1
|
Joseph FM, Young NL. Histone variant-specific post-translational modifications. Semin Cell Dev Biol 2023; 135:73-84. [PMID: 35277331 PMCID: PMC9458767 DOI: 10.1016/j.semcdb.2022.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 01/12/2023]
Abstract
Post-translational modifications (PTMs) of histones play a key role in DNA-based processes and contribute to cell differentiation and gene function by adding an extra layer of regulation. Variations in histone sequences within each family of histones expands the chromatin repertoire and provide further mechanisms for regulation and signaling. While variants are known to be present in certain genomic loci and carry out important functions, much remains unknown about variant-specific PTMs and their role in regulating chromatin. This ambiguity is in part due to the limited technologies and appropriate reagents to identify and quantitate variant-specific PTMs. Nonetheless, histone variants are an integral portion of the chromatin system and the understanding of their modifications and resolving how PTMs function differently on specific variants is paramount to the advancement of the field. Here we review the current knowledge on post-translational modifications specific to histone variants, with an emphasis on well-characterized PTMs of known function. While not every possible PTM is addressed, we present key variant-specific PTMs and what is known about their function and mechanisms in convenient reference tables.
Collapse
Affiliation(s)
- Faith M Joseph
- Translational Biology and Molecular Medicine Graduate Program, USA
| | - Nicolas L Young
- Translational Biology and Molecular Medicine Graduate Program, USA; Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Kumar A, Maurya P, Hayes JJ. Post-Translation Modifications and Mutations of Human Linker Histone Subtypes: Their Manifestation in Disease. Int J Mol Sci 2023; 24:ijms24021463. [PMID: 36674981 PMCID: PMC9860689 DOI: 10.3390/ijms24021463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Linker histones (LH) are a critical component of chromatin in addition to the canonical histones (H2A, H2B, H3, and H4). In humans, 11 subtypes (7 somatic and 4 germinal) of linker histones have been identified, and their diverse cellular functions in chromatin structure, DNA replication, DNA repair, transcription, and apoptosis have been explored, especially for the somatic subtypes. Delineating the unique role of human linker histone (hLH) and their subtypes is highly tedious given their high homology and overlapping expression patterns. However, recent advancements in mass spectrometry combined with HPLC have helped in identifying the post-translational modifications (PTMs) found on the different LH subtypes. However, while a number of PTMs have been identified and their potential nuclear and non-nuclear functions explored in cellular processes, there are very few studies delineating the direct relevance of these PTMs in diseases. In addition, recent whole-genome sequencing of clinical samples from cancer patients and individuals afflicted with Rahman syndrome have identified high-frequency mutations and therefore broadened the perspective of the linker histone mutations in diseases. In this review, we compile the identified PTMs of hLH subtypes, current knowledge of the relevance of hLH PTMs in human diseases, and the correlation of PTMs coinciding with mutations mapped in diseases.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642, USA
- Correspondence:
| | - Preeti Maurya
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY 14642, USA
| | - Jeffrey J. Hayes
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
3
|
Whiwon L, Salma S, Daniel A, Stephanie L, Marc C, Cherith S, Abby T, Angela S, Robin H, Yvonne B. Patient-facing digital tools for delivering genetic services: a systematic review. J Med Genet 2023; 60:1-10. [PMID: 36137613 DOI: 10.1136/jmg-2022-109085] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/19/2022] [Indexed: 01/24/2023]
Abstract
This study systematically reviewed the literature on the impact of digital genetics tools on patient care and system efficiencies. MEDLINE and Embase were searched for articles published between January 2010 and March 2021. Studies evaluating the use of patient-facing digital tools in the context of genetic service delivery were included. Two reviewers screened and extracted patient-reported and system-focused outcomes from each study. Data were synthesised using a descriptive approach. Of 3226 unique studies identified, 87 were included. A total of 70 unique digital tools were identified. As a result of using digital tools, 84% of studies reported a positive outcome in at least one of the following patient outcomes: knowledge, psychosocial well-being, behavioural/management changes, family communication, decision-making or level of engagement. Digital tools improved workflow and efficiency for providers and reduced the amount of time they needed to spend with patients. However, we identified a misalignment between study purpose and patient-reported outcomes measured and a lack of tools that encompass the entire genetic counselling and testing trajectory. Given increased demand for genetic services and the shift towards virtual care, this review provides evidence that digital tools can be used to efficiently deliver patient-centred care. Future research should prioritise development, evaluation and implementation of digital tools that can support the entire patient trajectory across a range of clinical settings. PROSPERO registration numberCRD42020202862.
Collapse
Affiliation(s)
- Lee Whiwon
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Shickh Salma
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Assamad Daniel
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Luca Stephanie
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Clausen Marc
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Somerville Cherith
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Tafler Abby
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Shaw Angela
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
- Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Hayeems Robin
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
- Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Bombard Yvonne
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
- Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Sokolova V, Sarkar S, Tan D. Histone variants and chromatin structure, update of advances. Comput Struct Biotechnol J 2022; 21:299-311. [PMID: 36582440 PMCID: PMC9764139 DOI: 10.1016/j.csbj.2022.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Histone proteins are highly conserved among all eukaryotes. They have two important functions in the cell: to package the genomic DNA and to regulate gene accessibility. Fundamental to these functions is the ability of histone proteins to interact with DNA and to form the nucleoprotein complex called chromatin. One of the mechanisms the cells use to regulate chromatin and gene expression is through replacing canonical histones with their variants at specific loci to achieve functional consequence. Recent cryo-electron microscope (cryo-EM) studies of chromatin containing histone variants reveal new details that shed light on how variant-specific features influence the structures and functions of chromatin. In this article, we review the current state of knowledge on histone variants biochemistry and discuss the implication of these new structural information on histone variant biology and their functions in transcription.
Collapse
|
5
|
Abstract
Virtually all cell types have the same DNA, yet each type exhibits its own cell-specific pattern of gene expression. During the brief period of mitosis, the chromosomes exhibit changes in protein composition and modifications, a marked condensation, and a consequent reduction in transcription. Yet as cells exit mitosis, they reactivate their cell-specific programs with high fidelity. Initially, the field focused on the subset of transcription factors that are selectively retained in, and hence bookmark, chromatin in mitosis. However, recent studies show that many transcription factors can be retained in mitotic chromatin and that, surprisingly, such retention can be due to nonspecific chromatin binding. Here, we review the latest studies focusing on low-level transcription via promoters, rather than enhancers, as contributing to mitotic memory, as well as new insights into chromosome structure dynamics, histone modifications, cell cycle signaling, and nuclear envelope proteins that together ensure the fidelity of gene expression through a round of mitosis.
Collapse
Affiliation(s)
- Kenji Ito
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | | |
Collapse
|
6
|
Abstract
In this review, Prendergast and Reinberg discuss the likelihood that the family of histone H1 variants may be key to understanding several fundamental processes in chromatin biology and underscore their particular contributions to distinctly significant chromatin-related processes. Major advances in the chromatin and epigenetics fields have uncovered the importance of core histones, histone variants and their post-translational modifications (PTMs) in modulating chromatin structure. However, an acutely understudied related feature of chromatin structure is the role of linker histone H1. Previous assumptions of the functional redundancy of the 11 nonallelic H1 variants are contrasted by their strong evolutionary conservation, variability in their potential PTMs, and increased reports of their disparate functions, sub-nuclear localizations and unique expression patterns in different cell types. The commonly accepted notion that histone H1 functions solely in chromatin compaction and transcription repression is now being challenged by work from multiple groups. These studies highlight histone H1 variants as underappreciated facets of chromatin dynamics that function independently in various chromatin-based processes. In this review, we present notable findings involving the individual somatic H1 variants of which there are seven, underscoring their particular contributions to distinctly significant chromatin-related processes.
Collapse
Affiliation(s)
- Laura Prendergast
- Howard Hughes Medical Institute, New York University Langone Health, New York, New York 10016, USA.,Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical School, New York, New York 10016, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, New York University Langone Health, New York, New York 10016, USA.,Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical School, New York, New York 10016, USA
| |
Collapse
|
7
|
Bjarnason S, Ruidiaz SF, McIvor J, Mercadante D, Heidarsson PO. Protein intrinsic disorder on a dynamic nucleosomal landscape. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:295-354. [PMID: 34656332 DOI: 10.1016/bs.pmbts.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The complex nucleoprotein landscape of the eukaryotic cell nucleus is rich in dynamic proteins that lack a stable three-dimensional structure. Many of these intrinsically disordered proteins operate directly on the first fundamental level of genome compaction: the nucleosome. Here we give an overview of how disordered interactions with and within nucleosomes shape the dynamics, architecture, and epigenetic regulation of the genetic material, controlling cellular transcription patterns. We highlight experimental and computational challenges in the study of protein disorder and illustrate how integrative approaches are increasingly unveiling the fine details of nuclear interaction networks. We finally dissect sequence properties encoded in disordered regions and assess common features of disordered nucleosome-binding proteins. As drivers of many critical biological processes, disordered proteins are integral to a comprehensive molecular view of the dynamic nuclear milieu.
