1
|
Williams-Simon PA, Oster C, Moaton JA, Ghidey R, Ng’oma E, Middleton KM, King EG. Naturally segregating genetic variants contribute to thermal tolerance in a Drosophila melanogaster model system. Genetics 2024; 227:iyae040. [PMID: 38506092 PMCID: PMC11075556 DOI: 10.1093/genetics/iyae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/11/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Thermal tolerance is a fundamental physiological complex trait for survival in many species. For example, everyday tasks such as foraging, finding a mate, and avoiding predation are highly dependent on how well an organism can tolerate extreme temperatures. Understanding the general architecture of the natural variants within the genes that control this trait is of high importance if we want to better comprehend thermal physiology. Here, we take a multipronged approach to further dissect the genetic architecture that controls thermal tolerance in natural populations using the Drosophila Synthetic Population Resource as a model system. First, we used quantitative genetics and Quantitative Trait Loci mapping to identify major effect regions within the genome that influences thermal tolerance, then integrated RNA-sequencing to identify differences in gene expression, and lastly, we used the RNAi system to (1) alter tissue-specific gene expression and (2) functionally validate our findings. This powerful integration of approaches not only allows for the identification of the genetic basis of thermal tolerance but also the physiology of thermal tolerance in a natural population, which ultimately elucidates thermal tolerance through a fitness-associated lens.
Collapse
Affiliation(s)
- Patricka A Williams-Simon
- Department of Biology, University of Pennsylvania, 433 S University Ave., 226 Leidy Laboratories, Philadelphia, PA 19104, USA
| | - Camille Oster
- Ash Creek Forest Management, 2796 SE 73rd Ave., Hillsboro, OR 97123, USA
| | | | - Ronel Ghidey
- ECHO Data Analysis Center, Johns Hopkins Bloomberg School of Public Health, 504 Cathedral St., Baltimore, MD 2120, USA
| | - Enoch Ng’oma
- Division of Biology, University of Missouri, 226 Tucker Hall, Columbia, MO 65211, USA
| | - Kevin M Middleton
- Division of Biology, University of Missouri, 222 Tucker Hall, Columbia, MO 65211, USA
| | - Elizabeth G King
- Division of Biology, University of Missouri, 401 Tucker Hall, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Williams-Simon PA, Oster C, Moaton JA, Ghidey R, Ng'oma E, Middleton KM, Zars T, King EG. Naturally segregating genetic variants contribute to thermal tolerance in a D. melanogaster model system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547110. [PMID: 37461510 PMCID: PMC10350013 DOI: 10.1101/2023.07.06.547110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Thermal tolerance is a fundamental physiological complex trait for survival in many species. For example, everyday tasks such as foraging, finding a mate, and avoiding predation, are highly dependent on how well an organism can tolerate extreme temperatures. Understanding the general architecture of the natural variants of the genes that control this trait is of high importance if we want to better comprehend how this trait evolves in natural populations. Here, we take a multipronged approach to further dissect the genetic architecture that controls thermal tolerance in natural populations using the Drosophila Synthetic Population Resource (DSPR) as a model system. First, we used quantitative genetics and Quantitative Trait Loci (QTL) mapping to identify major effect regions within the genome that influences thermal tolerance, then integrated RNA-sequencing to identify differences in gene expression, and lastly, we used the RNAi system to 1) alter tissue-specific gene expression and 2) functionally validate our findings. This powerful integration of approaches not only allows for the identification of the genetic basis of thermal tolerance but also the physiology of thermal tolerance in a natural population, which ultimately elucidates thermal tolerance through a fitness-associated lens.
