M8OI toxicity was also dose-dependently increased by the co-addition of p-glycoprotein-1 (ABCB1B, multi drug resistant protein 1 (MDR1)) substrates/inhibitors. Excretion of B-13-loaded fluorophore Hoechst 33342 was also inhibited by the p-glycoproteins substrate cyclosporin A and by M8OI in a dose-dependent manner. Comparing levels of OCT and p-glycoprotein transcripts and proteins in B-13 and B-13/H cells suggest that the lower sensitivity to M8OI in B-13/H cells is predominantly associated with their higher expression of p-glycoprotein-1. These data together therefore suggest that a determinant in M8OI toxicity in rats is the expression and activity of the p-glycoprotein-1 transporter.
Collapse
Affiliation(s)
- Shireen Hedya
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt; Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom
| | - Alex Charlton
- School of Natural and Environmental Sciences, Bedson Building, Newcastle University, NE1 8QB, United Kingdom
| | - Alistair C Leitch
- Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom
| | - Fahad A Aljehani
- Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom; Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Benjamin Pinker
- Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom
| | - Matthew C Wright
- Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom.
| | - Tarek M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt; Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom; School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE24HH, United Kingdom
| |
Collapse
|
3
|
The Canonical Wnt Signaling Pathway Inhibits the Glucocorticoid Receptor Signaling Pathway in the Trabecular Meshwork. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1020-1035. [PMID: 33705750 DOI: 10.1016/j.ajpath.2021.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 01/18/2023]
Abstract
Glucocorticoid-induced glaucoma is a secondary open-angle glaucoma. About 40% of the general population may develop elevated intraocular pressure on prolonged glucocorticoid treatment secondary to damages in the trabecular meshwork (TM), a tissue that regulates intraocular pressure. Therefore, identifying the key molecules responsible for glucocorticoid-induced ocular hypertension is crucial. In this study, Dickkopf-related protein 1 (Dkk1), a canonical Wnt signaling inhibitor, was found to be elevated in the aqueous humor and TM of glaucoma patients. At the signaling level, Dkk1 enhanced glucocorticoid receptor (GR) signaling, whereas Dkk1 knockdown or Wnt signaling activators decreased GR signaling in human TM cells as indicated by luciferase assays. Similarly, activation of the GR signaling inhibited Wnt signaling. At the protein level, glucocorticoid-induced extracellular matrix was inhibited by Wnt activation using Wnt activators or Dkk1 knockdown in primary human TM cells. In contrast, inhibition of canonical Wnt signaling by β-catenin knockdown increased glucocorticoid-induced extracellular matrix proteins. At the physiological level, adenovirus-mediated Wnt3a expression decreased glucocorticoid-induced ocular hypertension in mouse eyes. In summary, Wnt and GR signaling inhibit each other in the TM, and canonical Wnt signaling activators may prevent the adverse effect of glucocorticoids in the eye.
Collapse
|
4
|
Wang N, Kong R, Han W, Lu J. Wnt/β-catenin signalling controls bile duct regeneration by regulating differentiation of ductular reaction cells. J Cell Mol Med 2020; 24:14050-14058. [PMID: 33124779 PMCID: PMC7754022 DOI: 10.1111/jcmm.16017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/27/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, the incidence of bile duct‐related diseases continues to increase, and there is no effective drug treatment except liver transplantation. However, due to the limited liver source and expensive donations, clinical application is often limited. Although current studies have shown that ductular reaction cells (DRCs) reside in the vicinity of peribiliary glands can differentiate into cholangiocytes and would be an effective alternative to liver transplantation, the role and mechanism of DRCs in cholangiole physiology and bile duct injury remain unclear. A 3,5‐diethoxycarbonyl‐1,4‐dihydrocollidine (DDC)‐enriched diet was used to stimulate DRCs proliferation. Our research suggests DRCs are a type of intermediate stem cells with proliferative potential that exist in the bile duct injury. Meanwhile, DRCs have bidirectional differentiation potential, which can differentiate into hepatocytes and cholangiocytes. Furthermore, we found DRCs highly express Lgr5, and Lgr5 is a molecular marker for neonatal DRCs (P < .05). Finally, we confirmed Wnt/β‐catenin signalling achieves bile duct regeneration by regulating the expression of Lgr5 genes in DRCs (P < .05). We described the regenerative potential of DRCs and reveal opportunities and source for the treatment of cholestatic liver diseases.
Collapse
Affiliation(s)
- Nan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Rui Kong
- Department of Gastroenterology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Wei Han
- Department of Gastroenterology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Leitch AC, Abdelghany TM, Probert PM, Dunn MP, Meyer SK, Palmer JM, Cooke MP, Blake LI, Morse K, Rosenmai AK, Oskarsson A, Bates L, Figueiredo RS, Ibrahim I, Wilson C, Abdelkader NF, Jones DE, Blain PG, Wright MC. The toxicity of the methylimidazolium ionic liquids, with a focus on M8OI and hepatic effects. Food Chem Toxicol 2020; 136:111069. [PMID: 31883992 PMCID: PMC6996134 DOI: 10.1016/j.fct.2019.111069] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
Ionic liquids are a diverse range of charged chemicals with low volatility and often liquids at ambient temperatures. This characteristic has in part lead to them being considered environmentally-friendly replacements for existing volatile solvents. However, methylimidazolium ionic liquids are slow to break down in the environment and a recent study at Newcastle detected 1 octyl 3 methylimidazolium (M8OI) - an 8 carbon variant methylimidazolium ionic liquid - in soils in close proximity to a landfill site. The current M8OI toxicity database in cultured mammalian cells, in experimental animal studies and in model indicators of environmental impact are reviewed. Selected analytical data from the Newcastle study suggest the soils in close proximity to the landfill site, an urban soil lacking overt contamination, had variable levels of M8OI. The potential for M8OI - or a structurally related ionic liquid - to trigger primary biliary cholangitis (PBC), an autoimmune liver disease thought to be triggered by an unknown agent(s) in the environment, is reviewed.
Collapse
Affiliation(s)
- Alistair C Leitch
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Tarek M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt; Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Philip M Probert
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Michael P Dunn
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Stephanie K Meyer
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Jeremy M Palmer
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Martin P Cooke
- School of Civil Engineering and Geosciences, Drummond Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Lynsay I Blake
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| | - Katie Morse
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Anna K Rosenmai
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Agneta Oskarsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lucy Bates
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | | | - Ibrahim Ibrahim
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom; Freeman Hospital, Newcastle Upon Tyne, Tyne and Wear, NE7 7DN, United Kingdom
| | - Colin Wilson
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom; Freeman Hospital, Newcastle Upon Tyne, Tyne and Wear, NE7 7DN, United Kingdom
| | - Noha F Abdelkader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - David E Jones
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Peter G Blain
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Matthew C Wright
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom.
