1
|
Guo Z, Ma Y, Jia Z, Wang L, Lu X, Chen Y, Wang Y, Hao H, Yu S, Wang Z. Crosstalk between integrin/FAK and Crk/Vps25 governs invasion of bovine mammary epithelial cells by S. agalactiae. iScience 2023; 26:107884. [PMID: 37766995 PMCID: PMC10520442 DOI: 10.1016/j.isci.2023.107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/26/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Streptococcus agalactiae (S. agalactiae) is a contagious obligate parasite of the udder in dairy cows. Here, we examined S. agalactiae-host interactions in bovine mammary epithelial cells (BMECs) in vitro. We found that S. agalactiae infected BMECs through laminin β2 and integrin. Crk, Vps25, and RhoA were differentially expressed in S. agalactiae-infected cells. S. agalactiae infection activated FAK and Crk. FAK deficiency decreased the number of intracellular S. agalactiae and Crk activation. Knockdown of Crk or Vps25 increased the level of intracellular S. agalactiae, whereas its overexpression had the opposite effect. RhoA expression and actin cytoskeleton were altered in S. agalactiae-infected BMECs. Crk and Vps25 interact in cells, and invaded S. agalactiae also activates Crk, allowing it to cooperate with Vps25 to defend against intracellular infection by S. agalactiae. This study provides insights into the mechanism by which intracellular infection by S. agalactiae is regulated in BMECs.
Collapse
Affiliation(s)
- Zhixin Guo
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
- School of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yuze Ma
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Zhibo Jia
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Liping Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Xinyue Lu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Yuhao Chen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
- School of Life Sciences, Jining Normal University, Jining 012000, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Huifang Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Shuixing Yu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Zhigang Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
2
|
D'Amico F, Barone M, Tavella T, Rampelli S, Brigidi P, Turroni S. Host microbiomes in tumor precision medicine: how far are we? Curr Med Chem 2022; 29:3202-3230. [PMID: 34986765 DOI: 10.2174/0929867329666220105121754] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022]
Abstract
The human gut microbiome has received a crescendo of attention in recent years, due to the countless influences on human pathophysiology, including cancer. Research on cancer and anticancer therapy is constantly looking for new hints to improve the response to therapy while reducing the risk of relapse. In this scenario, the gut microbiome and the plethora of microbial-derived metabolites are considered a new opening in the development of innovative anticancer treatments for a better prognosis. This narrative review summarizes the current knowledge on the role of the gut microbiome in the onset and progression of cancer, as well as in response to chemo-immunotherapy. Recent findings regarding the tumor microbiome and its implications for clinical practice are also commented on. Current microbiome-based intervention strategies (i.e., prebiotics, probiotics, live biotherapeutics and fecal microbiota transplantation) are then discussed, along with key shortcomings, including a lack of long-term safety information in patients who are already severely compromised by standard treatments. The implementation of bioinformatic tools applied to microbiomics and other omics data, such as machine learning, has an enormous potential to push research in the field, enabling the prediction of health risk and therapeutic outcomes, for a truly personalized precision medicine.
Collapse
Affiliation(s)
- Federica D'Amico
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Monica Barone
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Teresa Tavella
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Patrizia Brigidi
- Microbiome Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
3
|
Lai YR, Chang YF, Ma J, Chiu CH, Kuo ML, Lai CH. From DNA Damage to Cancer Progression: Potential Effects of Cytolethal Distending Toxin. Front Immunol 2021; 12:760451. [PMID: 34868002 PMCID: PMC8634426 DOI: 10.3389/fimmu.2021.760451] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
Cytolethal distending toxin (CDT), one of the most important genotoxins, is produced by several gram-negative bacteria and is involved in bacterial pathogenesis. Recent studies have shown that bacteria producing this peculiar genotoxin target host DNA, which potentially contributes to development of cancer. In this review, we highlighted the recent studies focusing on the idea that CDT leads to DNA damage, and the cells with inappropriately repaired DNA continue cycling, resulting in cancer development. Understanding the detailed mechanisms of genotoxins that cause DNA damage might be useful for targeting potential markers that drive cancer progression and help to discover new therapeutic strategies to prevent diseases caused by pathogens.