Collapse
|
3
|
Yuan J, Zhang X, Kou Q, Sun Y, Liu C, Li S, Yu Y, Zhang C, Jin S, Xiang J, Li X, Li F. Genome of a giant isopod, Bathynomus jamesi, provides insights into body size evolution and adaptation to deep-sea environment. BMC Biol 2022; 20:113. [PMID: 35562825 PMCID: PMC9107163 DOI: 10.1186/s12915-022-01302-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/21/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The deep-sea may be regarded as a hostile living environment, due to low temperature, high hydrostatic pressure, and limited food and light. Isopods, a species-rich group of crustaceans, are widely distributed across different environments including the deep sea and as such are a useful model for studying adaptation, migration, and speciation. Similar to other deep-sea organisms, giant isopods have larger body size than their shallow water relatives and have large stomachs and fat bodies presumably to store organic reserves. In order to shed light on the genetic basis of these large crustaceans adapting to the oligotrophic environment of deep-sea, the high-quality genome of a deep-sea giant isopod Bathynomus jamesi was sequenced and assembled. RESULTS B. jamesi has a large genome of 5.89 Gb, representing the largest sequenced crustacean genome to date. Its large genome size is mainly attributable to the remarkable proliferation of transposable elements (84%), which may enable high genome plasticity for adaptive evolution. Unlike its relatives with small body size, B. jamesi has expanded gene families related to pathways of thyroid and insulin hormone signaling that potentially contribute to its large body size. Transcriptomic analysis showed that some expanded gene families related to glycolysis and vesicular transport were specifically expressed in its digestive organs. In addition, comparative genomics and gene expression analyses in six tissues suggested that B. jamesi has inefficient lipid degradation, low basal metabolic rate, and bulk food storage, suggesting giant isopods adopt a more efficient mechanism of nutrient absorption, storage, and utilization to provide sustained energy supply for their large body size. CONCLUSIONS Taken together, the giant isopod genome may provide a valuable resource for understanding body size evolution and adaptation mechanisms of macrobenthic organisms to deep-sea environments.
Collapse
Affiliation(s)
- Jianbo Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qi Kou
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yamin Sun
- Research Center for Functional Genomics and Biochip, Tianjin, 300457, China
| | - Chengzhang Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shihao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yang Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Chengsong Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Songjun Jin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jianhai Xiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Xinzheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
4
|
Mishra S, Ghanim M. Interactions of Liberibacter Species with Their Psyllid Vectors: Molecular, Biological and Behavioural Mechanisms. Int J Mol Sci 2022; 23:ijms23074029. [PMID: 35409386 PMCID: PMC8999863 DOI: 10.3390/ijms23074029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/02/2022] [Accepted: 04/03/2022] [Indexed: 01/27/2023] Open
Abstract
Liberibacter is a group of plant pathogenic bacteria, transmitted by insect vectors, psyllids (Hemiptera: Psylloidea), and has emerged as one of the most devastating pathogens which have penetrated into many parts of the world over the last 20 years. The pathogens are known to cause plant diseases, such as Huanglongbing (citrus greening disease), Zebra chip disease, and carrot yellowing, etc., threatening some very important agricultural sectors, including citrus, potato and others. Candidatus Liberibacter asiaticus (CLas), the causative agent of citrus greening disease, is one of the most important pathogens of this group. This pathogen has infected most of the citrus trees in the US, Brazil and China, causing tremendous decline in citrus productivity, and, consequently, a severely negative impact on economic and personnel associated with citrus and related industries in these countries. Like other members in this group, CLas is transmitted by the Asian citrus psyllid (ACP, Diaphorina citri) in a persistent circulative manner. An additional important member of this group is Ca. L. solanacearum (CLso), which possesses nine haplotypes and infects a variety of crops, depending on the specific haplotype and the insect vector species. Ongoing pathogen control strategies, that are mainly based on use of chemical pesticides, lack the necessary credentials of being technically feasible, and environmentally safe. For this reason, strategies based on interference with Liberibacter vector transmission have been adopted as alternative strategies for the prevention of infection by these pathogens. A significant amount of research has been conducted during the last 10-15 years to understand the aspects of transmission of these bacterial species by their psyllid vectors. These research efforts span biological, ecological, behavioural and molecular aspects of Liberibacter–psyllid interactions, and will be reviewed in this manuscript. These attempts directed towards devising new means of disease control, endeavoured to explore alternative strategies, instead of relying on using chemicals for reducing the vector populations, which is the sole strategy currently employed and which has profound negative effects on human health, beneficial organisms and the environment.
Collapse
|
5
|
Hundacker J, Bittner N, Weise C, Bröhan G, Varama M, Hilker M. Pine defense against eggs of an herbivorous sawfly is elicited by an annexin-like protein present in egg-associated secretion. PLANT, CELL & ENVIRONMENT 2022; 45:1033-1048. [PMID: 34713898 DOI: 10.1111/pce.14211] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Known elicitors of plant defenses against eggs of herbivorous insects are low-molecular-weight organic compounds associated with the eggs. However, previous studies provided evidence that also proteinaceous compounds present in secretion associated with eggs of the herbivorous sawfly Diprion pini can elicit defensive responses in Pinus sylvestris. Pine responses induced by the proteinaceous secretion are known to result in enhanced emission of (E)-β-farnesene, which attracts egg parasitoids killing the eggs. Here, we aimed to identify the defense-eliciting protein and elucidate its function. After isolating the defense-eliciting protein from D. pini egg-associated secretion by ultrafiltration and gel electrophoresis, we identified it by MALDI-TOF mass spectrometry as an annexin-like protein, which we named 'diprionin'. Further GC-MS analyses showed that pine needles treated with heterologously expressed diprionin released enhanced quantities of (E)-β-farnesene. Our bioassays confirmed attractiveness of diprionin-treated pine to egg parasitoids. Expression of several pine candidate genes involved in terpene biosynthesis and regulation of ROS homeostasis was similarly affected by diprionin and natural sawfly egg deposition. However, the two treatments had different effects on expression of pathogenesis-related genes (PR1, PR5). Diprionin is the first egg-associated proteinaceous elicitor of indirect plant defense against insect eggs described so far.