Collapse
Affiliation(s)
- Sveinn Bjarnason
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland
| | - Sarah F Ruidiaz
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland
| | - Jordan McIvor
- School of Chemical Science, University of Auckland, Auckland, New Zealand
| | - Davide Mercadante
- School of Chemical Science, University of Auckland, Auckland, New Zealand.
| | - Pétur O Heidarsson
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
8
|
Unraveling linker histone interactions in nucleosomes. Curr Opin Struct Biol 2021; 71:87-93. [PMID: 34246862 DOI: 10.1016/j.sbi.2021.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 11/23/2022]
Abstract
Considerable progress has been made recently in defining the interactions of linker histones (H1s) within nucleosomes. Major advancements include atomic resolution structures of the globular domain of full-length H1s in the context of nucleosomes containing full-length linker DNA. Although these studies have led to a detailed understanding of the interactions and dynamics of H1 globular domains in the canonical on-dyad nucleosome binding pocket, more information regarding the intrinsically disordered N-terminal and C-terminal domains is needed. In this review, we highlight studies supporting our current understanding of the structures and interactions of the N-terminal, globular, and C-terminal domains of linker histones within the nucleosome.
Collapse
|
9
|
Zhou BR, Feng H, Kale S, Fox T, Khant H, de Val N, Ghirlando R, Panchenko AR, Bai Y. Distinct Structures and Dynamics of Chromatosomes with Different Human Linker Histone Isoforms. Mol Cell 2021; 81:166-182.e6. [PMID: 33238161 PMCID: PMC7796963 DOI: 10.1016/j.molcel.2020.10.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/21/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022]
Abstract
The repeating structural unit of metazoan chromatin is the chromatosome, a nucleosome bound to a linker histone, H1. There are 11 human H1 isoforms with diverse cellular functions, but how they interact with the nucleosome remains elusive. Here, we determined the cryoelectron microscopy (cryo-EM) structures of chromatosomes containing 197 bp DNA and three different human H1 isoforms, respectively. The globular domains of all three H1 isoforms bound to the nucleosome dyad. However, the flanking/linker DNAs displayed substantial distinct dynamic conformations. Nuclear magnetic resonance (NMR) and H1 tail-swapping cryo-EM experiments revealed that the C-terminal tails of the H1 isoforms mainly controlled the flanking DNA orientations. We also observed partial ordering of the core histone H2A C-terminal and H3 N-terminal tails in the chromatosomes. Our results provide insights into the structures and dynamics of the chromatosomes and have implications for the structure and function of chromatin.
Collapse
Affiliation(s)
- Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hanqiao Feng
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seyit Kale
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balcova, Izmir 35330, Turkey
| | - Tara Fox
- Center of Macromolecular Microscopy, National Cancer Institute, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA
| | - Htet Khant
- Center of Macromolecular Microscopy, National Cancer Institute, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA
| | - Natalia de Val
- Center of Macromolecular Microscopy, National Cancer Institute, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Site-Specific Phosphorylation of Histone H1.4 Is Associated with Transcription Activation. Int J Mol Sci 2020; 21:ijms21228861. [PMID: 33238524 PMCID: PMC7700352 DOI: 10.3390/ijms21228861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 01/05/2023] Open
Abstract
Core histone variants, such as H2A.X and H3.3, serve specialized roles in chromatin processes that depend on the genomic distributions and amino acid sequence differences of the variant proteins. Modifications of these variants alter interactions with other chromatin components and thus the protein’s functions. These inferences add to the growing arsenal of evidence against the older generic view of those linker histones as redundant repressors. Furthermore, certain modifications of specific H1 variants can confer distinct roles. On the one hand, it has been reported that the phosphorylation of H1 results in its release from chromatin and the subsequent transcription of HIV-1 genes. On the other hand, recent evidence indicates that phosphorylated H1 may in fact be associated with active promoters. This conflict suggests that different H1 isoforms and modified versions of these variants are not redundant when together but may play distinct functional roles. Here, we provide the first genome-wide evidence that when phosphorylated, the H1.4 variant remains associated with active promoters and may even play a role in transcription activation. Using novel, highly specific antibodies, we generated the first genome-wide view of the H1.4 isoform phosphorylated at serine 187 (pS187-H1.4) in estradiol-inducible MCF7 cells. We observe that pS187-H1.4 is enriched primarily at the transcription start sites (TSSs) of genes activated by estradiol treatment and depleted from those that are repressed. We also show that pS187-H1.4 associates with ‘early estrogen response’ genes and stably interacts with RNAPII. Based on the observations presented here, we propose that phosphorylation at S187 by CDK9 represents an early event required for gene activation. This event may also be involved in the release of promoter-proximal polymerases to begin elongation by interacting directly with the polymerase or other parts of the transcription machinery. Although we focused on estrogen-responsive genes, taking into account previous evidence of H1.4′s enrichment of promoters of pluripotency genes, and its involvement with rDNA activation, we propose that H1.4 phosphorylation for gene activation may be a more global observation.
Collapse
|
11
|
Histone H1 Post-Translational Modifications: Update and Future Perspectives. Int J Mol Sci 2020; 21:ijms21165941. [PMID: 32824860 PMCID: PMC7460583 DOI: 10.3390/ijms21165941] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022] Open
Abstract
Histone H1 is the most variable histone and its role at the epigenetic level is less characterized than that of core histones. In vertebrates, H1 is a multigene family, which can encode up to 11 subtypes. The H1 subtype composition is different among cell types during the cell cycle and differentiation. Mass spectrometry-based proteomics has added a new layer of complexity with the identification of a large number of post-translational modifications (PTMs) in H1. In this review, we summarize histone H1 PTMs from lower eukaryotes to humans, with a particular focus on mammalian PTMs. Special emphasis is made on PTMs, whose molecular function has been described. Post-translational modifications in H1 have been associated with the regulation of chromatin structure during the cell cycle as well as transcriptional activation, DNA damage response, and cellular differentiation. Additionally, PTMs in histone H1 that have been linked to diseases such as cancer, autoimmune disorders, and viral infection are examined. Future perspectives and challenges in the profiling of histone H1 PTMs are also discussed.
Collapse
|
12
|
Schmitz ML, Higgins JMG, Seibert M. Priming chromatin for segregation: functional roles of mitotic histone modifications. Cell Cycle 2020; 19:625-641. [PMID: 31992120 DOI: 10.1080/15384101.2020.1719585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Posttranslational modifications (PTMs) of histone proteins are important for various cellular processes including regulation of gene expression and chromatin structure, DNA damage response and chromosome segregation. Here we comprehensively review mitotic histone PTMs, in particular phosphorylations, and discuss their interplay and functions in the control of dynamic protein-protein interactions as well as their contribution to centromere and chromosome structure and function during cell division. Histone phosphorylations can create binding sites for mitotic regulators such as the chromosomal passenger complex, which is required for correction of erroneous spindle attachments and chromosome bi-orientation. Other histone PTMs can alter the structural properties of nucleosomes and the accessibility of chromatin. Epigenetic marks such as lysine methylations are maintained during mitosis and may also be important for mitotic transcription as well as bookmarking of transcriptional states to ensure the transmission of gene expression programs through cell division. Additionally, histone phosphorylation can dissociate readers of methylated histones without losing epigenetic information. Through all of these processes, mitotic histone PTMs play a functional role in priming the chromatin for faithful chromosome segregation and preventing genetic instability, one of the characteristic hallmarks of cancer cells.
Collapse
Affiliation(s)
- M Lienhard Schmitz
- Institute of Biochemistry, Medical Faculty, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Jonathan M G Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Markus Seibert
- Institute of Biochemistry, Medical Faculty, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
13
|
Seibert M, Krüger M, Watson NA, Sen O, Daum JR, Slotman JA, Braun T, Houtsmuller AB, Gorbsky GJ, Jacob R, Kracht M, Higgins JMG, Schmitz ML. CDK1-mediated phosphorylation at H2B serine 6 is required for mitotic chromosome segregation. J Cell Biol 2019; 218:1164-1181. [PMID: 30765437 PMCID: PMC6446833 DOI: 10.1083/jcb.201806057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/17/2018] [Accepted: 01/17/2019] [Indexed: 12/11/2022] Open
Abstract
Faithful mitotic chromosome segregation is required for the maintenance of genomic stability. We discovered the phosphorylation of histone H2B at serine 6 (H2B S6ph) as a new chromatin modification site and found that this modification occurs during the early mitotic phases at inner centromeres and pericentromeric heterochromatin. This modification is directly mediated by cyclin B1-associated CDK1, and indirectly by Aurora B, and is antagonized by PP1-mediated dephosphorylation. H2B S6ph impairs chromatin binding of the histone chaperone SET (I2PP2A), which is important for mitotic fidelity. Injection of phosphorylation-specific H2B S6 antibodies in mitotic cells caused anaphase defects with impaired chromosome segregation and incomplete cytokinesis. As H2B S6ph is important for faithful chromosome separation, this modification may contribute to the prevention chromosomal instability and aneuploidy which frequently occur in cancer cells.