| |
Collapse
|
6
|
Alsaeedi F, Wilson R, Candlish C, Ibrahim I, Leitch AC, Abdelghany TM, Wilson C, Armstrong L, Wright MC. Expression of serine/threonine protein kinase SGK1F promotes an hepatoblast state in stem cells directed to differentiate into hepatocytes. PLoS One 2019; 14:e0218135. [PMID: 31242206 PMCID: PMC6594595 DOI: 10.1371/journal.pone.0218135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/25/2019] [Indexed: 11/19/2022] Open
Abstract
The rat pancreatic AR42J-B13 (B-13) cell line differentiates into non-replicative hepatocyte-like (B-13/H) cells in response to glucocorticoid. Since this response is dependent on an induction of serine/threonine protein kinase 1 (SGK1), this may suggest that a general pivotal role for SGK1 in hepatocyte maturation. To test this hypothesis, the effects of expressing adenoviral-encoded flag tagged human SGK1F (AdV-SGK1F) was examined at 3 stages of human induced pluripotent stem cell (iPSC) differentiation to hepatocytes. B-13 cells infected with AdV-SGK1F in the absence of glucocorticoid resulted in expression of flag tagged SGK1F protein; increases in β-catenin phosphorylation; decreases in Tcf/Lef transcriptional activity; expression of hepatocyte marker genes and conversion of B-13 cells to a cell phenotype near-similar to B-13/H cells. Given this demonstration of functionality, iPSCs directed to differentiate towards hepatocyte-like cells using a standard protocol of chemical inhibitors and mixtures of growth factors were additionally infected with AdV-SGK1F, either at an early time point during differentiation to endoderm; during endoderm differentiation to anterior definitive endoderm and hepatoblasts and once converted to hepatocyte-like cells. SGK1F expression had no effect on differentiation to endoderm, likely due to low levels of expression. However, expression of SGK1F in both iPSCs-derived endoderm and hepatocyte-like cells both resulted in promotion of cells to an hepatoblast phenotype. These data demonstrate that SGK1 expression promotes an hepatoblast phenotype rather than maturation of human iPSC towards a mature hepatocyte phenotype and suggest a transient role for Sgk1 in promoting an hepatoblast state in B-13 trans-differentiation to B-13/H cells.
Collapse
Affiliation(s)
- Fouzeyyah Alsaeedi
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Faculty of Medical Sciences, Taif University, Taif, KSA
| | - Rachel Wilson
- Institute Human Genetics, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Charlotte Candlish
- Institute Human Genetics, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Ibrahim Ibrahim
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Freeman Hospital, Newcastle Upon Tyne, United Kingdom
| | - Alistair C. Leitch
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Tarek M. Abdelghany
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Colin Wilson
- Freeman Hospital, Newcastle Upon Tyne, United Kingdom
| | - Lyle Armstrong
- Institute Human Genetics, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Matthew C. Wright
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
7
|
Probert PM, Leitch AC, Dunn MP, Meyer SK, Palmer JM, Abdelghany TM, Lakey AF, Cooke MP, Talbot H, Wills C, McFarlane W, Blake LI, Rosenmai AK, Oskarsson A, Figueiredo R, Wilson C, Kass GE, Jones DE, Blain PG, Wright MC. Identification of a xenobiotic as a potential environmental trigger in primary biliary cholangitis. J Hepatol 2018; 69:1123-1135. [PMID: 30006067 PMCID: PMC6192827 DOI: 10.1016/j.jhep.2018.06.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Primary biliary cholangitis (PBC) is an autoimmune-associated chronic liver disease triggered by environmental factors, such as exposure to xenobiotics, which leads to a loss of tolerance to the lipoic acid-conjugated regions of the mitochondrial pyruvate dehydrogenase complex, typically to the E2 component. We aimed to identify xenobiotics that might be involved in the environmental triggering of PBC. METHODS Urban landfill and control soil samples from a region with high PBC incidence were screened for xenobiotic activities using analytical, cell-based xenobiotic receptor activation assays and toxicity screens. RESULTS A variety of potential xenobiotic classes were ubiquitously present, as identified by their interaction with xenobiotic receptors - aryl hydrocarbon receptor, androgen receptor and peroxisome proliferator activated receptor alpha - in cell-based screens. In contrast, xenoestrogens were present at higher levels in soil extracts from around an urban landfill. Furthermore, two landfill sampling sites contained a chemical(s) that inhibited mitochondrial oxidative phosphorylation and induced the apoptosis of a hepatic progenitor cell. The mitochondrial effect was also demonstrated in human liver cholangiocytes from three separate donors. The chemical was identified as the ionic liquid [3-methyl-1-octyl-1H-imidazol-3-ium]+ (M8OI) and the toxic effects were recapitulated using authentic pure chemical. A carboxylate-containing human hepatocyte metabolite of M8OI, bearing structural similarity to lipoic acid, was also enzymatically incorporated into the E2 component of the pyruvate dehydrogenase complex via the exogenous lipoylation pathway in vitro. CONCLUSIONS These results identify, for the first time, a xenobiotic in the environment that may be related to and/or be a component of an environmental trigger for PBC. Therefore, further study in experimental animal models is warranted, to determine the risk of exposure to these ionic liquids. LAY SUMMARY Primary biliary cholangitis is a liver disease in which most patients have antibodies to mitochondrial proteins containing lipoic acid binding site(s). This paper identified a man-made chemical present in soils around a waste site. It was then shown that this chemical was metabolized into a product with structural similarity to lipoic acid, which was capable of replacing lipoic acid in mitochondrial proteins.
Collapse
Affiliation(s)
- Philip M Probert
- Health Protection Research Unit, Wolfson Building, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom
| | - Alistair C Leitch
- Health Protection Research Unit, Wolfson Building, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom
| | - Michael P Dunn
- Health Protection Research Unit, Wolfson Building, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom
| | - Stephanie K Meyer
- Health Protection Research Unit, Wolfson Building, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom
| | - Jeremy M Palmer
- Health Protection Research Unit, Wolfson Building, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom
| | - Tarek M Abdelghany
- Health Protection Research Unit, Wolfson Building, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Anne F Lakey
- Health Protection Research Unit, Wolfson Building, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom
| | - Martin P Cooke
- School of Civil Engineering and Geosciences, Drummond Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Helen Talbot
- School of Civil Engineering and Geosciences, Drummond Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Corinne Wills
- School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - William McFarlane
- School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Lynsay I Blake
- Institute for Sustainability, The Key Building, Newcastle University, Newcastle upon Tyne NE4 5TQ, United Kingdom
| | - Anna K Rosenmai
- Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Rodrigo Figueiredo
- Health Protection Research Unit, Wolfson Building, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom; Freeman Hospital, Newcastle upon Tyne, Tyne and Wear NE7 7DN, United Kingdom
| | - Colin Wilson
- Health Protection Research Unit, Wolfson Building, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom; Freeman Hospital, Newcastle upon Tyne, Tyne and Wear NE7 7DN, United Kingdom
| | - George E Kass
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| | - David E Jones
- Health Protection Research Unit, Wolfson Building, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom
| | - Peter G Blain
- Health Protection Research Unit, Wolfson Building, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom
| | - Matthew C Wright
- Health Protection Research Unit, Wolfson Building, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4AA, United Kingdom.