Collapse
Affiliation(s)
- Janik Hundacker
- Department of Applied Zoology and Animal Ecology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Berlin, Germany
| | - Norbert Bittner
- Department of Applied Zoology and Animal Ecology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Berlin, Germany
| | - Christoph Weise
- Department of Biochemistry, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Berlin, Germany
| | - Gunnar Bröhan
- Department of Applied Zoology and Animal Ecology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Berlin, Germany
| | - Martti Varama
- Natural Resources Institute Finland, Helsinki, Finland
| | - Monika Hilker
- Department of Applied Zoology and Animal Ecology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Berlin, Germany
| |
Collapse
|
6
|
Bento FMM, Darolt JC, Merlin BL, Penã L, Wulff NA, Cônsoli FL. The molecular interplay of the establishment of an infection - gene expression of Diaphorina citri gut and Candidatus Liberibacter asiaticus. BMC Genomics 2021; 22:677. [PMID: 34544390 PMCID: PMC8454146 DOI: 10.1186/s12864-021-07988-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Candidatus Liberibacter asiaticus (CLas) is one the causative agents of greening disease in citrus, an unccurable, devastating disease of citrus worldwide. CLas is vectored by Diaphorina citri, and the understanding of the molecular interplay between vector and pathogen will provide additional basis for the development and implementation of successful management strategies. We focused in the molecular interplay occurring in the gut of the vector, a major barrier for CLas invasion and colonization. RESULTS We investigated the differential expression of vector and CLas genes by analyzing a de novo reference metatranscriptome of the gut of adult psyllids fed of CLas-infected and healthy citrus plants for 1-2, 3-4 and 5-6 days. CLas regulates the immune response of the vector affecting the production of reactive species of oxygen and nitrogen, and the production of antimicrobial peptides. Moreover, CLas overexpressed peroxiredoxin, probably in a protective manner. The major transcript involved in immune expression was related to melanization, a CLIP-domain serine protease we believe participates in the wounding of epithelial cells damaged during infection, which is supported by the down-regulation of pangolin. We also detected that CLas modulates the gut peristalsis of psyllids through the down-regulation of titin, reducing the elimination of CLas with faeces. The up-regulation of the neuromodulator arylalkylamine N-acetyltransferase implies CLas also interferes with the double brain-gut communication circuitry of the vector. CLas colonizes the gut by expressing two Type IVb pilin flp genes and several chaperones that can also function as adhesins. We hypothesized biofilm formation occurs by the expression of the cold shock protein of CLas. CONCLUSIONS The thorough detailed analysis of the transcritome of Ca. L. asiaticus and of D. citri at different time points of their interaction in the gut tissues of the host led to the identification of several host genes targeted for regulation by L. asiaticus, but also bacterial genes coding for potential effector proteins. The identified targets and effector proteins are potential targets for the development of new management strategies directed to interfere with the successful utilization of the psyllid vector by this pathogen.