Collapse
Affiliation(s)
- Markus Seibert
- Institute of Biochemistry, Justus-Liebig-University, Member of the German Center for Lung Research, Giessen, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Nikolaus A Watson
- Cell Division Biology Research Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, England, UK
| | - Onur Sen
- Cell Division Biology Research Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, England, UK
| | - John R Daum
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, and Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Johan A Slotman
- Department of Pathology, Josephine Nefkens Institute, Erasmus Optical Imaging Centre, Erasmus MC, Rotterdam, Netherlands
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Adriaan B Houtsmuller
- Department of Pathology, Josephine Nefkens Institute, Erasmus Optical Imaging Centre, Erasmus MC, Rotterdam, Netherlands
| | - Gary J Gorbsky
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, and Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Marburg, Germany
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University, Member of the German Center for Lung Research, Giessen, Germany
| | - Jonathan M G Higgins
- Cell Division Biology Research Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, England, UK
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus-Liebig-University, Member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
14
|
Demidov D, Heckmann S, Weiss O, Rutten T, Dvořák Tomaštíková E, Kuhlmann M, Scholl P, Municio CM, Lermontova I, Houben A. Deregulated Phosphorylation of CENH3 at Ser65 Affects the Development of Floral Meristems in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:928. [PMID: 31404279 PMCID: PMC6671561 DOI: 10.3389/fpls.2019.00928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/02/2019] [Indexed: 05/03/2023]
Abstract
Several histone variants are posttranslationally phosphorylated. Little is known about phosphorylation of the centromere-specific histone 3 (CENH3) variant in plants. We show that CENH3 of Arabidopsis thaliana is phosphorylated in vitro by Aurora3, predominantly at serine 65. Interaction of Aurora3 and CENH3 was found by immunoprecipitation (IP) in A. thaliana and by bimolecular fluorescence complementation. Western blotting with an anti-CENH3 pS65 antibody showed that CENH3 pS65 is more abundant in flower buds than elsewhere in the plant. Substitution of serine 65 by either alanine or aspartic acid resulted in a range of phenotypic abnormalities, especially in reproductive tissues. We conclude that Aurora3 phosphorylates CENH3 at S65 and that this post-translational modification is required for the proper development of the floral meristem.
Collapse
Affiliation(s)
- Dmitri Demidov
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- *Correspondence: Dmitri Demidov,
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Oda Weiss
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Eva Dvořák Tomaštíková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany Academy of Sciences, Olomouc, Czechia
- Department of Plant Biology, Uppsala BioCenter and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Markus Kuhlmann
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Patrick Scholl
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- Independent Researcher, Plankstadt, Germany
| | - Celia Maria Municio
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
15
|
Walport LJ, Hopkinson RJ, Chowdhury R, Zhang Y, Bonnici J, Schiller R, Kawamura A, Schofield CJ. Mechanistic and structural studies of KDM-catalysed demethylation of histone 1 isotype 4 at lysine 26. FEBS Lett 2018; 592:3264-3273. [PMID: 30156264 PMCID: PMC6220849 DOI: 10.1002/1873-3468.13231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 01/07/2023]
Abstract
N-Methylation of lysyl residues is widely observed on histone proteins. Using isolated enzymes, we report mechanistic and structural studies on histone lysine demethylase (KDM)-catalysed demethylation of Nε -methylated lysine 26 on histone 1 isotype 4 (H1.4). The results reveal that methylated H1.4K26 is a substrate for all members of the KDM4 subfamily and that KDM4A-catalysed demethylation of H1.4K26me3 peptide is similarly efficient to that of H3K9me3. Crystallographic studies of an H1.4K26me3:KDM4A complex reveal a conserved binding geometry to that of H3K9me3. In the light of the high activity of the KDM4s on this mark, our results suggest JmjC KDM-catalysed demethylation of H1.4K26 may be as prevalent as demethylation on the H3 tail and warrants further investigation in cells.
Collapse
Affiliation(s)
- Louise J. Walport
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordUK
| | - Richard J. Hopkinson
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordUK
- Leicester Institute of Structural and Chemical Biology and Department of ChemistryUniversity of LeicesterUK
| | | | - Yijia Zhang
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordUK
| | - Joanna Bonnici
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordUK
| | - Rachel Schiller
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordUK
| | - Akane Kawamura
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordUK
- Division of Cardiovascular MedicineRadcliffe Department of MedicineThe Wellcome Trust Centre for Human GeneticsOxfordUK
| | | |
Collapse
|
16
|
Ivic N, Bilokapic S, Halic M. Preparative two-step purification of recombinant H1.0 linker histone and its domains. PLoS One 2017; 12:e0189040. [PMID: 29206861 PMCID: PMC5716531 DOI: 10.1371/journal.pone.0189040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 11/19/2017] [Indexed: 01/07/2023] Open
Abstract
H1 linker histones are small basic proteins that have a key role in the formation and maintenance of higher-order chromatin structures. Additionally, many examples have shown that linker histones play an important role in gene regulation, modulated by their various subtypes and posttranslational modifications. Obtaining high amounts of very pure linker histones, especially for efficient antibody production, remains a demanding and challenging procedure. Here we present an easy and fast method to purify human linker histone H1.0 overexpressed in Escherichia coli, as well as its domains: N-terminal/globular domain and C-terminal intrinsically disordered domain. This purification protocol relies on a simple affinity chromatography step followed by cation exchange due to the highly basic properties of histone proteins. Therefore, this protocol can also be applied to other linker histones. Highly pure proteins in amounts sufficient for most biochemical experiments can be obtained. The functional quality of purified H1.0 histone and its domains has been confirmed by pull-down, gel-mobility shift assays and the nuclear import assay.
Collapse
Affiliation(s)
- Nives Ivic
- Department of Biochemistry, Gene Center, University of Munich LMU, Munich, Germany
| | - Silvija Bilokapic
- Department of Biochemistry, Gene Center, University of Munich LMU, Munich, Germany
- * E-mail:
| | - Mario Halic
- Department of Biochemistry, Gene Center, University of Munich LMU, Munich, Germany
| |
Collapse
|
17
|
Izquierdo-Bouldstridge A, Bustillos A, Bonet-Costa C, Aribau-Miralbés P, García-Gomis D, Dabad M, Esteve-Codina A, Pascual-Reguant L, Peiró S, Esteller M, Murtha M, Millán-Ariño L, Jordan A. Histone H1 depletion triggers an interferon response in cancer cells via activation of heterochromatic repeats. Nucleic Acids Res 2017; 45:11622-11642. [PMID: 28977426 PMCID: PMC5714221 DOI: 10.1093/nar/gkx746] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/15/2017] [Indexed: 12/21/2022] Open
Abstract
Histone H1 has seven variants in human somatic cells and contributes to chromatin compaction and transcriptional regulation. Knock-down (KD) of each H1 variant in breast cancer cells results in altered gene expression and proliferation differently in a variant specific manner with H1.2 and H1.4 KDs being most deleterious. Here we show combined depletion of H1.2 and H1.4 has a strong deleterious effect resulting in a strong interferon (IFN) response, as evidenced by an up-regulation of many IFN-stimulated genes (ISGs) not seen in individual nor in other combinations of H1 variant KDs. Although H1 participates to repress ISG promoters, IFN activation upon H1.2 and H1.4 KD is mainly generated through the activation of the IFN response by cytosolic nucleic acid receptors and IFN synthesis, and without changes in histone modifications at induced ISG promoters. H1.2 and H1.4 co-KD also promotes the appearance of accessibility sites genome wide and, particularly, at satellites and other repeats. The IFN response may be triggered by the expression of noncoding RNA generated from heterochromatic repeats or endogenous retroviruses upon H1 KD. In conclusion, redundant H1-mediated silencing of heterochromatin is important to maintain cell homeostasis and to avoid an unspecific IFN response.
Collapse
Affiliation(s)
| | - Alberto Bustillos
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Catalonia 08028, Spain
| | - Carles Bonet-Costa
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Catalonia 08028, Spain
| | | | - Daniel García-Gomis
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Catalonia 08028, Spain
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia 08028, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia 08003, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia 08028, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia 08003, Spain
| | | | - Sandra Peiró
- Vall d'Hebron Institute of Oncology, Barcelona, Catalonia 08035, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia 08028, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Catalonia 08028, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia 08028, Spain
| | - Matthew Murtha
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia 08028, Spain
| | - Lluís Millán-Ariño
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Catalonia 08028, Spain
| | - Albert Jordan
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Catalonia 08028, Spain
| |
Collapse
|
18
|
Krishnan S, Smits AH, Vermeulen M, Reinberg D. Phospho-H1 Decorates the Inter-chromatid Axis and Is Evicted along with Shugoshin by SET during Mitosis. Mol Cell 2017; 67:579-593.e6. [PMID: 28781233 PMCID: PMC5562512 DOI: 10.1016/j.molcel.2017.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/26/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022]
Abstract
Precise control of sister chromatid separation during mitosis is pivotal to maintaining genomic integrity. Yet, the regulatory mechanisms involved are not well understood. Remarkably, we discovered that linker histone H1 phosphorylated at S/T18 decorated the inter-chromatid axial DNA on mitotic chromosomes. Sister chromatid resolution during mitosis required the eviction of such H1S/T18ph by the chaperone SET, with this process being independent of and most likely downstream of arm-cohesin dissociation. SET also directed the disassembly of Shugoshins in a polo-like kinase 1-augmented manner, aiding centromere resolution. SET ablation compromised mitotic fidelity as evidenced by unresolved sister chromatids with marked accumulation of H1S/T18ph and centromeric Shugoshin. Thus, chaperone-assisted eviction of linker histones and Shugoshins is a fundamental step in mammalian mitotic progression. Our findings also elucidate the functional implications of the decades-old observation of mitotic linker histone phosphorylation, serving as a paradigm to explore the role of linker histones in bio-signaling processes.