| |
Collapse
|
8
|
Cohen H, Barash H, Meivar-Levy I, Molakandov K, Ben-Shimon M, Gurevich M, Zoabi F, Har-Zahav A, Gebhardt R, Gaunitz F, Gurevich M, Mor E, Ravassard P, Greenberger S, Ferber S. The Wnt/β-catenin pathway determines the predisposition and efficiency of liver-to-pancreas reprogramming. Hepatology 2018; 68:1589-1603. [PMID: 29394503 DOI: 10.1002/hep.29827] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 12/30/2017] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
Abstract
UNLABELLED Transdifferentiation (TD) is the direct reprogramming of adult cells into cells of alternate fate and function. We have previously shown that liver cells can be transdifferentiated into beta-like, insulin-producing cells through ectopic expression of pancreatic transcription factors (pTFs). However, the efficiency of the process was consistently limited to <15% of the human liver cells treated in culture. The data in the current study suggest that liver-to-pancreas TD is restricted to a specific population of liver cells that is predisposed to undergo reprogramming. We isolated TD-predisposed subpopulation of liver cells from >15 human donors using a lineage tracing system based on the Wnt response element, part of the pericentral-specific promoter of glutamine synthetase. The cells, that were propagated separately, consistently exhibited efficient fate switch and insulin production and secretion in >60% of the cells upon pTF expression. The rest of the cells, which originated from 85% of the culture, resisted TD. Both populations expressed the ectopic pTFs with similar efficiencies, followed by similar repression of hepatic genes. Our data suggest that the TD-predisposed cells originate from a distinct population of liver cells that are enriched for Wnt signaling, which is obligatory for efficient TD. In TD-resistant populations, Wnt induction is insufficient to induce TD. An additional step of chromatin opening enables TD of these cells. CONCLUSION Liver-to-pancreas TD occurs in defined predisposed cells. These cells' predisposition is maintained by Wnt signaling that endows the cells with the plasticity needed to alter their transcriptional program and developmental fate when triggered by ectopic pTFs. These results may have clinical implications by drastically increasing the efficacy of TD in future clinical uses. (Hepatology 2018).
Collapse
Affiliation(s)
- Helit Cohen
- The Sheba Regenerative Medicine, Stem Cell and Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Hila Barash
- The Sheba Regenerative Medicine, Stem Cell and Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Irit Meivar-Levy
- The Sheba Regenerative Medicine, Stem Cell and Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Kfir Molakandov
- The Sheba Regenerative Medicine, Stem Cell and Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Marina Ben-Shimon
- The Sheba Regenerative Medicine, Stem Cell and Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michael Gurevich
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Fatima Zoabi
- The Sheba Regenerative Medicine, Stem Cell and Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Adi Har-Zahav
- The Sheba Regenerative Medicine, Stem Cell and Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Frank Gaunitz
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | - Michael Gurevich
- The Organ Transplantation Division, Schneider Children Medical Center, Petach Tikvah, Israel
| | - Eytan Mor
- The Organ Transplantation Division, Schneider Children Medical Center, Petach Tikvah, Israel
| | - Philippe Ravassard
- Biotechnology and Biotherapy Group, Centre de Recherche, Institut du Cerveau et de la Moelle CNRS UMR7225, INSERM UMRS795, Université Pierre et Marie Curie, Paris, France
| | - Shoshana Greenberger
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Dermatology, Sheba Medical Center, Tel Hashomer, Israel
| | - Sarah Ferber
- The Sheba Regenerative Medicine, Stem Cell and Tissue Engineering Center, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
9
|
Fairhall EA, Leitch AC, Lakey AF, Abdelghany TM, Ibrahim I, Tosh D, Kass GEN, Wilson C, Wright MC. HNF4alpha expression amplifies the glucocorticoid-induced conversion of a human pancreatic cell line to an hepatocyte-like cell. Biochem Biophys Res Commun 2018; 503:1633-1640. [PMID: 30057318 DOI: 10.1016/j.bbrc.2018.07.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022]
Abstract
The pancreas and liver are closely related developmentally and trans-differentiation of cells from one tissue into the cells of the other has been documented to occur after injury or exposure to selected growth factors or glucocorticoid hormones. To generate a readily-expandable source of human hepatocyte-like (H-13) cells, the human pancreatic adenocarcinoma cell (HPAC) line was stably transfected with a construct encoding the variant 2 hepatocyte nuclear factor 4 α (HNF4α) using a piggyBac vector and transient expression of a transposase. Through induction of transgene HNF4α regulated via an upstream glucocorticoid response element in combination with existing modulating effects of glucocorticoid, H-13 cells were converted into quantitatively similar hepatocyte-like (H-13/H) cells based on expression of a variety of hepatocyte proteins. H-13/H cells also demonstrated the ability to store glycogen and lipids. These data provide proof of concept that regulated expression of genes associated with hepatocyte phenotype could be used to generate quantitatively functional human hepatocyte-like cells using a readily expandable cell source and simple culture protocol. This approach would have utility in Toxicology and Hepatology research.
Collapse
Affiliation(s)
- Emma A Fairhall
- Institute Cellular Medicine, Health Protection Research Unit, Level 4 Leech, Newcastle University, Newcastle Upon Tyne, NE24HH, United Kingdom; Leica Biosystems Ltd, Newcastle Upon Tyne, UK.
| | - Alistair C Leitch
- Institute Cellular Medicine, Health Protection Research Unit, Level 4 Leech, Newcastle University, Newcastle Upon Tyne, NE24HH, United Kingdom.
| | - Anne F Lakey
- Institute Cellular Medicine, Health Protection Research Unit, Level 4 Leech, Newcastle University, Newcastle Upon Tyne, NE24HH, United Kingdom.
| | - Tarek M Abdelghany
- Institute Cellular Medicine, Health Protection Research Unit, Level 4 Leech, Newcastle University, Newcastle Upon Tyne, NE24HH, United Kingdom; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562, Egypt.
| | - Ibrahim Ibrahim
- Institute Cellular Medicine, Health Protection Research Unit, Level 4 Leech, Newcastle University, Newcastle Upon Tyne, NE24HH, United Kingdom; Freeman Hospital, Newcastle Upon Tyne, Tyne and Wear, NE7 7DN, United Kingdom.
| | - David Tosh
- Department of Biology & Biochemistry, University of Bath, UK.
| | - George E N Kass
- European Food Safety Authority, Via Carlo Magno 1A, 43126, Parma, Italy.
| | - Colin Wilson
- Freeman Hospital, Newcastle Upon Tyne, Tyne and Wear, NE7 7DN, United Kingdom.
| | - Matthew C Wright
- Institute Cellular Medicine, Health Protection Research Unit, Level 4 Leech, Newcastle University, Newcastle Upon Tyne, NE24HH, United Kingdom.
| |
Collapse
|
10
|
Fairhall EA, Leitch AC, Lakey AF, Probert PME, Richardson G, De Santis C, Wright MC. Glucocorticoid-induced pancreatic-hepatic trans-differentiation in a human cell line in vitro. Differentiation 2018; 102:10-18. [PMID: 29857331 DOI: 10.1016/j.diff.2018.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/02/2018] [Accepted: 05/21/2018] [Indexed: 11/28/2022]
Abstract
The rodent pancreatic AR42J-B13 (B-13) cell line differentiates into non-replicative hepatocyte-like cells in response to glucocorticoid mediated via the glucocorticoid receptor (GR). The aims of this study were to identify a human cell line that responds similarly and investigate the mechanisms underpinning any alteration in differentiation. Exposing the human pancreatic adenocarcinoma (HPAC) cell line to 1-10 µM concentrations of dexamethasone (DEX) resulted an inhibition of proliferation, suppressed carcinoembryonic antigen expression, limited expression of pancreatic acinar and hepatic gene expression and significant induction of the constitutively-expressed hepatic CYP3A5 mRNA transcript. These changes were associated with a pulse of genomic DNA methylation and suppressed notch signalling activity. HPAC cells expressed high levels of GR transcript in contrast to other nuclear receptors - such as the glucocorticoid-activated pregnane X receptor (PXR) - and GR transcriptional function was activated by DEX in HPAC cells. Expression of selected hepatocyte transcripts in response to DEX was blocked by co-treatment with the GR antagonist RU486. These data indicate that the HPAC response to glucocorticoid exposure includes an inhibition in proliferation, alterations in notch signalling and a limited change in the expression of genes associated with an acinar and hepatic phenotype. This is the first demonstration of a human cell responding to similarly to the rodent B-13 cell regarding formation of hepatocyte-like cells in response to glucocorticoid. Identifying and modulating the ablating factor(s) may enhance the hepatocyte-like forming capacity of HPAC cells after exposure to glucocorticoid and generate an unlimited in vitro supply of human hepatocytes for toxicology studies and a variety of clinical applications.