Collapse
Affiliation(s)
- Flavia Moura Manoel Bento
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba, São Paulo 13418-900 Brazil
| | - Josiane Cecília Darolt
- Fund for Citrus Protection (FUNDECITRUS), Araraquara, São Paulo 14807-040 Brazil
- Institute of Chemistry, São Paulo State University – UNESP, Araraquara, São Paulo Brazil
| | - Bruna Laís Merlin
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba, São Paulo 13418-900 Brazil
| | - Leandro Penã
- Fund for Citrus Protection (FUNDECITRUS), Araraquara, São Paulo 14807-040 Brazil
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Nelson Arno Wulff
- Fund for Citrus Protection (FUNDECITRUS), Araraquara, São Paulo 14807-040 Brazil
- Institute of Chemistry, São Paulo State University – UNESP, Araraquara, São Paulo Brazil
| | - Fernando Luis Cônsoli
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba, São Paulo 13418-900 Brazil
| |
Collapse
|
7
|
Kim HM, Jeong SG, Choi IS, Yang JE, Lee KH, Kim J, Kim JC, Kim JS, Park HW. Mechanisms of Insecticidal Action of Metarhizium anisopliae on Adult Japanese Pine Sawyer Beetles ( Monochamus alternatus). ACS OMEGA 2020; 5:25312-25318. [PMID: 33043210 PMCID: PMC7542838 DOI: 10.1021/acsomega.0c03585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/14/2020] [Indexed: 05/31/2023]
Abstract
Pine wilt disease, caused by Bursaphelenchus xylophilus (pine wood nematode), leads to severe environmental and economic damage. Here, we report the results of experiments on the biological control of pine wilt disease through termination of the insect vector of the nematode and the mechanism of the insecticidal action of Metarhizium anisopliae JEF-279 against Monochamus alternatus (Japanese pine sawyer). A combined treatment with a fungal conidia suspension and a fungal protease-containing culture filtrate caused 75.8% mortality of the insect vector. Additionally, the presence of destruxins was confirmed in the dead Japanese pine sawyer adults, and half of the 10 protein spots in proteomic analysis were identified as an actin related to muscle contraction. Based on proteomic and microscopic analyses, the infection cycle of the Japanese pine sawyer by M. anisopliae JEF-279 was inferred to proceed in the following sequence: (1) host adhesion and germination, (2) epicuticle degradation, (3) growth as blastospore, (4) killing by various fungal toxins (insecticidal metabolites), (5) immune response as defense mechanism, and (6) hyphal extrusion and conidiation. Consequently, the combined fungal conidia suspension and protease-containing culture filtrate treatment may be applied as an insecticidal agent, and flaccid paralysis is likely a major mechanism underlying the insecticidal action of M. anisopliae JEF-279 on host insects.
Collapse
Affiliation(s)
- Ho Myeong Kim
- R&D
Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju 61755, Republic of Korea
| | - Seul-Gi Jeong
- R&D
Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju 61755, Republic of Korea
| | - In Seong Choi
- R&D
Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju 61755, Republic of Korea
| | - Jung Eun Yang
- R&D
Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju 61755, Republic of Korea
| | - Kwang Ho Lee
- Center
for Research Facilities, Chonnam National
University, Gwangju 61186, Republic of Korea
| | - Junheon Kim
- National
Institute of Forest Science, Seoul 02455, Republic
of Korea
| | - Jong Cheol Kim
- Department
of Agricultural Biology, College of Agricultural and Life Sciences, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Jae Su Kim
- Department
of Agricultural Biology, College of Agricultural and Life Sciences, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Hae Woong Park
- R&D
Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju 61755, Republic of Korea
| |
Collapse
|
8
|
Bajur AT, Iyer KV, Knust E. Cytocortex-dependent dynamics of Drosophila Crumbs controls junctional stability and tension during germ band retraction. J Cell Sci 2019; 132:jcs.228338. [PMID: 31300472 DOI: 10.1242/jcs.228338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/05/2019] [Indexed: 12/21/2022] Open
Abstract
During morphogenesis, epithelia undergo dynamic rearrangements, which requires continuous remodelling of junctions and cell shape, but at the same time mechanisms preserving cell polarity and tissue integrity. Apico-basal polarity is key for the localisation of the machinery that enables cell shape changes. The evolutionarily conserved Drosophila Crumbs protein is critical for maintaining apico-basal polarity and epithelial integrity. How Crumbs is maintained in a dynamically developing embryo remains largely unknown. Here, we applied quantitative fluorescence techniques to show that, during germ band retraction, Crumbs dynamics correlates with the morphogenetic activity of the epithelium. Genetic and pharmacological perturbations revealed that the mobile pool of Crumbs is fine-tuned by the actomyosin cortex in a stage-dependent manner. Stabilisation of Crumbs at the plasma membrane depends on a proper link to the actomyosin cortex via an intact FERM-domain-binding site in its intracellular domain, loss of which leads to increased junctional tension and higher DE-cadherin (also known as Shotgun) turnover, resulting in impaired junctional rearrangements. These data define Crumbs as a mediator between polarity and junctional regulation to orchestrate epithelial remodelling in response to changes in actomyosin activity.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Anna T Bajur
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - K Venkatesan Iyer
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Elisabeth Knust
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
9
|