Collapse
Affiliation(s)
- Swathi Krishnan
- Howard Hughes Medical Institute, New York University Langone School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Arne H Smits
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Danny Reinberg
- Howard Hughes Medical Institute, New York University Langone School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
19
|
Kumar R, Deivendran S, Santhoshkumar TR, Pillai MR. Signaling coupled epigenomic regulation of gene expression. Oncogene 2017. [DOI: 10.1038/onc.2017.201] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Liao R, Mizzen CA. Site-specific regulation of histone H1 phosphorylation in pluripotent cell differentiation. Epigenetics Chromatin 2017; 10:29. [PMID: 28539972 PMCID: PMC5440973 DOI: 10.1186/s13072-017-0135-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Structural variation among histone H1 variants confers distinct modes of chromatin binding that are important for differential regulation of chromatin condensation, gene expression and other processes. Changes in the expression and genomic distributions of H1 variants during cell differentiation appear to contribute to phenotypic differences between cell types, but few details are known about the roles of individual H1 variants and the significance of their disparate capacities for phosphorylation. In this study, we investigated the dynamics of interphase phosphorylation at specific sites in individual H1 variants during the differentiation of pluripotent NT2 and mouse embryonic stem cells and characterized the kinases involved in regulating specific H1 variant phosphorylations in NT2 and HeLa cells. RESULTS Here, we show that the global levels of phosphorylation at H1.5-Ser18 (pS18-H1.5), H1.2/H1.5-Ser173 (pS173-H1.2/5) and H1.4-Ser187 (pS187-H1.4) are regulated differentially during pluripotent cell differentiation. Enrichment of pS187-H1.4 near the transcription start site of pluripotency factor genes in pluripotent cells is markedly reduced upon differentiation, whereas pS187-H1.4 levels at housekeeping genes are largely unaltered. Selective inhibition of CDK7 or CDK9 rapidly diminishes pS187-H1.4 levels globally and its enrichment at housekeeping genes, and similar responses were observed following depletion of CDK9. These data suggest that H1.4-S187 is a bona fide substrate for CDK9, a notion that is further supported by the significant colocalization of CDK9 and pS187-H1.4 to gene promoters in reciprocal re-ChIP analyses. Moreover, treating cells with actinomycin D to inhibit transcription and trigger the release of active CDK9/P-TEFb from 7SK snRNA complexes induces the accumulation of pS187-H1.4 at promoters and gene bodies. Notably, the levels of pS187-H1.4 enrichment after actinomycin D treatment or cell differentiation reflect the extent of CDK9 recruitment at the same loci. Remarkably, the global levels of H1.5-S18 and H1.2/H1.5-S173 phosphorylation are not affected by these transcription inhibitor treatments, and selective inhibition of CDK2 does not affect the global levels of phosphorylation at H1.4-S187 or H1.5-S18. CONCLUSIONS Our data provide strong evidence that H1 variant interphase phosphorylation is dynamically regulated in a site-specific and gene-specific fashion during pluripotent cell differentiation, and that enrichment of pS187-H1.4 at genes is positively related to their transcription. H1.4-S187 is likely to be a direct target of CDK9 during interphase, suggesting the possibility that this particular phosphorylation may contribute to the release of paused RNA pol II. In contrast, the other H1 variant phosphorylations we investigated appear to be mediated by distinct kinases and further analyses are needed to determine their functional significance.
Collapse
Affiliation(s)
- Ruiqi Liao
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, B107 Chemistry and Life Sciences Building, MC-123 601 S. Goodwin Ave., Urbana, IL 61801 USA
| | - Craig A Mizzen
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, B107 Chemistry and Life Sciences Building, MC-123 601 S. Goodwin Ave., Urbana, IL 61801 USA.,Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801 USA
| |
Collapse
|
21
|
Ponte I, Romero D, Yero D, Suau P, Roque A. Complex Evolutionary History of the Mammalian Histone H1.1-H1.5 Gene Family. Mol Biol Evol 2017; 34:545-558. [PMID: 28100789 PMCID: PMC5400378 DOI: 10.1093/molbev/msw241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
H1 is involved in chromatin higher-order structure and gene regulation. H1 has a tripartite structure. The central domain is stably folded in solution, while the N- and C-terminal domains are intrinsically disordered. The terminal domains are encoded by DNA of low sequence complexity, and are thus prone to short insertions/deletions (indels). We have examined the evolution of the H1.1-H1.5 gene family from 27 mammalian species. Multiple sequence alignment has revealed a strong preferential conservation of the number and position of basic residues among paralogs, suggesting that overall H1 basicity is under a strong purifying selection. The presence of a conserved pattern of indels, ancestral to the splitting of mammalian orders, in the N- and C-terminal domains of the paralogs, suggests that slippage may have favored the rapid divergence of the subtypes and that purifying selection has maintained this pattern because it is associated with function. Evolutionary analyses have found evidences of positive selection events in H1.1, both before and after the radiation of mammalian orders. Positive selection ancestral to mammalian radiation involved changes at specific sites that may have contributed to the low relative affinity of H1.1 for chromatin. More recent episodes of positive selection were detected at codon positions encoding amino acids of the C-terminal domain of H1.1, which may modulate the folding of the CTD. The detection of putative recombination points in H1.1-H1.5 subtypes suggests that this process may has been involved in the acquisition of the tripartite H1 structure.
Collapse
Affiliation(s)
- Inma Ponte
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Devani Romero
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Daniel Yero
- Instituto de Biotecnología y de Biomedicina (IBB) y Departamento de Genética y Microbiología, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Pedro Suau
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Alicia Roque
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Kowalski A, Pałyga J. Modulation of chromatin function through linker histone H1 variants. Biol Cell 2016; 108:339-356. [PMID: 27412812 DOI: 10.1111/boc.201600007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 12/30/2022]
Abstract
In this review, the structural aspects of linker H1 histones are presented as a background for characterization of the factors influencing their function in animal and human chromatin. The action of H1 histone variants is largely determined by dynamic alterations of their intrinsically disordered tail domains, posttranslational modifications and allelic diversification. The interdependent effects of these factors can establish dynamic histone H1 states that may affect the organization and function of chromatin regions.
Collapse
Affiliation(s)
- Andrzej Kowalski
- Department of Biochemistry and Genetics, Institute of Biology, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Jan Pałyga
- Department of Biochemistry and Genetics, Institute of Biology, Jan Kochanowski University, 25-406 Kielce, Poland
| |
Collapse
|
23
|
Lin S, Yuan ZF, Han Y, Marchione DM, Garcia BA. Preferential Phosphorylation on Old Histones during Early Mitosis in Human Cells. J Biol Chem 2016; 291:15342-57. [PMID: 27226594 DOI: 10.1074/jbc.m116.726067] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Indexed: 12/25/2022] Open
Abstract
How histone post-translational modifications (PTMs) are inherited through the cell cycle remains poorly understood. Canonical histones are made in the S phase of the cell cycle. Combining mass spectrometry-based technologies and stable isotope labeling by amino acids in cell culture, we question the distribution of multiple histone PTMs on old versus new histones in synchronized human cells. We show that histone PTMs can be grouped into three categories according to their distributions. Most lysine mono-methylation and acetylation PTMs are either symmetrically distributed on old and new histones or are enriched on new histones. In contrast, most di- and tri-methylation PTMs are enriched on old histones, suggesting that the inheritance of different PTMs is regulated distinctly. Intriguingly, old and new histones are distinct in their phosphorylation status during early mitosis in the following three human cell types: HeLa, 293T, and human foreskin fibroblast cells. The mitotic hallmark H3S10ph is predominantly associated with old H3 at early mitosis and becomes symmetric with the progression of mitosis. This same distribution was observed with other mitotic phosphorylation marks, including H3T3/T6ph, H3.1/2S28ph, and H1.4S26ph but not S28/S31ph on the H3 variant H3.3. Although H3S10ph often associates with the neighboring Lys-9 di- or tri-methylations, they are not required for the asymmetric distribution of Ser-10 phosphorylation on the same H3 tail. Inhibition of the kinase Aurora B does not change the distribution despite significant reduction of H3S10ph levels. However, K9me2 abundance on the new H3 is significantly reduced after Aurora B inhibition, suggesting a cross-talk between H3S10ph and H3K9me2.