Collapse
Affiliation(s)
- Emma A Fairhall
- Institute of Cellular Medicine, Newcastle University, Level 4 William Leech Building, Medical School, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| | - Alistair C Leitch
- Institute of Cellular Medicine, Newcastle University, Level 4 William Leech Building, Medical School, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| | - Anne F Lakey
- Institute of Cellular Medicine, Newcastle University, Level 4 William Leech Building, Medical School, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| | - Philip M E Probert
- Institute of Cellular Medicine, Newcastle University, Level 4 William Leech Building, Medical School, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| | - Gabriella Richardson
- Institute of Cellular Medicine, Newcastle University, Level 4 William Leech Building, Medical School, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| | - Carol De Santis
- Institute of Cellular Medicine, Newcastle University, Level 4 William Leech Building, Medical School, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| | - Matthew C Wright
- Institute of Cellular Medicine, Newcastle University, Level 4 William Leech Building, Medical School, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK.
| |
Collapse
|
11
|
Lu C, He Y, Duan J, Yang Y, Zhong C, Zhang J, Liao W, Huang X, Zhu R, Li M. Expression of Wnt3a in hepatocellular carcinoma and its effects on cell cycle and metastasis. Int J Oncol 2017; 51:1135-1145. [PMID: 28902357 PMCID: PMC5592886 DOI: 10.3892/ijo.2017.4112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
Invasion and metastasis are the primary causes of mortality from hepatocellular carcinoma (HCC). Effective inhibition against participants in the tumourigenesis and metastasis process is critical for treatment of HCC. Wnt3a is involved in the development and metastasis of many malignant tumours. However, the specific mechanisms of Wnt3a-mediated cell proliferation, invasion and metastasis in HCC remain unclear. In this study, we found that Wnt3a and its target gene c-Myc showed higher expression in tumour tissues than normal liver tissues in HCC patients; 71.8% of the cases studied had high Wnt3a and c-Myc expression levels (n=32); Wnt3a expression positively correlated with its target genes MMP-7 and c-Myc. Intriguingly, the expression of Wnt3a, MMP-7 and c-Myc is significantly correlated with Notch3 and Hes1 expression. In vitro experiments showed that Wnt3a was highly expressed in MHcc97H and SK-Hep-1 cells. Therefore, Wnt3a expression was silenced with siRNA, and then, MTT, flow cytometry, wound healing and Transwell assays were performed to analyse cell proliferation, cycle, migration and invasion. The results demonstrated that downregulation of Wnt3a expression inhibited cell viability and induced G0/G1 cell cycle arrest via decreased expression of cyclin D1 and c-Myc and increased expression of p21 and p27. In addition, deletion of Wnt3a significantly inhibited migration and invasion by downregulating MMP-2/-7/-9 expression via the MAPK (p38, ERK1/2 and JNK) pathway. In conclusion, our data show that Wnt3a is involved in HCC development. Wnt3a may be an effective target for treatment of HCC.
Collapse
Affiliation(s)
- Caijie Lu
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Yifeng He
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Juan Duan
- Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yongguang Yang
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Chunqiang Zhong
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Jian Zhang
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Weiguo Liao
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Xiaojie Huang
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Runzhi Zhu
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Mingyi Li
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
12
|
Leitch AC, Probert PME, Shayman JA, Meyer SK, Kass GEN, Wright MC. B-13 progenitor-derived hepatocytes (B-13/H cells) model lipid dysregulation in response to drugs and chemicals. Toxicology 2017; 386:120-132. [PMID: 28552552 PMCID: PMC5553091 DOI: 10.1016/j.tox.2017.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 01/27/2023]
Abstract
Lipid dysregulation is a common hepatic adverse outcome after exposure to toxic drugs and chemicals. A donor-free rat hepatocyte-like (B-13/H) cell was therefore examined as an in vitro model for investigating mechanisms. The B-13/H cell irreversibly accumulated triglycerides (steatosis) in a time- and dose-dependent manner when exposed to fatty acids, an effect that was potentiated by the combined addition of hyperglycaemic levels of glucose and insulin. B-13/H cells also expressed the LXR nuclear receptors and exposure to their activators – T0901317 or GW3965 – induced luciferase expression from a transfected LXR-regulated reporter gene construct and steatosis in a dose-dependent manner with T0901317. Exposing B-13/H cells to a variety of cationic amphiphilic drugs – but not other hepatotoxins – also resulted in a time- and dose-dependent accumulation of phospholipids (phospholipidosis), an effect that was reduced by over-expression of lysosomal phospholipase A2. Through application of this model, hepatotoxin methapyrilene exposure was shown to induce phospholipidosis in both B-13 and B-13/H cells in a time- and dose-dependent manner. However, methapyrilene was only toxic to B-13/H cells and inhibitors of hepatotoxicity enhanced phospholipidosis, suggesting phospholipidosis is not a pathway in toxicity for this withdrawn drug. In contrast, pre-existing steatosis had minimal effect on methapyrilene hepatotoxicity in B-13/H cells. These data demonstrate that the donor free B-13 cell system for generating hepatocyte-like cells may be employed in studies of fatty acid- and LXR activator-induced steatosis and phospholipidosis and in the dissection of pathways leading to adverse outcomes such as hepatotoxicity.
Collapse
Affiliation(s)
- Alistair C Leitch
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Philip M E Probert
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - James A Shayman
- Department of Internal Medicine, University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie K Meyer
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - George E N Kass
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle Upon Tyne, UK; European Food Safety Authority, Parma, Italy
| | - Matthew C Wright
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
13
|
Vasconcellos R, Alvarenga ÉC, Parreira RC, Lima SS, Resende RR. Exploring the cell signalling in hepatocyte differentiation. Cell Signal 2016; 28:1773-88. [DOI: 10.1016/j.cellsig.2016.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 02/08/2023]
|
14
|
Fairhall EA, Charles MA, Probert PME, Wallace K, Gibb J, Ravindan C, Soloman M, Wright MC. Pancreatic B-13 Cell Trans-Differentiation to Hepatocytes Is Dependent on Epigenetic-Regulated Changes in Gene Expression. PLoS One 2016; 11:e0150959. [PMID: 26954030 PMCID: PMC4782989 DOI: 10.1371/journal.pone.0150959] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/22/2016] [Indexed: 11/24/2022] Open
Abstract
The proliferative B-13 pancreatic cell line is unique in its ability to generate functional hepatocyte-like (B-13/H) cells in response to exposure to glucocorticoid. In these studies, quantitatively comparable hepatic levels of liver-specific and liver-enriched transcription factor and hepatocyte defining mRNA transcripts were expressed after 10–14 days continuous treatment with glucocorticoid. This conversion in phenotype was associated with increased Gr-α mRNA expression and translation of a functional N-terminally truncated variant protein that localized to the nucleus in B-13/H cells. A short (6 hours) pulse exposure to glucocorticoid was also sufficient to transiently activate the Gr and irreversibly drive near identical conversion to B-13/H cells. Examination of epigenetic-related mechanisms demonstrated that B-13 DNA was rapidly methylated and de-methylated over the initial 2 days in response to both continuous or pulse exposure with glucocorticoid. DNA methylation and glucocorticoid-dependent conversion to an hepatic B-13/H phenotype was blocked by the methylation inhibitor, 5-azacytidine. Conversion to an hepatic B-13/H phenotype was also blocked by histone deacetylase inhibitors. Previous experiments have identified N-terminal Sgk1 variant proteins as pivotal to the mechanism(s) associated with pancreatic–hepatic differentiation. Both continuous and pulse exposure to DEX was sufficient to result in a near-similar robust transcriptional increase in Sgk1c mRNA expression from undetectable levels in B-13 cells. Notably, expression of Sgk1c mRNA remained constitutive 14 days later; including after pulse exposure to glucocorticoid and this induction was inhibited by 5-azacytidine or by histone deacetylase inhibitors. These data therefore suggest that exposing B-13 cells to glucocorticoid results in a Gr-dependent pulse in DNA methylation and likely other epigenetic changes such as histone modifications that leads to constitutive expression of Sgk1c and irreversible reprogramming of B-13 cells into B-13/H cells. Understanding and application of these mechanism(s) may enhance the functionality of stem cell-derived hepatocytes generated in vitro.