Machnicka B, Grochowalska R, Bogusławska DM, Sikorski AF. The role of spectrin in cell adhesion and cell-cell contact. Exp Biol Med (Maywood) 2019; 244:1303-1312. [PMID: 31226892 DOI: 10.1177/1535370219859003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Spectrins are proteins that are responsible for many aspects of cell function and adaptation to changing environments. Primarily the spectrin-based membrane skeleton maintains cell membrane integrity and its mechanical properties, together with the cytoskeletal network a support cell shape. The occurrence of a variety of spectrin isoforms in diverse cellular environments indicates that it is a multifunctional protein involved in numerous physiological pathways. Participation of spectrin in cell–cell and cell–extracellular matrix adhesion and formation of dynamic plasma membrane protrusions and associated signaling events is a subject of interest for researchers in the fields of cell biology and molecular medicine. In this mini-review, we focus on data concerning the role of spectrins in cell surface activities such as adhesion, cell–cell contact, and invadosome formation. We discuss data on different adhesion proteins that directly or indirectly interact with spectrin repeats. New findings support the involvement of spectrin in cell adhesion and spreading, formation of lamellipodia, and also the participation in morphogenetic processes, such as eye development, oogenesis, and angiogenesis. Here, we review the role of spectrin in cell adhesion and cell–cell contact.Impact statementThis article reviews properties of spectrins as a group of proteins involved in cell surface activities such as, adhesion and cell–cell contact, and their contribution to morphogenesis. We show a new area of research and discuss the involvement of spectrin in regulation of cell–cell contact leading to immunological synapse formation and in shaping synapse architecture during myoblast fusion. Data indicate involvement of spectrins in adhesion and cell–cell or cell–extracellular matrix interactions and therefore in signaling pathways. There is evidence of spectrin’s contribution to the processes of morphogenesis which are connected to its interactions with adhesion molecules, membrane proteins (and perhaps lipids), and actin. Our aim was to highlight the essential role of spectrin in cell–cell contact and cell adhesion.
Collapse
Affiliation(s)
- Beata Machnicka
- Department of Biochemistry and Bioinformatics, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra 65-516, Poland
| | - Renata Grochowalska
- Department of Biochemistry and Bioinformatics, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra 65-516, Poland
| | - Dżamila M Bogusławska
- Department of Biochemistry and Bioinformatics, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra 65-516, Poland
| | - Aleksander F Sikorski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
| |
Collapse
|
10
|
Wang Q, Han TH, Nguyen P, Jarnik M, Serpe M. Tenectin recruits integrin to stabilize bouton architecture and regulate vesicle release at the Drosophila neuromuscular junction. eLife 2018; 7:35518. [PMID: 29901439 PMCID: PMC6040883 DOI: 10.7554/elife.35518] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/13/2018] [Indexed: 11/15/2022] Open
Abstract
Assembly, maintenance and function of synaptic junctions depend on extracellular matrix (ECM) proteins and their receptors. Here we report that Tenectin (Tnc), a Mucin-type protein with RGD motifs, is an ECM component required for the structural and functional integrity of synaptic specializations at the neuromuscular junction (NMJ) in Drosophila. Using genetics, biochemistry, electrophysiology, histology and electron microscopy, we show that Tnc is secreted from motor neurons and striated muscles and accumulates in the synaptic cleft. Tnc selectively recruits αPS2/βPS integrin at synaptic terminals, but only the cis Tnc/integrin complexes appear to be biologically active. These complexes have distinct pre- and postsynaptic functions, mediated at least in part through the local engagement of the spectrin-based membrane skeleton: the presynaptic complexes control neurotransmitter release, while postsynaptic complexes ensure the size and architectural integrity of synaptic boutons. Our study reveals an unprecedented role for integrin in the synaptic recruitment of spectrin-based membrane skeleton. Nerve cells or neurons can communicate with each other by releasing chemical messengers into the gap between them, the synapse. Both neurons and synapses are surrounded by a network of proteins called the extracellular matrix, which anchors, protects and supports the synapse. The matrix also helps to regulate the dynamic communication across the synapses and consequently neurons. Little is known about the proteins of the extracellular matrix, in particular about the ones involved in structural support. This is especially important for the so-called neuromuscular junctions, where neurons stimulate muscle contraction and trigger vigorous movement. Receptor proteins on cell surfaces, such as integrins, can bind to the extracellular matrix proteins to anchor the cells and are important for all cell junctions, including synaptic junctions. But because of their many essential roles during development, it was unclear how integrins modulate the activity of the synapse. To investigate this further, Wang et al. studied the neuromuscular junctions of fruit flies. The experiments revealed that both muscle and neurons secrete a large protein called Tenectin, which accumulates into the small space between the neuron and the muscle, the synaptic cleft. This protein can bind to integrin and is necessary to support the neuromuscular junction structurally and functionally. Wang et al. discovered that Tenectin works by gathering integrins on the surface of the neuron and the muscle. In the neuron, Tenectin forms complexes with integrin to regulate the release of neurotransmitters. In the muscle, the complexes provide support to the synaptic structures. However, when Tenectin was experimentally removed, it only disrupted the integrins at the neuromuscular junction, without affecting integrins in other regions of the cells, such as the site where the muscle uses integrins to attach to the tendon. Moreover, without Tenectin an important intracellular scaffolding meshwork that lines up and reinforces cell membranes was no longer organized properly at the synapse. A next step will be to identify the missing components between Tenectin/integrin complexes on the surface of neurons and the neurotransmitter release machinery inside the cells. The extracellular matrix and its receptors play fundamental roles in the development and function of the nervous system. A better knowledge of the underlying mechanisms will help us to better understand the complex interplay between the synapse and the extracellular matrix.