Collapse
Affiliation(s)
- Shu Lin
- From the Epigenetics Program, Department of Biochemistry and Biophysics, and
| | - Zuo-Fei Yuan
- From the Epigenetics Program, Department of Biochemistry and Biophysics, and
| | - Yumiao Han
- From the Epigenetics Program, Department of Biochemistry and Biophysics, and
| | - Dylan M Marchione
- the Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Benjamin A Garcia
- From the Epigenetics Program, Department of Biochemistry and Biophysics, and
| |
Collapse
|
24
|
Roque A, Ponte I, Suau P. Post-translational modifications of the intrinsically disordered terminal domains of histone H1: effects on secondary structure and chromatin dynamics. Chromosoma 2016; 126:83-91. [DOI: 10.1007/s00412-016-0591-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 01/14/2023]
|
25
|
Millán-Ariño L, Izquierdo-Bouldstridge A, Jordan A. Specificities and genomic distribution of somatic mammalian histone H1 subtypes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:510-9. [DOI: 10.1016/j.bbagrm.2015.10.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 11/15/2022]
|
26
|
A dual affinity-tag strategy for the expression and purification of human linker histone H1.4 in Escherichia coli. Protein Expr Purif 2015; 120:160-8. [PMID: 26739785 DOI: 10.1016/j.pep.2015.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 12/24/2015] [Indexed: 11/22/2022]
Abstract
Linker histones are an abundant and critical component of the eukaryotic chromatin landscape. They play key roles in regulating the higher order structure of chromatin and many genetic processes. Higher eukaryotes possess a number of different linker histone subtypes and new data are consistently emerging that indicate these subtypes are functionally distinct. We were interested in studying one of the most abundant human linker histone subtypes, H1.4. We have produced recombinant full-length H1.4 in Escherichia coli. An N-terminal Glutathione-S-Transferase tag was used to promote soluble expression and was combined with a C-terminal hexahistidine tag to facilitate a simple non-denaturing two-step affinity chromatography procedure that results in highly pure full-length H1.4. The purified H1.4 was shown to be functional via in vitro chromatin assembly experiments and remains active after extended storage at -80 °C.
Collapse
|
27
|
Liao R, Mizzen CA. Interphase H1 phosphorylation: Regulation and functions in chromatin. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:476-85. [PMID: 26657617 DOI: 10.1016/j.bbagrm.2015.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/25/2022]
Abstract
Many metazoan cell types differentially express multiple non-allelic amino acid sequence variants of histone H1. Although early work revealed that H1 variants, collectively, are phosphorylated during interphase and mitosis, differences between individual H1 variants in the sites they possess for mitotic and interphase phosphorylation have been elucidated only relatively recently. Here, we review current knowledge on the regulation and function of interphase H1 phosphorylation, with a particular emphasis on how differences in interphase phosphorylation among the H1 variants of mammalian cells may enable them to have differential effects on transcription and other chromatin processes.
Collapse
Affiliation(s)
- Ruiqi Liao
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, USA
| | - Craig A Mizzen
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, USA; Institute for Genomic Biology, University of Illinois at Urbana Champaign, USA.
| |
Collapse
|
28
|
Hergeth SP, Schneider R. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle. EMBO Rep 2015; 16:1439-53. [PMID: 26474902 DOI: 10.15252/embr.201540749] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/14/2015] [Indexed: 12/21/2022] Open
Abstract
The linker histone H1 family members are a key component of chromatin and bind to the nucleosomal core particle around the DNA entry and exit sites. H1 can stabilize both nucleosome structure and higher-order chromatin architecture. In general, H1 molecules consist of a central globular domain with more flexible tail regions at both their N- and C-terminal ends. The existence of multiple H1 subtypes and a large variety of posttranslational modifications brings about a considerable degree of complexity and makes studying this protein family challenging. Here, we review recent progress in understanding the function of linker histones and their subtypes beyond their role as merely structural chromatin components. We summarize current findings on the role of H1 in heterochromatin formation, transcriptional regulation and embryogenesis with a focus on H1 subtypes and their specific modifications.
Collapse
Affiliation(s)
| | - Robert Schneider
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U964, Université de Strasbourg, Illkirch, France
| |
Collapse
|
29
|
Roque A, Ponte I, Suau P. Interplay between histone H1 structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:444-54. [PMID: 26415976 DOI: 10.1016/j.bbagrm.2015.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 01/10/2023]
Abstract
H1 linker histones are involved both in the maintenance of higher-order chromatin structure and in gene regulation. Histone H1 exists in multiple isoforms, is evolutionarily variable and undergoes a large variety of post-translational modifications. We review recent progress in the understanding of the folding and structure of histone H1 domains with an emphasis on the interactions with DNA. The importance of intrinsic disorder and hydrophobic interactions in the folding and function of the carboxy-terminal domain (CTD) is discussed. The induction of a molten globule-state in the CTD by macromolecular crowding is also considered. The effects of phosphorylation by cyclin-dependent kinases on the structure of the CTD, as well as on chromatin condensation and oligomerization, are described. We also address the extranuclear functions of histone H1, including the interaction with the β-amyloid peptide.
Collapse
Affiliation(s)
- Alicia Roque
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Spain
| | - Inma Ponte
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Spain
| | - Pedro Suau
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Spain.
| |
Collapse
|
30
|
Histone H1: Lessons from Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:526-32. [PMID: 26361208 DOI: 10.1016/j.bbagrm.2015.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/28/2015] [Accepted: 09/02/2015] [Indexed: 01/02/2023]
Abstract
Eukaryotic genomes are structured in the form of chromatin with the help of a set of five small basic proteins, the histones. Four of them are highly conserved through evolution, form the basic unit of the chromatin, the nucleosome, and have been intensively studied and are well characterized. The fifth histone, histone H1, adds to this basic structure through its interaction at the entry/exit site of DNA in the nucleosome and makes an essential contribution to the higher order folding of the chromatin fiber. Histone H1 is the less conserved histone and the less known of them. Though for long time considered as a general repressor of gene expression, recent studies in Drosophila have rejected this view and have contributed to uncover important functions on genome stability and development. Here we present some of the most recent data obtained in the Drosophila model system and discuss how the lessons learnt in these studies compare and could be applied to all other eukaryotes.
Collapse
|
31
|
Izzo A, Schneider R. The role of linker histone H1 modifications in the regulation of gene expression and chromatin dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:486-95. [PMID: 26348411 DOI: 10.1016/j.bbagrm.2015.09.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/07/2015] [Accepted: 09/02/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Linker histone H1 is a structural component of chromatin. It exists as a family of related proteins known as variants and/or subtypes. H1.1, H1.2, H1.3, H1.4 and H1.5 are present in most somatic cells, whereas other subtypes are mainly expressed in more specialized cells. SCOPE OF REVIEW H1 subtypes have been shown to have unique functions in chromatin structure and dynamics. This can occur at least in part via specific post-translational modifications of distinct H1 subtypes. However, while core histone modifications have been extensively studied, our knowledge of H1 modifications and their molecular functions has remained for a long time limited to phosphorylation. In this review we discuss the current state of knowledge of linker histone H1 modifications and where possible highlight functional differences in the modifications of distinct H1 subtypes. MAJOR CONCLUSIONS AND GENERAL SIGNIFICANCE H1 histones are intensely post-translationally modified. These modifications are located in the N- and C-terminal tails as well as within the globular domain. Recently, advanced mass spectrometrical analysis revealed a large number of novel histone H1 subtype specific modification sites and types. H1 modifications include phosphorylation, acetylation, methylation, ubiquitination, and ADP ribosylation. They are involved in the regulation of all aspects of linker histone functions, however their mechanism of action is often only poorly understood. Therefore systematic functional characterization of H1 modifications will be necessary in order to better understand their role in gene regulation as well as in higher-order chromatin structure and dynamics.
Collapse
Affiliation(s)
- Annalisa Izzo
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U 964, Université de Strasbourg, 67404 Illkirch, France
| | - Robert Schneider
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U 964, Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
32
|
Chen Y, Hoover ME, Dang X, Shomo AA, Guan X, Marshall AG, Freitas MA, Young NL. Quantitative Mass Spectrometry Reveals that Intact Histone H1 Phosphorylations are Variant Specific and Exhibit Single Molecule Hierarchical Dependence. Mol Cell Proteomics 2015. [PMID: 26209608 DOI: 10.1074/mcp.m114.046441] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Breast cancer was the second leading cause of cancer related mortality for females in 2014. Recent studies suggest histone H1 phosphorylation may be useful as a clinical biomarker of breast and other cancers because of its ability to recognize proliferative cell populations. Although monitoring a single phosphorylated H1 residue is adequate to stratify high-grade breast tumors, expanding our knowledge of how H1 is phosphorylated through the cell cycle is paramount to understanding its role in carcinogenesis. H1 analysis by bottom-up MS is challenging because of the presence of highly homologous sequence variants expressed by most cells. These highly basic proteins are difficult to analyze by LC-MS/MS because of the small, hydrophilic nature of peptides produced by tryptic digestion. Although bottom-up methods permit identification of several H1 phosphorylation events, these peptides are not useful for observing the combinatorial post-translational modification (PTM) patterns on the protein of interest. To complement the information provided by bottom-up MS, we utilized a top-down MS/MS workflow to permit identification and quantitation of H1 proteoforms related to the progression of breast cells through the cell cycle. Histones H1.2 and H1.4 were observed in MDA-MB-231 metastatic breast cells, whereas an additional histone variant, histone H1.3, was identified only in nonneoplastic MCF-10A cells. Progressive phosphorylation of histone H1.4 was identified in both cell lines at mitosis (M phase). Phosphorylation occurred first at S172 followed successively by S187, T18, T146, and T154. Notably, phosphorylation at S173 of histone H1.2 and S172, S187, T18, T146, and T154 of H1.4 significantly increases during M phase relative to S phase, suggesting that these events are cell cycle-dependent and may serve as markers for proliferation. Finally, we report the observation of the H1.2 SNP variant A18V in MCF-10A cells.