Collapse
Affiliation(s)
- Emma A. Fairhall
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Michelle A. Charles
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | | | - Karen Wallace
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jennifer Gibb
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Chandni Ravindan
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Martin Soloman
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Matthew C. Wright
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Richter M, Fairhall EA, Hoffmann SA, Tröbs S, Knöspel F, Probert PME, Oakley F, Stroux A, Wright MC, Zeilinger K. Pancreatic progenitor-derived hepatocytes are viable and functional in a 3D high density bioreactor culture system. Toxicol Res (Camb) 2016; 5:278-290. [PMID: 30090344 PMCID: PMC6062372 DOI: 10.1039/c5tx00187k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/12/2015] [Indexed: 01/15/2023] Open
Abstract
The rat pancreatic progenitor cell line B-13 is of interest for research on drug metabolism and toxicity since the cells trans-differentiate into functional hepatocyte-like cells (B-13/H) when treated with glucocorticoids. In this study we investigated the trans-differentiation and liver-specific functions of B-13/H cells in a three-dimensional (3D) multi-compartment bioreactor, which has already been successfully used for primary liver cell culture. Undifferentiated B-13 cells were inoculated into the bioreactor system and exposed to dexamethasone to promote hepatic trans-differentiation (B-13/HT). In a second approach, pre-differentiated B-13 cells were cultured in bioreactors for 15 days to evaluate the maintenance of liver-typical functions (B-13/HP). During trans-differentiation of B-13 cells into hepatocyte-like cells in the 3D bioreactor system (approach B-13/HT), an increase in glucose metabolism and in liver-specific functions (urea and albumin synthesis; cytochrome P450 [CYP] enzyme activity) was observed, whereas amylase - characteristic for exocrine pancreas and undifferentiated B-13 cells - decreased over time. In bioreactors with pre-differentiated cells (approach B-13/HP), the above liver-specific functions were maintained over the whole culture period. Results were confirmed by gene expression and protein analysis showing increased expression of carbamoyl-phosphate synthase 1 (CPS-1), albumin, CYP2E1, CYP2C11 and CYP3A1 with simultaneous loss of amylase. Immunohistochemical studies showed the formation of 3D structures with expression of liver-specific markers, including albumin, cytokeratin (CK) 18, CCAAT/enhancer-binding protein beta (CEBP-β), CYP2E1 and multidrug resistance protein 2 (MRP2). In conclusion, successful culture and trans-differentiation of B-13 cells in the 3D bioreactor was demonstrated. The requirement for only one hormone and simple culture conditions to generate liver-like cells makes this cell type useful for in vitro research using 3D high-density culture systems.
Collapse
Affiliation(s)
- M Richter
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) , Charité-Universitätsmedizin Berlin , Berlin , Germany .
| | - E A Fairhall
- Newcastle University , Institute Cellular Medicine , Newcastle Upon Tyne , UK
| | - S A Hoffmann
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) , Charité-Universitätsmedizin Berlin , Berlin , Germany .
| | - S Tröbs
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) , Charité-Universitätsmedizin Berlin , Berlin , Germany .
| | - F Knöspel
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) , Charité-Universitätsmedizin Berlin , Berlin , Germany .
| | - P M E Probert
- Newcastle University , Institute Cellular Medicine , Newcastle Upon Tyne , UK
| | - F Oakley
- Newcastle University , Institute Cellular Medicine , Newcastle Upon Tyne , UK
| | - A Stroux
- Institute for Biometry and Clinical Epidemiology , Charité-Universitätsmedizin Berlin , Berlin , Germany
| | - M C Wright
- Newcastle University , Institute Cellular Medicine , Newcastle Upon Tyne , UK
| | - K Zeilinger
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) , Charité-Universitätsmedizin Berlin , Berlin , Germany .
| |
Collapse
|
16
|
Probert PM, Palmer JM, Alhusainy W, Amer AO, Rietjens IMCM, White SA, Jones DE, Wright MC. Progenitor-derived hepatocyte-like (B-13/H) cells metabolise 1'-hydroxyestragole to a genotoxic species via a SULT2B1-dependent mechanism. Toxicol Lett 2015; 243:98-110. [PMID: 26739637 PMCID: PMC4729325 DOI: 10.1016/j.toxlet.2015.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 01/24/2023]
Abstract
Rat B-13 progenitor cells are readily converted into functional hepatocyte-like B-13/H cells capable of phase I cytochrome P450-dependent activation of pro-carcinogens and induction of DNA damage. The aim of the present study was to investigate whether the cells are also capable of Phase II sulphotransferase (SULT)-dependent activation of a pro-carcinogen to an ultimate carcinogen. To this end we therefore examined the bioactivation of the model hepatic (hepato- and cholangio-) carcinogen estragole and its proximate SULT1A1-activated genotoxic metabolite 1'-hydroxyestragole. Exposing B-13 or B-13/H cells to estragole (at concentrations up to 1mM) resulted in the production of low levels of 1'-hydroxyestragole, but did not result in detectable DNA damage. Exposing B-13/H cells - but not B-13 cells - to 1'-hydroxyestragole resulted in a dose-dependent increase in DNA damage in comet assays, confirmed by detection of N(2)-(trans-isoestragol-3'-yl)-2'-deoxyguanosine adducts. Genotoxicity was inhibited by general SULT inhibitors, supporting a role for SULTS in the activation of 1-hydroxyestragole in B-13/H cells. However, B-13 and B-13/H cells did not express biologically significant levels of SULT1A1 as determined by qRT-PCR, Western blotting and its associated 7-hydroxycoumarin sulphation activity. B-13 and B-13/H cells expressed - relative to intact rat liver - high levels of SULT2B1 (primarily the b isoform) and SULT4A1 mRNAs and proteins. B-13 and B-13/H cells also expressed the 3'-phosphoadenosine 5'-phosphosulphate synthase 1 required for the generation of activated sulphate cofactor 3'-phosphoadenosine 5'-phosphosulphate. However, only B-13/H cells expressed functional SULT activities towards SULT2B1 substrates DHEA, pregnenolone and 4 methylumbelliferone. Since liver progenitor cells are bi-potential and also form cholangiocytes, we therefore hypothesised that B-13 cells express a cholangiocyte-like SULT profile. To test this hypothesis, the expression of SULTs was examined in liver by RT-PCR and immunohistochemistry. SULT2B1 - but not SULT1A1 - was determined to be expressed in both rat and human cholangiocytes. Since 1'-hydroxyestragole exposure readily produced DNA injury in B-13/H cells, these data suggest that cholangiocarcinomas generated in rats fed estragole may be dependent, in part, on SULT2B1 activation of the 1'-hydroxyestragole metabolite.