Collapse
Affiliation(s)
- Qi Wang
- Section on Cellular Communication, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Tae Hee Han
- Section on Cellular Communication, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Peter Nguyen
- Section on Cellular Communication, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Michal Jarnik
- Section on Intracellular Protein Trafficking, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Mihaela Serpe
- Section on Cellular Communication, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
11
|
Duan R, Kim JH, Shilagardi K, Schiffhauer ES, Lee DM, Son S, Li S, Thomas C, Luo T, Fletcher DA, Robinson DN, Chen EH. Spectrin is a mechanoresponsive protein shaping fusogenic synapse architecture during myoblast fusion. Nat Cell Biol 2018; 20:688-698. [PMID: 29802406 PMCID: PMC6397639 DOI: 10.1038/s41556-018-0106-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 04/18/2018] [Indexed: 12/24/2022]
Abstract
Spectrin is a membrane skeletal protein best known for its structural role in maintaining cell shape and protecting cells from mechanical damage. Here, we report that α/βH-spectrin (βH is also called karst) dynamically accumulates and dissolves at the fusogenic synapse between fusing Drosophila muscle cells, where an attacking fusion partner invades its receiving partner with actin-propelled protrusions to promote cell fusion. Using genetics, cell biology, biophysics and mathematical modelling, we demonstrate that spectrin exhibits a mechanosensitive accumulation in response to shear deformation, which is highly elevated at the fusogenic synapse. The transiently accumulated spectrin network functions as a cellular fence to restrict the diffusion of cell-adhesion molecules and a cellular sieve to constrict the invasive protrusions, thereby increasing the mechanical tension of the fusogenic synapse to promote cell membrane fusion. Our study reveals a function of spectrin as a mechanoresponsive protein and has general implications for understanding spectrin function in dynamic cellular processes.
Collapse
Affiliation(s)
- Rui Duan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Laboratory of Regenerative Medicine in Sports Science, School of Sports Science, South China Normal University, Guangzhou, China
| | - Ji Hoon Kim
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Khurts Shilagardi
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric S Schiffhauer
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donghoon M Lee
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sungmin Son
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Shuo Li
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Claire Thomas
- Departments of Biology and of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Tianzhi Luo
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Daniel A Fletcher
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth H Chen
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
12
|
Zhu L, Chang Y, Xing J, Tang X, Sheng X, Zhan W. Comparative proteomic analysis between two haemocyte subpopulations in shrimp Fenneropenaeus chinensis. FISH & SHELLFISH IMMUNOLOGY 2018; 72:325-333. [PMID: 28966142 DOI: 10.1016/j.fsi.2017.09.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/13/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
In our previous work, granulocytes and hyalinocytes were successfully separated by immunomagnetic bead (IMB) method using monoclonal antibodies (mAbs) against granulocytes of shrimp (Fenneropenaeus chinensis). In order to elucidate the proteomic differentiation between granulocytes and hyalinocytes, in this paper, the differentially expressed proteins were analyzed between non-fixed/un-permeabilized (NFP) haemocytes and fixed/permeabilized (FP) haemocytes using two-dimensional gel electrophoresis (2-DE) combined with mass spectrometry (MS). Then the FP haemocytes were separated into two haemocyte subpopulations using IMB method, and the comparative proteome between granulocytes and hyalinocytes was investigated. The results showed that 10 differentially expressed protein spots were detected and identified as 4 proteins in the NFP haemocytes. Twenty one differentially expressed proteins were successfully identified between granulocytes and hyalinocytes, which include 4 unique expressed proteins in granulocytes, 4 significantly highly expressed proteins in granulocytes, and 13 significantly high expressed proteins in hyalinocytes. According to Gene Ontology annotation, the identified proteins between granulocytes and hyalinocytes were classified into six categories, including binding proteins, proteins involved in catalytic activity, enzyme regulator activity, structural molecule activity, translation regulator activity, and ungrouped proteins. Furthermore, quantitative PCR confirmed that the trend of transcription levels of three selected genes were consistent with the proteomic data from 2-DE. The results may lead to better understanding of the functions of haemocyte subpopulations.