Collapse
Affiliation(s)
- Yi-Ru Lai
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Fang Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jason Ma
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Ming-Ling Kuo
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chih-Ho Lai
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Microbiology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
4
|
Varon C, Azzi-Martin L, Khalid S, Seeneevassen L, Ménard A, Spuul P. Helicobacters and cancer, not only gastric cancer? Semin Cancer Biol 2021; 86:1138-1154. [PMID: 34425210 DOI: 10.1016/j.semcancer.2021.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
The Helicobacter genus actually comprises 46 validly published species divided into two main clades: gastric and enterohepatic Helicobacters. These bacteria colonize alternative sites of the digestive system in animals and humans, and contribute to inflammation and cancers. In humans, Helicobacter infection is mainly related to H. pylori, a gastric pathogen infecting more than half of the world's population, leading to chronic inflammation of the gastric mucosa that can evolve into two types of gastric cancers: gastric adenocarcinomas and gastric MALT lymphoma. In addition, H. pylori but also non-H. pylori Helicobacter infection has been associated with many extra-gastric malignancies. This review focuses on H. pylori and its role in gastric cancers and extra-gastric diseases, as well as malignancies induced by non-H. pylori Helicobacters. Their different virulence factors and their involvement in carcinogenesis is discussed. This review highlights the importance of both gastric and enterohepatic Helicobacters in gastrointestinal and liver cancers.
Collapse
Affiliation(s)
- Christine Varon
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Lamia Azzi-Martin
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France; Univ. Bordeaux, UFR des Sciences Médicales, Bordeaux, France
| | - Sadia Khalid
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia RD 15, 12618, Tallinn, Estonia
| | - Lornella Seeneevassen
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Armelle Ménard
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Pirjo Spuul
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia RD 15, 12618, Tallinn, Estonia.
| |
Collapse
|
5
|
Mathiasen SL, Gall-Mas L, Pateras IS, Theodorou SDP, Namini MRJ, Hansen MB, Martin OCB, Vadivel CK, Ntostoglou K, Butter D, Givskov M, Geisler C, Akbar AN, Gorgoulis VG, Frisan T, Ødum N, Krejsgaard T. Bacterial genotoxins induce T cell senescence. Cell Rep 2021; 35:109220. [PMID: 34107253 DOI: 10.1016/j.celrep.2021.109220] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 02/16/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
Several types of pathogenic bacteria produce genotoxins that induce DNA damage in host cells. Accumulating evidence suggests that a central function of these genotoxins is to dysregulate the host's immune response, but the underlying mechanisms remain unclear. To address this issue, we investigated the effects of the most widely expressed bacterial genotoxin, the cytolethal distending toxin (CDT), on T cells-the key mediators of adaptive immunity. We show that CDT induces premature senescence in activated CD4 T cells in vitro and provide evidence suggesting that infection with genotoxin-producing bacteria promotes T cell senescence in vivo. Moreover, we demonstrate that genotoxin-induced senescent CD4 T cells assume a senescence-associated secretory phenotype (SASP) which, at least partly, is orchestrated by the ATM-p38 signaling axis. These findings provide insight into the immunomodulatory properties of bacterial genotoxins and uncover a putative link between bacterial infections and T cell senescence.
Collapse
Affiliation(s)
- Sarah L Mathiasen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Laura Gall-Mas
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sofia D P Theodorou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Martin R J Namini
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Morten B Hansen
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Océane C B Martin
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Chella Krishna Vadivel
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Konstantinos Ntostoglou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Deborah Butter
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Michael Givskov
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Carsten Geisler
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Arne N Akbar
- Division of Medicine, University College London, London WC1E 6JF, UK
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece; Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PL, UK
| | - Teresa Frisan
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Molecular Biology and Umeå Center for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
6
|
Cheng C, Seen D, Zheng C, Zeng R, Li E. Role of Small GTPase RhoA in DNA Damage Response. Biomolecules 2021; 11:212. [PMID: 33546351 PMCID: PMC7913530 DOI: 10.3390/biom11020212] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence has suggested a role of the small GTPase Ras homolog gene family member A (RhoA) in DNA damage response (DDR) in addition to its traditional function of regulating cell morphology. In DDR, 2 key components of DNA repair, ataxia telangiectasia-mutated (ATM) and flap structure-specific endonuclease 1 (FEN1), along with intracellular reactive oxygen species (ROS) have been shown to regulate RhoA activation. In addition, Rho-specific guanine exchange factors (GEFs), neuroepithelial transforming gene 1 (Net1) and epithelial cell transforming sequence 2 (Ect2), have specific functions in DDR, and they also participate in Ras-related C3 botulinum toxin substrate 1 (Rac1)/RhoA interaction, a process which is largely unappreciated yet possibly of significance in DDR. Downstream of RhoA, current evidence has highlighted its role in mediating cell cycle arrest, which is an important step in DNA repair. Unraveling the mechanism by which RhoA modulates DDR may provide more insight into DDR itself and may aid in the future development of cancer therapies.