Collapse
Affiliation(s)
- Yu Chen
- From the ‡Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, 32310
| | - Michael E Hoover
- §Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, 43210
| | - Xibei Dang
- ¶Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, 32306
| | - Alan A Shomo
- ¶Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, 32306
| | - Xiaoyan Guan
- From the ‡Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, 32310
| | - Alan G Marshall
- From the ‡Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, 32310; ¶Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, 32306
| | - Michael A Freitas
- §Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, 43210;
| | - Nicolas L Young
- From the ‡Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, 32310;
| |
Collapse
|
33
|
Abstract
How eukaryotic genomes are packaged into compact cylindrical chromosomes in preparation for cell divisions has remained one of the major unsolved questions of cell biology. Novel approaches to study the topology of DNA helices inside the nuclei of intact cells, paired with computational modeling and precise biomechanical measurements of isolated chromosomes, have advanced our understanding of mitotic chromosome architecture. In this Review Essay, we discuss - in light of these recent insights - the role of chromatin architecture and the functions and possible mechanisms of SMC protein complexes and other molecular machines in the formation of mitotic chromosomes. Based on the information available, we propose a stepwise model of mitotic chromosome condensation that envisions the sequential generation of intra-chromosomal linkages by condensin complexes in the context of cohesin-mediated inter-chromosomal linkages, assisted by topoisomerase II. The described scenario results in rod-shaped metaphase chromosomes ready for their segregation to the cell poles.
Collapse
Affiliation(s)
- Marc Kschonsak
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | |
Collapse
|
34
|
Li G, Zhu P. Structure and organization of chromatin fiber in the nucleus. FEBS Lett 2015; 589:2893-904. [PMID: 25913782 DOI: 10.1016/j.febslet.2015.04.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 12/30/2022]
Abstract
Eukaryotic genomes are organized hierarchically into chromatin structures by histones. Despite extensive research for over 30 years, not only the fundamental structure of the 30-nm chromatin fiber is being debated, but the actual existence of such fiber remains hotly contested. In this review, we focus on the most recent progress in elucidating the structure of the 30-nm fiber upon in vitro reconstitution, and its possible organization inside the nucleus. In addition, we discuss the roles of linker histone H1 as well as the importance of specific nucleosome-nucleosome interactions in the formation of the 30-nm fiber. Finally, we discuss the involvement of structural variations and epigenetic mechanisms available for the regulation of this chromatin form.
Collapse
Affiliation(s)
- Guohong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
35
|
Sijare F, Geißler AL, Fichter CD, Hergeth SP, Bogatyreva L, Hauschke D, Schneider R, Werner M, Lassmann S. Aurora B expression and histone variant H1.4S27 phosphorylation are no longer coordinated during metaphase in aneuploid colorectal carcinomas. Virchows Arch 2015; 466:503-15. [PMID: 25680570 DOI: 10.1007/s00428-015-1727-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 11/24/2014] [Accepted: 01/22/2015] [Indexed: 12/11/2022]
Abstract
Experimental model systems identified phosphorylation of linker histone variant H1.4 at Ser 27 (H1.4S27p) as a novel mitotic mark set by Aurora B kinase. Here, we examined expression of Aurora B and H1.4S27p in colorectal carcinoma (CRC) cell lines (HCT116, DLD1, Caco-2, HT29) and tissue specimens (n = 36), in relation to microsatellite instability (MSI) status and ploidy. In vitro, Aurora B (pro-/meta-/anaphase) and H1.4S27p (pro-/metaphase) were localized in mitotic figures. The proportion of labeled mitoses was significantly different between cell lines for Aurora B (p = 0.019) but not for H1.4S27p (p = 0.879). For Aurora B, these differences were not associated with an altered Aurora B gene copy number (FISH) or messenger RNA (mRNA) expression level (qRT-PCR). Moreover, Aurora B expression and H1.4S27 phosphorylation were no longer coordinated during metaphase in aneuploid HT29 cells (p = 0.039). In CRCs, immunoreactivity for Aurora B or H1.4S27p did not correlate with T- or N-stage, grade, or MSI status. However, metaphase labeling of H1.4S27p was significantly higher in diploid than in aneuploid CRCs (p = 0.011). Aurora B was significantly correlated with H1.4S27p-positive metaphases in MSI (p = 0.010) or diploid (p = 0.003) CRCs. Finally, combined classification of MSI status and ploidy revealed a significant positive correlation of Aurora B with H1.4S27p in metaphases of diploid/MSI (p = 0.010) and diploid/microsatellite-stable (MSS; p = 0.031) but not of aneuploid/MSS (p = 0.458) CRCs. The present study underlines the functional link of Aurora B expression and H1.4S27p during specific phases of mitosis in diploid and/or MSI-positive CRCs in vitro and in situ. Importantly, the study shows that the coordination between Aurora B expression and phosphorylation of H1.4 at Ser 27 is lost in cycling aneuploid CRC cells.
Collapse
Affiliation(s)
- Fahima Sijare
- Department of Pathology, University Medical Center, Breisacherstrasse 115A, 79106, Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mayor R, Izquierdo-Bouldstridge A, Millán-Ariño L, Bustillos A, Sampaio C, Luque N, Jordan A. Genome distribution of replication-independent histone H1 variants shows H1.0 associated with nucleolar domains and H1X associated with RNA polymerase II-enriched regions. J Biol Chem 2015; 290:7474-91. [PMID: 25645921 DOI: 10.1074/jbc.m114.617324] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Unlike core histones, the linker histone H1 family is more evolutionarily diverse, and many organisms have multiple H1 variants or subtypes. In mammals, the H1 family includes seven somatic H1 variants; H1.1 to H1.5 are expressed in a replication-dependent manner, whereas H1.0 and H1X are replication-independent. Using ChIP-sequencing data and cell fractionation, we have compared the genomic distribution of H1.0 and H1X in human breast cancer cells, in which we previously observed differential distribution of H1.2 compared with the other subtypes. We have found H1.0 to be enriched at nucleolus-associated DNA repeats and chromatin domains, whereas H1X is associated with coding regions, RNA polymerase II-enriched regions, and hypomethylated CpG islands. Further, H1X accumulates within constitutive or included exons and retained introns and toward the 3' end of expressed genes. Inducible H1X knockdown does not affect cell proliferation but dysregulates a subset of genes related to cell movement and transport. In H1X-depleted cells, the promoters of up-regulated genes are not occupied specifically by this variant, have a lower than average H1 content, and, unexpectedly, do not form an H1 valley upon induction. We conclude that H1 variants are not distributed evenly across the genome and may participate with some specificity in chromatin domain organization or gene regulation.
Collapse
Affiliation(s)
- Regina Mayor
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia 08028 Spain
| | - Andrea Izquierdo-Bouldstridge
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia 08028 Spain
| | - Lluís Millán-Ariño
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia 08028 Spain
| | - Alberto Bustillos
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia 08028 Spain
| | - Cristina Sampaio
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia 08028 Spain
| | - Neus Luque
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia 08028 Spain
| | - Albert Jordan
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia 08028 Spain
| |
Collapse
|
37
|
Sorolla A, Tallack MR, Oey H, Harten SK, Daxinger LC, Magor GW, Combes AN, Ilsley M, Whitelaw E, Perkins AC. Identification of novel hypomorphic and null mutations in Klf1 derived from a genetic screen for modifiers of α-globin transgene variegation. Genomics 2015; 105:116-22. [DOI: 10.1016/j.ygeno.2014.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/18/2014] [Accepted: 09/20/2014] [Indexed: 10/24/2022]
|
38
|
Sequential treatment with aurora B inhibitors enhances cisplatin-mediated apoptosis via c-Myc. J Mol Med (Berl) 2014; 93:427-38. [PMID: 25411027 DOI: 10.1007/s00109-014-1228-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/13/2014] [Accepted: 11/06/2014] [Indexed: 02/06/2023]
Abstract
UNLABELLED Platinum compound such as cisplatin is the first-line chemotherapy of choice in most patients with ovarian carcinoma. However, patients with inherent or acquired cisplatin resistance often experience relapse. Therefore, novel therapies are urgently required to treat drug-resistant ovarian carcinoma. Here, we showed that compared to the non-functional traditional simultaneous treatment, sequential combination of Aurora B inhibitors followed by cisplatin synergistically enhanced apoptotic response in cisplatin-resistant OVCAR-8 cells. This effect was accompanied by the induction of polyploidy in a c-Myc-dependent manner, as c-Myc knockdown reduced the efficacy of the combination by suppressing the expression of Aurora B and impairing cellular response to Aurora B inhibitor, as indicated by the decreased polyploidy and hyperphosphorylation of histone H1. In c-Myc-deficient SKOV3 cells, c-Myc overexpression restored Aurora B expression, induced polyploidy after inhibition of Aurora B, and sensitized cells to this combination therapy. Thus, our report reveals for the first time that sequential treatment of Aurora B inhibitors and cisplatin is essential to inhibit ovarian carcinoma by inducing polyploidy and downregulating c-Myc and that c-Myc is identified as a predictive biomarker to select cells responsive to chemotherapeutical combinations targeting Aurora B. Collectively, these studies provide novel approaches to overcoming cisplatin chemotherapy resistance in ovarian cancer. KEY MESSAGE Pretreatment of Aurora B inhibitors augment apoptotic effects of cisplatin. The synergy of Aurora B inhibitor with cisplatin is dependent on c-Myc expression. c-Myc-dependent induction of polyploidy sensitizes cells to cisplatin.