Collapse
Affiliation(s)
- Lei Zhu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Yanhong Chang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, China
| |
Collapse
|
13
|
Khanna MR, Mattie FJ, Browder KC, Radyk MD, Crilly SE, Bakerink KJ, Harper SL, Speicher DW, Thomas GH. Spectrin tetramer formation is not required for viable development in Drosophila. J Biol Chem 2014; 290:706-15. [PMID: 25381248 DOI: 10.1074/jbc.m114.615427] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The dominant paradigm for spectrin function is that (αβ)2-spectrin tetramers or higher order oligomers form membrane-associated two-dimensional networks in association with F-actin to reinforce the plasma membrane. Tetramerization is an essential event in such structures. We characterize the tetramerization interaction between α-spectrin and β-spectrins in Drosophila. Wild-type α-spectrin binds to both β- and βH-chains with high affinity, resembling other non-erythroid spectrins. However, α-spec(R22S), a tetramerization site mutant homologous to the pathological α-spec(R28S) allele in humans, eliminates detectable binding to β-spectrin and reduces binding to βH-spectrin ∼1000-fold. Even though spectrins are essential proteins, α-spectrin(R22S) rescues α-spectrin mutants to adulthood with only minor phenotypes indicating that tetramerization, and thus conventional network formation, is not the essential function of non-erythroid spectrin. Our data provide the first rigorous test for the general requirement for tetramer-based non-erythroid spectrin networks throughout an organism and find that they have very limited roles, in direct contrast to the current paradigm.
Collapse
Affiliation(s)
- Mansi R Khanna
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Floyd J Mattie
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Kristen C Browder
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Megan D Radyk
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Stephanie E Crilly
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Katelyn J Bakerink
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Sandra L Harper
- the Systems Biology Division, The Wistar Institute, Philadelphia, Pennsylvania 19104
| | - David W Speicher
- the Systems Biology Division, The Wistar Institute, Philadelphia, Pennsylvania 19104
| | - Graham H Thomas
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| |
Collapse
|
14
|
Fisher TW, Vyas M, He R, Nelson W, Cicero JM, Willer M, Kim R, Kramer R, May GA, Crow JA, Soderlund CA, Gang DR, Brown JK. Comparison of potato and asian citrus psyllid adult and nymph transcriptomes identified vector transcripts with potential involvement in circulative, propagative liberibacter transmission. Pathogens 2014; 3:875-907. [PMID: 25436509 PMCID: PMC4282890 DOI: 10.3390/pathogens3040875] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/18/2014] [Accepted: 10/20/2014] [Indexed: 01/01/2023] Open
Abstract
The potato psyllid (PoP) Bactericera cockerelli (Sulc) and Asian citrus psyllid (ACP) Diaphorina citri Kuwayama are the insect vectors of the fastidious plant pathogen, Candidatus Liberibacter solanacearum (CLso) and Ca. L. asiaticus (CLas), respectively. CLso causes Zebra chip disease of potato and vein-greening in solanaceous species, whereas, CLas causes citrus greening disease. The reliance on insecticides for vector management to reduce pathogen transmission has increased interest in alternative approaches, including RNA interference to abate expression of genes essential for psyllid-mediated Ca. Liberibacter transmission. To identify genes with significantly altered expression at different life stages and conditions of CLso/CLas infection, cDNA libraries were constructed for CLso-infected and -uninfected PoP adults and nymphal instars. Illumina sequencing produced 199,081,451 reads that were assembled into 82,224 unique transcripts. PoP and the analogous transcripts from ACP adult and nymphs reported elsewhere were annotated, organized into functional gene groups using the Gene Ontology classification system, and analyzed for differential in silico expression. Expression profiles revealed vector life stage differences and differential gene expression associated with Liberibacter infection of the psyllid host, including invasion, immune system modulation, nutrition, and development.