Collapse
Affiliation(s)
- Philip M Probert
- Institute Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Jeremy M Palmer
- Institute Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Wasma Alhusainy
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703HE Wageningen, The Netherlands
| | - Aimen O Amer
- Institute Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703HE Wageningen, The Netherlands
| | - Steven A White
- Institute Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - David E Jones
- Institute Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Matthew C Wright
- Institute Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom.
| |
Collapse
|
17
|
Probert PME, Meyer SK, Alsaeedi F, Axon AA, Fairhall EA, Wallace K, Charles M, Oakley F, Jowsey PA, Blain PG, Wright MC. An expandable donor-free supply of functional hepatocytes for toxicology. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00214h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Abstract
The B-13 cell is a readily expandable rat pancreatic acinar-like cell that differentiates on simple plastic culture substrata into replicatively-senescent hepatocyte-like (B-13/H) cells in response to glucocorticoid exposure. B-13/H cells express a variety of liver-enriched and liver-specific genes, many at levels similar to hepatocytes in vivo. Furthermore, the B-13/H phenotype is maintained for at least several weeks in vitro, in contrast to normal hepatocytes which rapidly de-differentiate under the same simple – or even under more complex – culture conditions. The origin of the B-13 cell line and the current state of knowledge regarding differentiation to B-13/H cells are presented, followed by a review of recent advances in the use of B-13/H cells in a variety of toxicity endpoints. B-13 cells therefore offer Toxicologists a cost-effective and easy to use system to study a range of toxicologically-related questions. Dissecting the mechanism(s) regulating the formation of B-13/H cell may also increase the likelihood of engineering a human equivalent, providing Toxicologists with an expandable donor-free supply of functional rat and human hepatocytes, invaluable additions to the tool kit of in vitro toxicity tests.
Collapse
Affiliation(s)
- Philip M. E. Probert
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Stephanie K. Meyer
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Fouzeyyah Alsaeedi
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Andrew A. Axon
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Emma A. Fairhall
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Karen Wallace
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Michelle Charles
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Fiona Oakley
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Paul A. Jowsey
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Peter G. Blain
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Matthew C. Wright
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| |
Collapse
|
18
|
Conversion of one cell type into another: implications for understanding organ development, pathogenesis of cancer and generating cells for therapy. Biochem Soc Trans 2015; 42:609-16. [PMID: 24849227 DOI: 10.1042/bst20140058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metaplasia is the irreversible conversion of one differentiated cell or tissue type into another. Metaplasia usually occurs in tissues that undergo regeneration, and may, in a pathological context, predispose to an increased risk of disease. Studying the conditions leading to the development of metaplasia is therefore of significant clinical interest. In contrast, transdifferentiation (or cellular reprogramming) is a subset of metaplasia that describes the permanent conversion of one differentiated cell type into another, and generally occurs between cells that arise from neighbouring regions of the same germ layer. Transdifferentiation, although rare, has been shown to occur in Nature. New insights into the signalling pathways involved in normal tissue development may be obtained by investigating the cellular and molecular mechanisms in metaplasia and transdifferentiation, and additional identification of key molecular regulators in transdifferentiation and metaplasia could provide new targets for therapeutic treatment of diseases such as cancer, as well as generating cells for transplantation into patients with degenerative disorders. In the present review, we focus on the transdifferentiation of pancreatic cells into hepatocyte-like cells, the development of Barrett's metaplasia in the oesophagus, and the cellular and molecular mechanisms underlying both processes.
Collapse
|
19
|
Zubiría MG, Vidal-Bravo J, Spinedi E, Giovambattista A. Relationship between impaired adipogenesis of retroperitoneal adipose tissue and hypertrophic obesity: role of endogenous glucocorticoid excess. J Cell Mol Med 2014; 18:1549-61. [PMID: 24913911 PMCID: PMC4190901 DOI: 10.1111/jcmm.12308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 03/25/2014] [Indexed: 12/20/2022] Open
Abstract
Although the pro-adipogenic effect of glucocorticoid (GC) on adipose tissue (AT) precursor cell differentiation is openly accepted, the effect of chronically high peripheral levels of GC on AT mass expansion is not fully understood. In the present study, we aim to assess the in vitro adipogenic capacity of AT precursor cells isolated from retroperitoneal (RP) AT pads of the hypercorticosteronaemic, adult neonatally treated monosodium L-glutamate (MSG) male rat. To ascertain this issue, we explored the in vitro adipogenic process of stromal-vascular fraction (SVF) cells isolated from RPAT pads of 60-day-old MSG rats. The data recorded indicated that RPAT-SVF cells from hypercorticosteronaemic MSG rats, although displaying an enhanced proliferation capacity, differentiated slower than normal cells. This dysfunction was associated with a reduction in key parameters indicative of precursor cell commitment, differentiation capacity and the percentage of fully differentiated adipocytes, with a retarded maturation process. The distorted adipogenic capacity was highly conditioned by RPAT-SVF cells displaying a low committed population and both excessive and reduced expression of anti- (Pref-1 and Wnt-10b) and pro-adipogenic (mineralocorticoid receptor) signals respectively. Notably, the normalization of peripheral corticosterone levels in MSG rats, as a result of bilateral adrenalectomy combined with GC replacement therapy, fully prevented reduced RPAT precursor cell commitment and overall impaired adipogenesis. Our study strongly supports that the impaired adipogenic process observed in the adult hypertrophic obese MSG male rat is a GC-dependent mechanism, thus explaining the unhealthy RPAT expansion observed in human hypertrophic obese phenotypes, such as in the Cushing's syndrome.
Collapse
Affiliation(s)
- María G Zubiría
- Neuroendocrine Unit, IMBICE (CONICET La Plata-CICPBA), La Plata, Argentina
| | | | | | | |
Collapse
|
20
|
Probert PME, Chung GW, Cockell SJ, Agius L, Mosesso P, White SA, Oakley F, Brown CDA, Wright MC. Utility of B-13 progenitor-derived hepatocytes in hepatotoxicity and genotoxicity studies. Toxicol Sci 2013; 137:350-70. [PMID: 24235770 PMCID: PMC3908725 DOI: 10.1093/toxsci/kft258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AR42J-B-13 (B-13) cells form hepatocyte-like (B-13/H) cells in response to glucocorticoid treatment. To establish its utility in toxicity and genotoxicity screening, cytochrome P450 (CYP) induction, susceptibility to toxins, and transporter gene expression were examined. Conversion to B-13/H cells resulted in expression of male-specific CYP2C11 and sensitivity to methapyrilene. B-13/H cells constitutively expressed CYP1A, induced expression in response to an aryl hydrocarbon receptor agonist, and activated benzo[α]pyrene to a DNA-damaging species. Functional CYP1A2 was not expressed due to deletions in the Cyp1a2 gene. A B-13 cell line stably expressing the human CYP1A2 was therefore engineered (B-13−TR/h1A2) and the derived B-13/H cells expressed metabolically functional CYP1A2. Treatment with the cooked food mutagen 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine resulted in a dose-dependent increase in DNA damage. B-13/H cells expressed constitutive androstane receptor (CAR) and induced CYP2B1 mRNA levels in response to classical CAR activators. However, translation to functional CYP2B1 protein was low and increased minimally by CAR activator treatment. B-13/H cells expressed high levels of pregnane X-receptor (PXR) and induced CYP3A1 in response to classical PXR activators. CYP3A genes were inducible, functional, and activated aflatoxin B1 to a DNA-damaging species. All 23 major hepatic transporters were induced when B-13 cells were converted to B-13/H cells, although in many cases, levels remained below those present in adult rat liver. However, bile salt export pump, Abcb1b, multidrug resistance-associated protein, and breast cancer resistance protein transporters were functional in B-13/H cells. These data demonstrate that the B-13 cell generates hepatocyte-like cells with functional drug metabolism and transporter activities, which can alone—or in a humanized form—be used to screen for hepatotoxic and genotoxic endpoints in vitro.