Collapse
Affiliation(s)
| | | | | | | | - Enmin Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515031, Guangdong, China; (C.C.); (D.S.); (C.Z.); (R.Z.)
| |
Collapse
|
7
|
Kosakivska IV, Babenko LM, Romanenko KO, Korotka IY, Potters G. Molecular mechanisms of plant adaptive responses to heavy metals stress. Cell Biol Int 2020; 45:258-272. [PMID: 33200493 DOI: 10.1002/cbin.11503] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 12/29/2022]
Abstract
Heavy metals (HMs) are among the main environmental pollutants that can enter the soil, water bodies, and the atmosphere as a result of natural processes (weathering of rocks, volcanic activity), and also as a result of human activities (mining, metallurgical and chemical industries, transport, application of mineral fertilizers). Plants counteract the HMs stresses through morphological and physiological adaptations, which are imparted through well-coordinated molecular mechanisms. New approaches, which include transcriptomics, genomics, proteomics, and metabolomics analyses, have opened the paths to understand such complex networks. This review sheds light on molecular mechanisms included in plant adaptive and defense responses during metal stress. It is focused on the entry of HMs into plants, its transport and accumulation, effects on the main physiological processes, gene expressions included in plant adaptive and defense responses during HM stress. Analysis of new data allowed the authors to conclude that the most important mechanism of HM tolerance is extracellular and intracellular HM sequestration. Organic anions (malate, oxalate, etc.) provide extracellular sequestration of HM ions. Intracellular HM sequestration depends not only on a direct binding mechanism with different polymers (pectin, lignin, cellulose, hemicellulose, etc.) or organic anions but also on the action of cellular receptors and transmembrane transporters. We focused on the functioning chloroplasts, mitochondria, and the Golgi complex under HM stress. The currently known molecular mechanisms of plant tolerance to the toxic effects of HMs are analyzed.
Collapse
Affiliation(s)
- Iryna V Kosakivska
- Phytohormonology Department, M. G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Lidia M Babenko
- Phytohormonology Department, M. G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Kateryna O Romanenko
- Phytohormonology Department, M. G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Iryna Y Korotka
- Phytohormonology Department, M. G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Geert Potters
- Department of Phytohormonology, Antwerp Maritime Academy, Antwerp, Belgium
| |
Collapse
|
8
|
Martin OCB, Bergonzini A, D'Amico F, Chen P, Shay JW, Dupuy J, Svensson M, Masucci MG, Frisan T. Infection with genotoxin-producing Salmonella enterica synergises with loss of the tumour suppressor APC in promoting genomic instability via the PI3K pathway in colonic epithelial cells. Cell Microbiol 2019; 21:e13099. [PMID: 31414579 PMCID: PMC6899655 DOI: 10.1111/cmi.13099] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
Several commensal and pathogenic Gram‐negative bacteria produce DNA‐damaging toxins that are considered bona fide carcinogenic agents. The microbiota of colorectal cancer (CRC) patients is enriched in genotoxin‐producing bacteria, but their role in the pathogenesis of CRC is poorly understood. The adenomatous polyposis coli (APC) gene is mutated in familial adenomatous polyposis and in the majority of sporadic CRCs. We investigated whether the loss of APC alters the response of colonic epithelial cells to infection by Salmonella enterica, the only genotoxin‐producing bacterium associated with cancer in humans. Using 2D and organotypic 3D cultures, we found that APC deficiency was associated with sustained activation of the DNA damage response, reduced capacity to repair different types of damage, including DNA breaks and oxidative damage, and failure to induce cell cycle arrest. The reduced DNA repair capacity and inability to activate adequate checkpoint responses was associated with increased genomic instability in APC‐deficient cells exposed to the genotoxic bacterium. Inhibition of the checkpoint response was dependent on activation of the phosphatidylinositol 3‐kinase pathway. These findings highlight the synergistic effect of the loss of APC and infection with genotoxin‐producing bacteria in promoting a microenvironment conducive to malignant transformation.