Collapse
|
39
|
Terme JM, Millán-Ariño L, Mayor R, Luque N, Izquierdo-Bouldstridge A, Bustillos A, Sampaio C, Canes J, Font I, Sima N, Sancho M, Torrente L, Forcales S, Roque A, Suau P, Jordan A. Dynamics and dispensability of variant-specific histone H1 Lys-26/Ser-27 and Thr-165 post-translational modifications. FEBS Lett 2014; 588:2353-62. [PMID: 24873882 DOI: 10.1016/j.febslet.2014.05.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 12/31/2022]
Abstract
In mammals, the linker histone H1, involved in DNA packaging into chromatin, is represented by a family of variants. H1 tails undergo post-translational modifications (PTMs) that can be detected by mass spectrometry. We developed antibodies to analyze several of these as yet unexplored PTMs including the combination of H1.4 K26 acetylation or trimethylation and S27 phosphorylation. H1.2-T165 phosphorylation was detected at S and G2/M phases of the cell cycle and was dispensable for chromatin binding and cell proliferation; while the H1.4-K26 residue was essential for proper cell cycle progression. We conclude that histone H1 PTMs are dynamic over the cell cycle and that the recognition of modified lysines may be affected by phosphorylation of adjacent residues.
Collapse
Affiliation(s)
- Jean-Michel Terme
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Lluís Millán-Ariño
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Regina Mayor
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Neus Luque
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | | | - Alberto Bustillos
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Cristina Sampaio
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Jordi Canes
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Isaura Font
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Núria Sima
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Mónica Sancho
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Laura Torrente
- Institut de Medecina Predictiva i Personalitzada del Cancer, Badalona, Catalonia, Spain
| | - Sonia Forcales
- Institut de Medecina Predictiva i Personalitzada del Cancer, Badalona, Catalonia, Spain
| | - Alicia Roque
- Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Pere Suau
- Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Albert Jordan
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
40
|
Harshman SW, Hoover ME, Huang C, Branson OE, Chaney S, Cheney CM, Rosol TJ, Shapiro CL, Wysocki VH, Huebner K, Freitas MA. Histone H1 phosphorylation in breast cancer. J Proteome Res 2014; 13:2453-67. [PMID: 24601643 PMCID: PMC4012839 DOI: 10.1021/pr401248f] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Indexed: 12/18/2022]
Abstract
Breast cancer is the second leading cause of cancer-related deaths in women. The need for new clinical biomarkers in breast cancer is necessary to further predict prognosis and therapeutic response. In this article, the LC-MS histone H1 phosphorylation profiles were established for three distinct breast cancer cell lines. The results show that the extent of H1 phosphorylation can distinguish between the different cell lines. The histone H1 from the metastatic cell line, MDA-MB-231, was subjected to chemical derivitization and LC-MS/MS analysis. The results suggest that the phosphorylation at threonine 146 is found on both histone H1.2 and histone H1.4. Cell lines were then treated with an extracellular stimulus, estradiol or kinase inhibitor LY294002, to monitor changes in histone H1 phosphorylation. The data show that histone H1 phosphorylation can increase and decrease in response to extracellular stimuli. Finally, primary breast tissues were stained for the histone H1 phosphorylation at threonine 146. Variable staining patterns across tumor grades and subtypes were observed with pT146 labeling correlating with tumor grade. These results establish the potential for histone H1 phosphorylation at threonine 146 as a clinical biomarker in breast cancer.
Collapse
Affiliation(s)
- Sean W. Harshman
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Michael E. Hoover
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chengsi Huang
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Owen E. Branson
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sarah
B. Chaney
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Carolyn M. Cheney
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas J. Rosol
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Charles L. Shapiro
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Vicki H. Wysocki
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kay Huebner
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Michael A. Freitas
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
41
|
Zhang G, Pradhan S. Mammalian epigenetic mechanisms. IUBMB Life 2014; 66:240-56. [PMID: 24706538 DOI: 10.1002/iub.1264] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/19/2014] [Indexed: 12/31/2022]
Abstract
The mammalian genome is packaged into chromatin that is further compacted into three-dimensional structures consisting of distinct functional domains. The higher order structure of chromatin is in part dictated by enzymatic DNA methylation and histone modifications to establish epigenetic layers controlling gene expression and cellular functions, without altering the underlying DNA sequences. Apart from DNA and histone modifications, non-coding RNAs can also regulate the dynamics of the mammalian gene expression and various physiological functions including cell division, differentiation, and apoptosis. Aberrant epigenetic signatures are associated with abnormal developmental processes and diseases such as cancer. In this review, we will discuss the different layers of epigenetic regulation, including writer enzymes for DNA methylation, histone modifications, non-coding RNA, and chromatin conformation. We will highlight the combinatorial role of these structural and chemical modifications along with their partners in various cellular processes in mammalian cells. We will also address the cis and trans interacting "reader" proteins that recognize these modifications and "eraser" enzymes that remove these marks. Furthermore, an attempt will be made to discuss the interplay between various epigenetic writers, readers, and erasures in the establishment of mammalian epigenetic mechanisms.
Collapse
|
42
|
Over RS, Michaels SD. Open and closed: the roles of linker histones in plants and animals. MOLECULAR PLANT 2014; 7:481-91. [PMID: 24270504 PMCID: PMC3941478 DOI: 10.1093/mp/sst164] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/11/2013] [Indexed: 05/19/2023]
Abstract
Histones package DNA in all eukaryotes and play key roles in regulating gene expression. Approximately 150 base pairs of DNA wraps around an octamer of core histones to form the nucleosome, the basic unit of chromatin. Linker histones compact chromatin further by binding to and neutralizing the charge of the DNA between nucleosomes. It is well established that chromatin packing is regulated by a complex pattern of posttranslational modifications (PTMs) to core histones, but linker histone function is less well understood. In this review, we describe the current understanding of the many roles that linker histones play in cellular processes, including gene regulation, cell division, and development, while putting the linker histone in the context of other nuclear proteins. Although intriguing roles for plant linker histones are beginning to emerge, much of our current understanding comes from work in animal systems. Many unanswered questions remain and additional work is required to fully elucidate the complex processes mediated by linker histones in plants.
Collapse
Affiliation(s)
| | - Scott D. Michaels
- To whom correspondence should be addressed. E-mail , fax 812-855-6082, tel. 812-856-0302
| |
Collapse
|
43
|
Millán-Ariño L, Islam ABMMK, Izquierdo-Bouldstridge A, Mayor R, Terme JM, Luque N, Sancho M, López-Bigas N, Jordan A. Mapping of six somatic linker histone H1 variants in human breast cancer cells uncovers specific features of H1.2. Nucleic Acids Res 2014; 42:4474-93. [PMID: 24476918 PMCID: PMC3985652 DOI: 10.1093/nar/gku079] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Seven linker histone H1 variants are present in human somatic cells with distinct prevalence across cell types. Despite being key structural components of chromatin, it is not known whether the different variants have specific roles in the regulation of nuclear processes or are differentially distributed throughout the genome. Using variant-specific antibodies to H1 and hemagglutinin (HA)-tagged recombinant H1 variants expressed in breast cancer cells, we have investigated the distribution of six H1 variants in promoters and genome-wide. H1 is depleted at promoters depending on its transcriptional status and differs between variants. Notably, H1.2 is less abundant than other variants at the transcription start sites of inactive genes, and promoters enriched in H1.2 are different from those enriched in other variants and tend to be repressed. Additionally, H1.2 is enriched at chromosomal domains characterized by low guanine–cytosine (GC) content and is associated with lamina-associated domains. Meanwhile, other variants are associated with higher GC content, CpG islands and gene-rich domains. For instance, H1.0 and H1X are enriched at gene-rich chromosomes, whereas H1.2 is depleted. In short, histone H1 is not uniformly distributed along the genome and there are differences between variants, H1.2 being the one showing the most specific pattern and strongest correlation with low gene expression.