Collapse
|
21
|
Wauters E, Sanchez-Arévalo Lobo VJ, Pinho AV, Mawson A, Herranz D, Wu J, Cowley MJ, Colvin EK, Njicop EN, Sutherland RL, Liu T, Serrano M, Bouwens L, Real FX, Biankin AV, Rooman I. Sirtuin-1 regulates acinar-to-ductal metaplasia and supports cancer cell viability in pancreatic cancer. Cancer Res 2013; 73:2357-67. [PMID: 23370328 DOI: 10.1158/0008-5472.can-12-3359] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The exocrine pancreas can undergo acinar-to-ductal metaplasia (ADM), as in the case of pancreatitis where precursor lesions of pancreatic ductal adenocarcinoma (PDAC) can arise. The NAD(+)-dependent protein deacetylase Sirtuin-1 (Sirt1) has been implicated in carcinogenesis with dual roles depending on its subcellular localization. In this study, we examined the expression and the role of Sirt1 in different stages of pancreatic carcinogenesis, i.e. ADM models and established PDAC. In addition, we analyzed the expression of KIAA1967, a key mediator of Sirt1 function, along with potential Sirt1 downstream targets. Sirt1 was co-expressed with KIAA1967 in the nuclei of normal pancreatic acinar cells. In ADM, Sirt1 underwent a transient nuclear-to-cytoplasmic shuttling. Experiments where during ADM, we enforced repression of Sirt1 shuttling, inhibition of Sirt1 activity or modulation of its expression, all underscore that the temporary decrease of nuclear and increase of cytoplasmic Sirt1 stimulate ADM. Our results further underscore that important transcriptional regulators of acinar differentiation, that is, Pancreatic transcription factor-1a and β-catenin can be deacetylated by Sirt1. Inhibition of Sirt1 is effective in suppression of ADM and in reducing cell viability in established PDAC tumors. KIAA1967 expression is differentially downregulated in PDAC and impacts on the sensitivity of PDAC cells to the Sirt1/2 inhibitor Tenovin-6. In PDAC, acetylation of β-catenin is not affected, unlike p53, a well-characterized Sirt1-regulated protein in tumor cells. Our results reveal that Sirt1 is an important regulator and potential therapeutic target in pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Elke Wauters
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fairhall EA, Charles MA, Wallace K, Schwab CJ, Harrison CJ, Richter M, Hoffmann SA, Charlton KA, Zeilinger K, Wright MC. The B-13 hepatocyte progenitor cell resists pluripotency induction and differentiation to non-hepatocyte cells. Toxicol Res (Camb) 2013. [DOI: 10.1039/c3tx50030f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
23
|
Fairhall EA, Wallace K, White SA, Huang GC, Shaw JA, Wright SC, Charlton KA, Burt AD, Wright MC. Adult human exocrine pancreas differentiation to hepatocytes – potential source of a human hepatocyte progenitor for use in toxicology research. Toxicol Res (Camb) 2013. [DOI: 10.1039/c2tx20061a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
24
|
Modulating zymogen granule formation in pancreatic AR42J cells. Exp Cell Res 2012; 318:1855-66. [PMID: 22683857 DOI: 10.1016/j.yexcr.2012.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 05/11/2012] [Accepted: 05/24/2012] [Indexed: 01/07/2023]
Abstract
Zymogen granules (ZG) are specialized organelles in the exocrine pancreas which allow digestive enzyme storage and regulated secretion. To investigate ZG biogenesis, cargo sorting and packaging, suitable cellular model systems are required. Here, we demonstrate that granule formation in pancreatic AR42J cells, an acinar model system, can be modulated by altering the growth conditions in cell culture. We find that cultivation of AR42J cells in Panserin™ 401, a serum-free medium, enhances the induction of granule formation in the presence or absence of dexamethasone when compared to standard conditions including serum. Biochemical and morphological studies revealed an increase in ZG markers on the mRNA and protein level, as well as in granule size compared to standard conditions. Our data indicate that this effect is related to pronounced differentiation of AR42J cells. To address if enhanced expression of ZG proteins promotes granule formation, we expressed several zymogens and ZG membrane proteins in unstimulated AR42J cells and in constitutively secreting COS-7 cells. Neither single expression nor co-expression was sufficient to initiate granule formation in AR42J cells or the formation of granule-like structures in COS-7 cells as described for neuroendocrine cargo proteins. The importance of our findings for granule formation in exocrine cells is discussed.
Collapse
|
25
|
Transdifferentiation: a cell and molecular reprogramming process. Cell Tissue Res 2012; 348:379-96. [PMID: 22526624 DOI: 10.1007/s00441-012-1403-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 03/01/2012] [Indexed: 12/13/2022]
Abstract
Evidence has emerged recently indicating that differentiation is not entirely a one-way process, and that it is possible to convert one cell type to another, both in vitro and in vivo. This phenomenon is called transdifferentiation, and is generally defined as the stable switch of one cell type to another. Transdifferentiation plays critical roles during development and in regeneration pathways in nature. Although this phenomenon occurs rarely in nature, recent studies have been focused on transdifferentiation and the reprogramming ability of cells to produce specific cells with new phenotypes for use in cell therapy and regenerative medicine. Thus, understanding the principles and the mechanism of this process is important for producing desired cell types. Here some well-documented examples of transdifferentiation, and their significance in development and regeneration are reviewed. In addition, transdifferentiation pathways are considered and their potential molecular mechanisms, especially the role of master switch genes, are considered. Finally, the significance of transdifferentiation in regenerative medicine is discussed.
Collapse
|
26
|
Yi F, Liu GH, Izpisua Belmonte JC. Rejuvenating liver and pancreas through cell transdifferentiation. Cell Res 2012; 22:616-9. [PMID: 22373548 DOI: 10.1038/cr.2012.33] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Fei Yi
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
27
|
DeLeve LD, Jaeschke H, Kalra VK, Asahina K, Brenner DA, Tsukamoto H. 15th International Symposium on Cells of the Hepatic Sinusoid, 2010. Liver Int 2011; 31:762-72. [PMID: 21645207 PMCID: PMC4388239 DOI: 10.1111/j.1478-3231.2011.02527.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This is a meeting report of the presentations given at the 15th International Symposium on Cells of the Hepatic Sinusoid, held in 2010. The areas covered include the contributions of the various liver cell populations to liver disease, molecular and cellular targets involved in steatohepatitis, hepatic fibrosis and cancer and regenerative medicine. In addition to a review of the science presented at the meeting, this report provides references to recent literature on the topics covered at the meeting.