Collapse
Affiliation(s)
- Océane C B Martin
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Bergonzini
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Federica D'Amico
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Puran Chen
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jerry W Shay
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jacques Dupuy
- INRA, ToxAlim (Research Centre in Food Toxicology), INRA, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Mattias Svensson
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria G Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Teresa Frisan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
9
|
Denmongkholchai S, Katare P, Choochuay S, Thanyasrisung P, Tsuruda K, Sugai M, Mongkolsuk S, Matangkasombut O. Genome-Wide Identification of Host Genes Required for Toxicity of Bacterial Cytolethal Distending Toxin in a Yeast Model. Front Microbiol 2019; 10:890. [PMID: 31080443 PMCID: PMC6497811 DOI: 10.3389/fmicb.2019.00890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022] Open
Abstract
Background Aggregatibacter actinomycetemcomitans, a periodontal pathogen, secretes a cytolethal distending toxin (AaCDT) that causes host cell cycle arrest and cell death. Although CDT could be an important virulence factor, it is unclear how it enters the nucleus to exert its cytotoxicity. Objective To investigate the mechanisms of AaCDT by genome-wide screening for host mutations that confer resistance to the catalytic subunit, AaCdtB, in a Saccharomyces cerevisiae model. Methods We transformed the yeast haploid deletion library, a collection of yeast mutants with single gene deletions of virtually all non-essential ORFs in the genome, with plasmids carrying galactose-inducible AaCdtB. Yeast mutants that showed resistance to AaCdtB were selected and rescreened by a spotting assay. AaCdtB expression was confirmed by western blot analysis; any mutants that showed no or weak expression of AaCdtB were omitted from the analysis. The lists of genes whose mutations confer resistance to AaCdtB were analyzed for Gene Ontology (GO) term enrichments. Localization of AaCdtB-EGFP was examined using fluorescent microscopy. Nuclear localization relative to EGFP control was calculated and compared to wild-type. Results Out of approximately 5,000 deletion mutants, we isolated 243 mutants that are resistant to AaCdtB. GO analyses indicated that genes associated with organic anion transport are significantly enriched (16 genes). Furthermore, several genes associated with the nucleus and endoplasmic reticulum (ER) were identified. Localization studies of AaCdtB, in mutants with the deletion of genes associated with the GO term organic anion transport, showed lower nuclear localization than wild-type. The results suggest that these genes may be required for AaCdtB translocation into the nucleus and its cytotoxicity. Conclusion The genome-wide screen in the yeast deletion library allowed us to identify a large number of host genes required for AaCdtB cytotoxicity. Further investigation could lead to more insights into the mechanisms of CdtB intoxication.
Collapse
Affiliation(s)
- Siriyod Denmongkholchai
- Interdepartmental Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand.,Department of Microbiology and Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Prashant Katare
- Department of Microbiology and Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Graduate Program in Oral Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sarocha Choochuay
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Panida Thanyasrisung
- Department of Microbiology and Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Keiko Tsuruda
- Department of Oral Epidemiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Motoyuki Sugai
- Department of Antimicrobial Resistance, Graduate School of Biomedical and Health Sciences, Project Research Center for Nosocomial Infectious Diseases (RCNID), Hiroshima University, Hiroshima, Japan.,Antimicrobial Resistance Research Center, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Oranart Matangkasombut
- Department of Microbiology and Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| |
Collapse
|
10
|
Magalhães YT, Farias JO, Monteiro LF, Forti FL. Measuring the Contributions of the Rho Pathway to the DNA Damage Response in Tumor Epithelial Cells. Methods Mol Biol 2019; 1821:339-355. [PMID: 30062423 DOI: 10.1007/978-1-4939-8612-5_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Actin polymerization, actomyosin ring contraction, and stress fiber formation are examples of relevant actions of the RhoA/B/C pathway as GTPases that regulate the cytoskeleton. However, open questions that remain to be addressed are whether this pathway and/or downstream components protect against or facilitate the formation of DNA double-strand breaks, the most lethal form of DNA damage in cells. Genotoxic drugs are radiomimetic and/or chemotherapeutic agents that are currently used for cancer treatments and are associated with specific methodologies; thus, these compounds should represent good tools to answer these questions. In this chapter, we describe two methods, the alkaline comet assay and homologous/nonhomologous recombination assays, to investigate the mechanism by which the Rho pathway modulates the repair of DNA breaks in tumor epithelial cell lines.