Collapse
Affiliation(s)
- Lluís Millán-Ariño
- Department of Molecular Genomics, Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, E-08028 Spain, Research Programme on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, E-08003 Spain, Department of Genetic Engineering, Biotechnology, University of Dhaka, Dhaka-1000, Bangladesh, Centro de Investigación Príncipe Felipe, Valencia, E-46012 Spain and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, E-08010 Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Prusov AN, Smirnova TA, Kolomijtseva GY. Influence of chromatin structure, antibiotics, and endogenous histone methylation on phosphorylation of histones H1 and H3 in the presence of protein kinase A in rat liver nuclei in vitro. BIOCHEMISTRY (MOSCOW) 2013; 78:176-84. [PMID: 23581988 DOI: 10.1134/s0006297913020065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In vitro phosphorylation of histones H1 and H3 by cAMP-dependent protein kinase A and endogenous phosphokinases in the presence of [γ-³²P]ATP was studied in isolated rat liver nuclei with different variants of chromatin structural organization: condensed (diameter of fibrils 100-200 nm; N-1) and partly decondensed (diameter of fibrils ~30 nm; N-2). In the N-1 state histone, H1 is phosphorylated approximately twice as much than histone H3. Upon the decondensation of the chromatin in the N-2 state, 1.5-fold decrease of total phosphorylation of H1 is observed, while that of H3 does not change, although the endogenous phosphorylation of both histones is reduced by half. Changes in histone phosphorylation in the presence of low or high concentrations of distamycin and chromomycin differ for H1 and H3 in N-1 and N-2. It was found that distamycin (DM) stimulates the phosphorylation of tightly bound H1 fraction, which is not extractable by polyglutamic acid (PG), especially in N-1. Chromomycin (CM) increases the phosphorylation of both histones in PG extracts and in the nuclear pellets, particularly in N-2. At the same time, in N-1 one can detect phosphorylation of a tightly bound fraction of histones H1 whose N-termini are located on AT-rich sites that become inaccessible for protein kinase in the process of chromatin decondensation in N-2. At the same time, in N-2 the accessibility for protein kinase A of tightly bound H1 fractions, whose N-termini are located on GC-rich sites, increases dramatically. High concentrations of both CM and DM in N-1 and N-2 stimulated phosphorylation of the non-extractable by PG fraction of H1 whose N-termini are located on sites where AT ≈ GC. CM at high concentration stimulated 4-7 times the phosphorylation of a small fraction of H3, which is extracted by PG from both types of nuclei. We detected an effect of endogenous methylation of histones H1 and H3 in the nuclei on their subsequent phosphorylation depending on the chromatin structure, histone-chromatin binding strength, and concentration of DM.
Collapse
Affiliation(s)
- A N Prusov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | | | | |
Collapse
|
45
|
Harshman SW, Young NL, Parthun MR, Freitas MA. H1 histones: current perspectives and challenges. Nucleic Acids Res 2013; 41:9593-609. [PMID: 23945933 PMCID: PMC3834806 DOI: 10.1093/nar/gkt700] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
H1 and related linker histones are important both for maintenance of higher-order chromatin structure and for the regulation of gene expression. The biology of the linker histones is complex, as they are evolutionarily variable, exist in multiple isoforms and undergo a large variety of posttranslational modifications in their long, unstructured, NH2- and COOH-terminal tails. We review recent progress in understanding the structure, genetics and posttranslational modifications of linker histones, with an emphasis on the dynamic interactions of these proteins with DNA and transcriptional regulators. We also discuss various experimental challenges to the study of H1 and related proteins, including limitations of immunological reagents and practical difficulties in the analysis of posttranslational modifications by mass spectrometry.
Collapse
Affiliation(s)
- Sean W Harshman
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA, College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, USA, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA and Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
46
|
The genomic landscape of the somatic linker histone subtypes H1.1 to H1.5 in human cells. Cell Rep 2013; 3:2142-54. [PMID: 23746450 DOI: 10.1016/j.celrep.2013.05.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/19/2013] [Accepted: 05/03/2013] [Indexed: 12/27/2022] Open
Abstract
Human cells contain five canonical, replication-dependent somatic histone H1 subtypes (H1.1, H1.2, H1.3, H1.4, and H1.5). Although they are key chromatin components, the genomic distribution of the H1 subtypes is still unknown, and their role in chromatin processes has thus far remained elusive. Here, we map the genomic localization of all somatic replication-dependent H1 subtypes in human lung fibroblasts using an integrative DNA adenine methyltransferase identification (DamID) analysis. We find in general that H1.2 to H1.5 are depleted from CpG-dense regions and active regulatory regions. H1.1 shows a DamID binding profile distinct from the other subtypes, suggesting a unique function. H1 subtypes can mark specific domains and repressive regions, pointing toward a role for H1 in three-dimensional genome organization. Our work integrates H1 subtypes into the epigenome maps of human cells and provides a valuable resource to refine our understanding of the significance of H1 and its heterogeneity in the control of genome function.
Collapse
|
47
|
Zheng M, Zheng Y, Xie L, Chang W, Gu N, Ji M. Orally Active Aurora A/B Kinase Inhibitor, AM-005, Suppresses the Growth of Human Colon Carcinoma Cells. Drug Dev Res 2013. [DOI: 10.1002/ddr.21077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ming Zheng
- Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Science and Medical Engineering; Southeast University; Nanjing; Jiangsu; 210009; China
| | - Youguang Zheng
- School of Pharmacy; Xuzhou Medical College; Xuzhou; Jiangsu; 221004; China
| | - Li Xie
- Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Science and Medical Engineering; Southeast University; Nanjing; Jiangsu; 210009; China
| | - Weiwei Chang
- Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Science and Medical Engineering; Southeast University; Nanjing; Jiangsu; 210009; China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Science and Medical Engineering; Southeast University; Nanjing; Jiangsu; 210009; China
| | - Min Ji
- School of Chemistry and Chemical Engineering; Southeast University; 87 Dingjiaqiao; Nanjing; Jiangsu; 210009; China
| |
Collapse
|
48
|
Kassner I, Barandun M, Fey M, Rosenthal F, Hottiger MO. Crosstalk between SET7/9-dependent methylation and ARTD1-mediated ADP-ribosylation of histone H1.4. Epigenetics Chromatin 2013; 6:1. [PMID: 23289424 PMCID: PMC3554541 DOI: 10.1186/1756-8935-6-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 01/30/2023] Open
Abstract
Background Different histone post-translational modifications (PTMs) fine-tune and integrate different cellular signaling pathways at the chromatin level. ADP-ribose modification of histones by cellular ADP-ribosyltransferases such as ARTD1 (PARP1) is one of the many elements of the histone code. All 5 histone proteins were described to be ADP-ribosylated in vitro and in vivo. However, the crosstalk between ADP-ribosylation and other modifications is little understood. Results In experiments with isolated histones, it was found that ADP-ribosylation of H3 by ARTD1 prevents H3 methylation by SET7/9. However, poly(ADP-ribosyl)ation (PARylation) of histone H3 surprisingly allowed subsequent methylation of H1 by SET7/9. Histone H1 was thus identified as a new target for SET7/9. The SET7/9 methylation sites in H1.4 were pinpointed to the last lysine residues of the six KAK motifs in the C-terminal domain (K121, K129, K159, K171, K177 and K192). Interestingly, H1 and the known SET7/9 target protein H3 competed with each other for SET7/9-dependent methylation. Conclusions The results presented here identify H1.4 as a novel SET7/9 target protein, and document an intricate crosstalk between H3 and H1 methylation and PARylation, thus implying substrate competition as a regulatory mechanism. Thereby, these results underline the role of ADP-ribosylation as an element of the histone code.
Collapse
Affiliation(s)
- Ingrid Kassner
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland.
| | | | | | | | | |
Collapse
|
49
|
|
50
|
Wang F, Higgins JMG. Histone modifications and mitosis: countermarks, landmarks, and bookmarks. Trends Cell Biol 2012; 23:175-84. [PMID: 23246430 DOI: 10.1016/j.tcb.2012.11.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/12/2012] [Accepted: 11/13/2012] [Indexed: 11/30/2022]
Abstract
The roles of post-translational histone modifications in regulating transcription and DNA damage have been widely studied and discussed. Although mitotic histone marks, particularly phosphorylation, were discovered four decades ago, their roles in mitosis have been outlined only in the past few years. Here we aim to provide an integrated view of how histone modifications act as 'countermarks', 'landmarks', and 'bookmarks' to displace, recruit, and 'remember' the location of regulatory proteins during and shortly after mitosis. These capabilities allow histone marks to help downregulate interphase functions such as transcription during mitosis, to facilitate chromatin events required to accomplish chromosome segregation, and to contribute to the maintenance of epigenetic states through mitosis.
Collapse
Affiliation(s)
- Fangwei Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | | |
Collapse
|