Collapse
Affiliation(s)
- Laurie D DeLeve
- Division of Gastrointestinal and Liver Diseases, University of Southern California Keck School of Medicine, Los Angeles, CA 90069, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Amado NG, Fonseca BF, Cerqueira DM, Neto VM, Abreu JG. Flavonoids: potential Wnt/beta-catenin signaling modulators in cancer. Life Sci 2011; 89:545-54. [PMID: 21635906 DOI: 10.1016/j.lfs.2011.05.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 04/20/2011] [Accepted: 05/03/2011] [Indexed: 02/06/2023]
Abstract
Flavonoids are polyphenolic compounds found throughout the plant kingdom. They occur in every organ but are usually concentrated in leaves and flowers. During the last two decades, in vitro and in vivo studies demonstrated that flavonoids have inhibitory effects on human diseases through targeting of multiple cellular signaling components. Wnt/β-catenin signaling regulates proliferation, differentiation and fate specification in developmental stages and controls tissue homeostasis in adult life. For these reasons, this pathway has received great attention in the last years as potential pathway involved in distinct Human pathologies. In this review we discuss the emerging potential mechanisms for flavonoids on Wnt/β-catenin signaling in cancer and possible investigation strategies to understand flavonoids mode of action on this signaling pathway.
Collapse
Affiliation(s)
- Nathália G Amado
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
29
|
Wallace K, Long Q, Fairhall EA, Charlton KA, Wright MC. Serine/threonine protein kinase SGK1 in glucocorticoid-dependent transdifferentiation of pancreatic acinar cells to hepatocytes. J Cell Sci 2011; 124:405-13. [PMID: 21224398 DOI: 10.1242/jcs.077503] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Elevated glucocorticoid levels result in the transdifferentiation of pancreatic acinar cells into hepatocytes through a process that requires a transient repression of WNT signalling upstream of the induction of C/EBP-β. However, the mechanism by which glucocorticoid interacts with WNT signalling is unknown. A screen of microarray data showed that the serine/threonine protein kinase SGK1 (serum- and glucocorticoid-regulated kinase 1) was markedly induced in the model B-13 pancreatic rat acinar cell line after glucocorticoid treatment (which converts them into hepatocyte-like 'B-13/H' cells) and this was confirmed at the level of mRNA (notably an alternatively transcribed SGK1C form) and protein. Knockdown of SGK1 using an siRNA designed to target all variant transcripts inhibited glucocorticoid-dependent transdifferentiation, whereas overexpression of the human C isoform (and also the human SGK1F isoform, for which no orthologue in the rat has been identified) alone - but not the wild-type A form - inhibited distal WNT signalling Tcf/Lef transcription factor activity, and converted B-13 cells into B-13/H cells. These effects were lost when the kinase functions of SGK1C and SGK1F were mutated. Inhibition of SGK1 kinase activity also inhibited glucocorticoid-dependent transdifferentiation. Expression of SGK1C and SGK1F resulted in the appearance of phosphorylated β-catenin, and recombinant SGK1 was shown to directly phosphorylate purified β-catenin in vitro in an ATP-dependent reaction. These data therefore demonstrate a crucial role for SGK1 induction in B-13 cell transdifferentiation to B-13/H hepatocytes and suggest that direct phosphorylation of β-catenin by SGK1C represents the mechanism of crosstalk between glucocorticoid and WNT signalling pathways.
Collapse
Affiliation(s)
- Karen Wallace
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE24HH, UK
| | | | | | | | | |
Collapse
|
30
|
Wallace K, Flecknell PA, Burt AD, Wright MC. Disrupted pancreatic exocrine differentiation and malabsorption in response to chronic elevated systemic glucocorticoid. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1225-32. [PMID: 20651242 DOI: 10.2353/ajpath.2010.100107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glucocorticoids are antiinflammatory therapeutics that have potent effects on cell differentiation. The aim of this study was to establish whether systemic glucocorticoid exposure significantly affects pancreatic differentiation in vivo because hepatocyte-like cells have been documented to occur in the diseased rodent pancreas. Expression of hepatic markers was examined in pancreata from mice genetically modified to secrete elevated circulating endogenous glucocorticoid [Tg(Crh)]. Tg(Crh) mice with elevated glucocorticoid appeared cushingoid and by 21 weeks of age were obese, insulin-resistant, and had extensive areas of hepatic gene expression in exocrine tissue. Acinar cells from Tg(Crh) mice costained for both amylase and cyp2e1, suggesting direct acinar-hepatic transdifferentiation. Hepatic expression increased with age in the pancreas to such an extent that malabsorption and rapid weight loss occurred in a subset of aging mice; this effect was reversed by dietary porcine pancreatic enzyme supplementation. Indeed, pancreatic expression of hepatic markers was prevented by adrenalectomy, establishing a direct role for glucocorticoid. Elevated levels of circulating glucocorticoid therefore promote a transdifferentiation of adult exocrine pancreas into hepatocyte-like cells, and chronic exposure results in pancreatic malfunction. Glucocorticoids are thus capable of modulating the differentiation of terminally differentiated adult cells.
Collapse
Affiliation(s)
- Karen Wallace
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | | | | | | |
Collapse
|
31
|
Wallace K, Marek CJ, Hoppler S, Wright MC. Glucocorticoid-dependent transdifferentiation of pancreatic progenitor cells into hepatocytes is dependent on transient suppression of WNT signalling. Development 2010. [DOI: 10.1242/dev.054791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Wallace K, Fairhall EA, Charlton KA, Wright MC. AR42J-B-13 cell: an expandable progenitor to generate an unlimited supply of functional hepatocytes. Toxicology 2010; 278:277-87. [PMID: 20685382 DOI: 10.1016/j.tox.2010.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/17/2010] [Accepted: 05/18/2010] [Indexed: 01/16/2023]
Abstract
Hepatocytes are the preparation of choice for Toxicological research in vitro. However, despite the fact that hepatocytes proliferate in vivo during liver regeneration, they are resistant to proliferation in vitro, do not tolerate sub-culture and tend to enter a de-differentiation program that results in a loss of hepatic function. These limitations have resulted in the search for expandable rodent and human cells capable of being directed to differentiate into functional hepatocytes. Research with stem cells suggests that it may be possible to provide the research community with hepatocytes in vitro although to date, significant challenges remain, notably generating a sufficiently pure population of hepatocytes with a quantitative functionality comparable with hepatocytes. This paper reviews work with the AR42J-B-13 (B-13) cell line. The B-13 cell was cloned from the rodent AR42J pancreatic cell line, express genes associated with pancreatic acinar cells and readily proliferates in simple culture media. When exposed to glucocorticoid, 75-85% of the cells trans-differentiate into hepatocyte-like (B-13/H) cells functioning at a level quantitatively similar to freshly isolated rat hepatocytes (with the remaining cells retaining the B-13 phenotype). Trans-differentiation of pancreatic acinar cells also appears to occur in vivo in rats treated with glucocorticoid; in mice with elevated circulating glucocorticoid and in humans treated for long periods with glucocorticoid. The B-13 response to glucocorticoid therefore appears to be related to a real pathophysiological response of a pancreatic cell to glucocorticoid. An understanding of how this process occurs and if it can be generated or engineered in human cells would result in a cell line with the ability to generate an unlimited supply of functional human hepatocytes in a cost effective manner.
Collapse
Affiliation(s)
- Karen Wallace
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | | | | |
Collapse
|