Collapse
Affiliation(s)
- Yuli T Magalhães
- Laboratory of Signaling in Molecular Biosystems, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jessica O Farias
- Laboratory of Signaling in Molecular Biosystems, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Lucas F Monteiro
- Laboratory of Signaling in Molecular Biosystems, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Fábio L Forti
- Laboratory of Signaling in Molecular Biosystems, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
11
|
Werner syndrome (WRN) DNA helicase and base excision repair (BER) factors maintain endothelial homeostasis. DNA Repair (Amst) 2018; 73:17-27. [PMID: 30413344 DOI: 10.1016/j.dnarep.2018.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/26/2018] [Accepted: 10/18/2018] [Indexed: 11/21/2022]
Abstract
The accelerated ageing disease Werner Syndrome (WRN) is characterized by pronounced atherosclerosis. Here, we investigated the influence of WRN downregulation on the functionality of non-replicating human endothelial cells. RNAi-mediated downregulation of WRN reduces cell motility and enhances the expression of factors regulating adhesion, inflammation, hemostasis and vasomotor tone. Moreover, WRN influences endothelial barrier function and Ca2+-release, while cell adhesion, Dil-acLDL-uptake and the mRNA expression of NO-synthases (eNOS, iNOS) remained unaffected. Regarding motility, we propose that WRN affects Rac1/FAK/ß1-integrin-related mechanisms regulating cell polarity and directed motility. Since oxidative DNA base damage contributes to aging and atherosclerosis and WRN affects DNA repair, we investigated whether downregulation of base excision repair (BER) factors mimics the effects of WRN knock-down. Indeed, downregulation of particular WRN-interacting base excision repair (BER) proteins (APE1, NEIL1, PARP1) imitates the inhibitory effect of WRN on motility. Knock-down of OGG1, which does not interact with WRN, does not influence motility but increases the mRNA expression of E-selectin, ICAM, VCAM, CCL2 and VEGFR and stimulates adhesion. Thus, individual BER factors themselves differently impact endothelial cell functionality and homeostasis. Impairment of endothelial activities caused by genotoxic stressor (tBHQ) remained largely unaffected by WRN. Summarizing, both WRN, WRN-associated BER proteins and OGG1 promote the maintenance of endothelial cell homeostasis, thereby counteracting the development of ageing-related endothelial malfunction in non-proliferating endothelial cells.
Collapse
|
12
|
Verma DK, Gupta S, Biswas J, Joshi N, Singh A, Gupta P, Tiwari S, Sivarama Raju K, Chaturvedi S, Wahajuddin M, Singh S. New therapeutic activity of metabolic enhancer piracetam in treatment of neurodegenerative disease: Participation of caspase independent death factors, oxidative stress, inflammatory responses and apoptosis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2078-2096. [DOI: 10.1016/j.bbadis.2018.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/26/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
|
13
|
Scuron MD, Boesze-Battaglia K, Dlakić M, Shenker BJ. The Cytolethal Distending Toxin Contributes to Microbial Virulence and Disease Pathogenesis by Acting As a Tri-Perditious Toxin. Front Cell Infect Microbiol 2016; 6:168. [PMID: 27995094 PMCID: PMC5136569 DOI: 10.3389/fcimb.2016.00168] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022] Open
Abstract
This review summarizes the current status and recent advances in our understanding of the role that the cytolethal distending toxin (Cdt) plays as a virulence factor in promoting disease by toxin-producing pathogens. A major focus of this review is on the relationship between structure and function of the individual subunits that comprise the AB2 Cdt holotoxin. In particular, we concentrate on the molecular mechanisms that characterize this toxin and which account for the ability of Cdt to intoxicate multiple cell types by utilizing a ubiquitous binding partner on the cell membrane. Furthermore, we propose a paradigm shift for the molecular mode of action by which the active Cdt subunit, CdtB, is able to block a key signaling cascade and thereby lead to outcomes based upon programming and the role of the phosphatidylinositol 3-kinase (PI-3K) in a variety of cells. Based upon the collective Cdt literature, we now propose that Cdt is a unique and potent virulence factor capable of acting as a tri-perditious toxin that impairs host defenses by: (1) disrupting epithelial barriers; (2) suppressing acquired immunity; (3) promoting pro-inflammatory responses. Thus, Cdt plays a key role in facilitating the early stages of infection and the later stages of disease progression by contributing to persistence and impairing host elimination.
Collapse
Affiliation(s)
- Monika D Scuron
- Department of Pathology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Mensur Dlakić
- Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA
| | - Bruce J Shenker
- Department of Pathology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
14
|
Taieb F, Petit C, Nougayrède JP, Oswald E. The Enterobacterial Genotoxins: Cytolethal Distending Toxin and Colibactin. EcoSal Plus 2016; 7. [PMID: 27419387 DOI: 10.1128/ecosalplus.esp-0008-2016] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 06/06/2023]
Abstract
While the DNA damage induced by ionizing radiation and by many chemical compounds and drugs is well characterized, the genotoxic insults inflicted by bacteria are only scarcely documented. However, accumulating evidence indicates that we are exposed to bacterial genotoxins. The prototypes of such bacterial genotoxins are the Cytolethal Distending Toxins (CDTs) produced by Escherichia coli and Salmonella enterica serovar Typhi. CDTs display the DNase structure fold and activity, and induce DNA strand breaks in the intoxicated host cell nuclei. E. coli and certain other Enterobacteriaceae species synthesize another genotoxin, colibactin. Colibactin is a secondary metabolite, a hybrid polyketide/nonribosomal peptide compound synthesized by a complex biosynthetic machinery. In this review, we summarize the current knowledge on CDT and colibactin produced by E. coli and/or Salmonella Typhi. We describe their prevalence, genetic determinants, modes of action, and impact in infectious diseases or gut colonization, and discuss the possible involvement of these genotoxigenic bacteria in cancer.