Collapse
Affiliation(s)
- Tonja W Fisher
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Meenal Vyas
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Ruifeng He
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
| | | | - Joseph M Cicero
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Mark Willer
- BIO5, The University of Arizona, Tucson, AZ 85721, USA.
| | - Ryan Kim
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM 87505, USA.
| | - Robin Kramer
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM 87505, USA.
| | - Greg A May
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM 87505, USA.
| | - John A Crow
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM 87505, USA.
| | | | - David R Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Judith K Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
15
|
Extensive nonmuscle expression and epithelial apicobasal localization of the Drosophila ALP/Enigma family protein, Zasp52. Gene Expr Patterns 2014; 15:67-79. [DOI: 10.1016/j.gep.2014.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/05/2014] [Accepted: 05/08/2014] [Indexed: 01/31/2023]
|
16
|
Wu J, Bakerink KJ, Evangelista ME, Thomas GH. Cytoplasmic capes are nuclear envelope intrusions that are enriched in endosomal proteins and depend upon βH-spectrin and Annexin B9. PLoS One 2014; 9:e93680. [PMID: 24705398 PMCID: PMC3976414 DOI: 10.1371/journal.pone.0093680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/07/2014] [Indexed: 11/18/2022] Open
Abstract
It is increasingly recognized that non-erythroid spectrins have roles remote from the plasma membrane, notably in endomembrane trafficking. The large spectrin isoform, βH, partners with Annexin B9 to modulate endosomal processing of internalized proteins. This modulation is focused on the early endosome through multivesicular body steps of endocytic processing and loss of either protein appears to cause a traffic jam before removal of ubiquitin at the multivesicular body. We previously reported that βH/Annexin B9 influenced EGF receptor signaling. While investigating this effect we noticed that mSptiz, the membrane bound precursor of the secreted EGF receptor ligand sSpitz, is located in striking intrusions of the nuclear membrane. Here we characterize these structures and identify them as ‘cytoplasmic capes’, which were previously identified in old ultrastructural studies and probably coincide with recently recognized sites of non-nuclear-pore RNA export. We show that cytoplasmic capes contain multiple endosomal markers and that their existence is dependent upon βH and Annexin B9. Diminution of these structures does not lead to a change in mSpitz processing. These results extend the endosomal influence of βH and its partner Annexin B9 to this unusual compartment at the nuclear envelope.
Collapse
Affiliation(s)
- Juan Wu
- Departments of Biology and of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- School of Public Health, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Katelyn J. Bakerink
- Departments of Biology and of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Meagan E. Evangelista
- Departments of Biology and of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Graham H. Thomas
- Departments of Biology and of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
17
|
Genetic studies of spectrin in the larval fat body of Drosophila melanogaster: evidence for a novel lipid uptake apparatus. Genetics 2013; 195:871-81. [PMID: 24037266 DOI: 10.1534/genetics.113.155192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spectrin cytoskeleton defects produce a host of phenotypes affecting the plasma membrane, cell polarity, and secretory membrane traffic. However, many of the underlying molecular mechanisms remain unexplained by prevailing models. Here we used the larval fat body of Drosophila melanogaster as a genetic model system to further elucidate mechanisms of αβ-spectrin function. The results provide unexpected new insights into spectrin function as well as mechanisms of dietary fat uptake and storage. We show that loss of α- or β-spectrin in the fat body eliminated a population of small cortical lipid droplets and altered plasma membrane architecture, but did not affect viability of the organism. We present a novel model in which αβ-spectrin directly couples lipid uptake at the plasma membrane to lipid droplet growth in the cytoplasm. In contrast, strong overexpression of β-spectrin caused fat body atrophy and larval lethality. Overexpression of β-spectrin also perturbed transport of dietary fat from the midgut to the fat body. This hypermorphic phenotype appears to be the result of blocking secretion of the lipid carrier lipophorin from fat cells. However, this midgut phenotype was never seen with spectrin loss of function, suggesting that spectrin is not normally required for lipophorin secretion or function. The β-spectrin hypermorphic phenotype was ameliorated by co-overexpression of α-spectrin. Based on the overexpression results here, we propose that β-spectrin family members may be prone to hypermorphic effects (including effects on secretion) if their activity is not properly regulated.
Collapse
|