Collapse
Affiliation(s)
- Frederic Taieb
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Claude Petit
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Jean-Philippe Nougayrède
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Eric Oswald
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| |
Collapse
|
15
|
Inhibition of the RhoA GTPase Activity Increases Sensitivity of Melanoma Cells to UV Radiation Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:2696952. [PMID: 26823948 PMCID: PMC4707346 DOI: 10.1155/2016/2696952] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/25/2015] [Indexed: 01/16/2023]
Abstract
Ultraviolet radiation is the main cause of DNA damage to melanocytes and development of melanoma, one of the most lethal human cancers, which leads to metastasis due to uncontrolled cell proliferation and migration. These phenotypes are mediated by RhoA, a GTPase overexpressed or overactivated in highly aggressive metastatic tumors that plays regulatory roles in cell cycle progression and cytoskeleton remodeling. This work explores whether the effects of UV on DNA damage, motility, proliferation, and survival of human metastatic melanoma cells are mediated by the RhoA pathway. Mutant cells expressing dominant-negative (MeWo-RhoA-N19) or constitutively active RhoA (MeWo-RhoA-V14) were generated and subjected to UV radiation. A slight reduction in migration and invasion was observed in MeWo and MeWo-RhoA-V14 cells but not in MeWo-RhoA-N19 cells, which presented inefficient motility and invasiveness associated with stress fibers fragmentation. Proliferation and survival of RhoA-deficient cells were drastically reduced by UV compared to cells displaying normal or high RhoA activity, suggesting increased sensitivity to UV. Loss of RhoA activity also caused less efficient DNA repair, with elevated levels of DNA lesions such as strand breaks and cyclobutane pyrimidine dimers (CPDs). Thus, RhoA mediates genomic stability and represents a potential target for sensitizing metastatic tumors to genotoxic agents.
Collapse
|
16
|
Modulation of RhoA GTPase Activity Sensitizes Human Cervix Carcinoma Cells to γ-Radiation by Attenuating DNA Repair Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:6012642. [PMID: 26649141 PMCID: PMC4662998 DOI: 10.1155/2016/6012642] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/21/2015] [Indexed: 11/28/2022]
Abstract
Radiotherapy with γ-radiation is widely used in cancer treatment to induce DNA damage reducing cell proliferation and to kill tumor cells. Although RhoA GTPase overexpression/hyperactivation is observed in many malignancies, the effect of RhoA activity modulation on cancer radiosensitivity has not been previously investigated. Here, we generated stable HeLa cell clones expressing either the dominant negative RhoA-N19 or the constitutively active RhoA-V14 and compared the responses of these cell lines with those of parental HeLa cells, after treatment with low doses of γ-radiation. HeLa-RhoA-N19 and HeLa-RhoA-V14 clones displayed reduced proliferation and survival compared to parental cells after radiation and became arrested at cell cycle stages correlated with increased cellular senescence and apoptosis. Also, Chk1/Chk2 and histone H2A phosphorylation data, as well as comet assays, suggest that the levels of DNA damage and DNA repair activation and efficiency in HeLa cell lines are correlated with active RhoA. In agreement with these results, RhoA inhibition by C3 toxin expression drastically affected homologous recombination (HR) and nonhomologous end joining (NHEJ). These data suggest that modulation of RhoA GTPase activity impairs DNA damage repair, increasing HeLa cell radiosensitivity.
Collapse
|
17
|
Rho GTPases: Novel Players in the Regulation of the DNA Damage Response? Biomolecules 2015; 5:2417-34. [PMID: 26437439 PMCID: PMC4693241 DOI: 10.3390/biom5042417] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/02/2015] [Accepted: 09/09/2015] [Indexed: 12/26/2022] Open
Abstract
The Ras-related C3 botulinum toxin substrate 1 (Rac1) belongs to the family of Ras-homologous small GTPases. It is well characterized as a membrane-bound signal transducing molecule that is involved in the regulation of cell motility and adhesion as well as cell cycle progression, mitosis, cell death and gene expression. Rac1 also adjusts cellular responses to genotoxic stress by regulating the activity of stress kinases, including c-Jun-N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38 kinases as well as related transcription factors. Apart from being found on the inner side of the outer cell membrane and in the cytosol, Rac1 has also been detected inside the nucleus. Different lines of evidence indicate that genotoxin-induced DNA damage is able to activate nuclear Rac1. The exact mechanisms involved and the biological consequences, however, are unclear. The data available so far indicate that Rac1 might integrate DNA damage independent and DNA damage dependent cellular stress responses following genotoxin treatment, thereby coordinating mechanisms of the DNA damage response (DDR) that are related to DNA repair, survival and cell death.
Collapse
|
18
|
Shenker BJ, Boesze-Battaglia K, Scuron MD, Walker LP, Zekavat A, Dlakić M. The toxicity of the Aggregatibacter actinomycetemcomitans cytolethal distending toxin correlates with its phosphatidylinositol-3,4,5-triphosphate phosphatase activity. Cell Microbiol 2015; 18:223-43. [PMID: 26247396 DOI: 10.1111/cmi.12497] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/22/2015] [Accepted: 07/26/2015] [Indexed: 12/22/2022]
Abstract
The Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) induces G2 arrest and apoptosis in lymphocytes and other cell types. We have shown that the active subunit, CdtB, exhibits phosphatidylinositol-3,4,5-triphosphate (PIP3) phosphatase activity, leading us to propose that Cdt toxicity is the result of PIP3 depletion and perturbation of phosphatidylinositol-3-kinase (PI-3K)/PIP3/Akt signalling. To further explore this relationship, we have focused our analysis on identifying residues that comprise the catalytic pocket and are critical to substrate binding rather than catalysis. In this context, we have generated several CdtB mutants and demonstrate that, in each instance, the ability of the toxin to induce cell cycle arrest correlates with retention of phosphatase activity. We have also assessed the effect of Cdt on downstream components of the PI-3K signalling pathway. In addition to depletion of intracellular concentrations of PIP3, toxin-treated lymphocytes exhibit decreases in pAkt and pGSK3β. Further analysis indicates that toxin-treated cells exhibit a concomitant loss in Akt activity and increase in GSK3β kinase activity consistent with observed changes in their phosphorylation status. We demonstrate that cell susceptibility to Cdt is dependent upon dephosphorylation and concomitant activation of GSK3β. Finally, we demonstrate that, in addition to lymphocytes, HeLa cells exposed to a CdtB mutant that retains phosphatase activity and not DNase activity undergo G2 arrest in the absence of H2AX phosphorylation. Our results provide further insight into the mode of action by which Cdt may function as an immunotoxin and induce cell cycle arrest in target cells such as lymphocytes.
Collapse
Affiliation(s)
- Bruce J Shenker
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Monika Damek Scuron
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Lisa P Walker
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Ali Zekavat
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Mensur Dlakić
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
19
|
Robins R, Baldwin C, Aoudjit L, Gupta IR, Takano T. Loss of Rho-GDIα sensitizes podocytes to lipopolysaccharide-mediated injury. Am J Physiol Renal Physiol 2015; 308:F1207-16. [DOI: 10.1152/ajprenal.00225.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 12/08/2014] [Indexed: 12/25/2022] Open
Abstract
Nephrotic syndrome is a disease of glomerular permselectivity that can arise as a consequence of heritable or acquired changes to the integrity of the glomerular filtration barrier. We recently reported two siblings with heritable nephrotic syndrome caused by a loss of function mutation in the gene ARHGDIA, which encodes for Rho guanine nucleotide dissociation inhibitor-α (GDIα). GDIs are known to negatively regulate Rho-GTPase signaling. We hypothesized that loss of GDIα sensitizes podocytes to external injury via hyperactivation of Rho-GTPases and p38 MAPK. We examined the response of cultured podocytes with and without knockdown of GDIα to LPS injury by assessing the levels of phospho-p38 as well as the degree of synaptopodin loss. GDIα knockdown podocytes showed more pronounced and sustained p38 phosphorylation in response to LPS compared with control podocytes, and this was blunted significantly by the Rac1 inhibitor. In LPS-treated control podocytes, synaptopodin degradation occurred, and this was dependent on p38, the proteasome, and cathepsin L. In GDIα knockdown podocytes, the same events were triggered, but the levels of synaptopodin after LPS treatment were significantly lower than in control podocytes. These experiments reveal a common pathway by which heritable and environmental risk factors converge to injure podocytes, from Rac1 hyperactivation to p38 phosphorylation and synaptopodin degradation via the ubiquitin-proteasome pathway and cathepsin L.
Collapse
Affiliation(s)
- Richard Robins
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - Cindy Baldwin
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - Lamine Aoudjit
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - Indra R. Gupta
- Department of Pediatrics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Tomoko Takano
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; and
| |
Collapse
|
20
|
Levi L, Toyooka T, Patarroyo M, Frisan T. Bacterial genotoxins promote inside-out integrin β1 activation, formation of focal adhesion complexes and cell spreading. PLoS One 2015; 10:e0124119. [PMID: 25874996 PMCID: PMC4395369 DOI: 10.1371/journal.pone.0124119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/02/2015] [Indexed: 01/03/2023] Open
Abstract
Integrins are membrane bound receptors that regulate several cellular processes, such as cell adhesion, migration, survival and proliferation, and may contribute to tumor initiation/progression in cells exposed to genotoxic stress. The extent of integrin activation and its role in cell survival upon intoxication with bacterial genotoxins are still poorly characterized. These toxins induce DNA strand breaks in the target cells and activate the DNA damage response (DDR), coordinated by the Ataxia Telangectasia Mutated (ATM) kinase. In the present study, we demonstrate that induction of DNA damage by two bacterial genotoxins promotes activation of integrin β1, leading to enhanced assembly of focal adhesions and cell spreading on fibronectin, but not on vitronectin. This phenotype is mediated by an ATM-dependent inside-out integrin signaling, and requires the actin cytoskeleton remodeler NET1. The toxin-mediated cell spreading and anchorage-independent survival further relies on ALIX and TSG101, two components of the endosomal sorting complex required for transport (ESCRT), known to regulate integrin intracellular trafficking. These data reveal a novel aspect of the cellular response to bacterial genotoxins, and provide new tools to understand the carcinogenic potential of these effectors in the context of chronic intoxication and infection.
Collapse
Affiliation(s)
- Laura Levi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tatsushi Toyooka
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Patarroyo
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Teresa Frisan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
21
|
Abstract
Some of the most potent toxins produced by plants and bacteria are members of a large family known as the AB toxins. AB toxins are generally characterized by a heterogenous complex consisting of two protein chains arranged in various monomeric or polymeric configurations. The newest class within this superfamily is the cytolethal distending toxin (Cdt). The Cdt is represented by a subfamily of toxins produced by a group of taxonomically distinct Gram negative bacteria. Members of this subfamily have a related AB-type chain or subunit configuration and properties distinctive to the AB paradigm. In this review, the unique structural and cytotoxic properties of the Cdt subfamily, target cell specificities, intoxication pathway, modes of action, and relationship to the AB toxin superfamily are compared and contrasted.
Collapse
|
22
|
Loureiro SO, Heimfarth L, Scherer EB, da Cunha MJ, de Lima BO, Biasibetti H, Pessoa-Pureur R, Wyse AT. Cytoskeleton of cortical astrocytes as a target to proline through oxidative stress mechanisms. Exp Cell Res 2013; 319:89-104. [DOI: 10.1016/j.yexcr.2012.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 10/09/2012] [Accepted: 11/01/2012] [Indexed: 11/28/2022]
|
23
|
Broustas CG, Zhu A, Lieberman HB. Rad9 protein contributes to prostate tumor progression by promoting cell migration and anoikis resistance. J Biol Chem 2012; 287:41324-33. [PMID: 23066031 PMCID: PMC3510830 DOI: 10.1074/jbc.m112.402784] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/12/2012] [Indexed: 01/05/2023] Open
Abstract
Rad9 as part of the Rad9-Hus1-Rad1 complex is known to participate in cell cycle checkpoint activation and DNA repair. However, Rad9 can act as a sequence-specific transcription factor, modulating expression of a number of genes. Importantly, Rad9 is up-regulated in prostate cancer cell lines and clinical specimens. Its expression correlates positively with advanced stage tumors and its down-regulation reduces tumor burden in mice. We show here that transient down-regulation of Rad9 by RNA interference reduces DU145 and PC3 prostate cancer cell proliferation and survival in vitro. In addition, transient or stable down-regulation of Rad9 impairs migration and invasion of the cells. Moreover, stable reduction of Rad9 renders DU145 cell growth anchorage-dependent. It also decreases expression of integrin β1 protein and sensitizes DU145 and LNCaP cells to anoikis and impairs Akt activation. On the other hand, stable expression of Mrad9, the mouse homolog, in DU145/shRNA Rad9 cells restores migration, invasion, anchorage-independent growth, integrin β1 expression, and anoikis resistance with a concomitant elevation of Akt activation. We thus demonstrate for the first time that Rad9 contributes to prostate tumorigenesis by increasing not only tumor proliferation and survival but also tumor migration and invasion, anoikis resistance, and anchorage-independent growth.
Collapse
Affiliation(s)
- Constantinos G. Broustas
- From the Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032 and
| | - Aiping Zhu
- From the Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032 and
| | - Howard B. Lieberman
- From the Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032 and
- the Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032
| |
Collapse
|
24
|
Guerra L, Cortes-Bratti X, Guidi R, Frisan T. The biology of the cytolethal distending toxins. Toxins (Basel) 2011; 3:172-90. [PMID: 22069704 PMCID: PMC3202825 DOI: 10.3390/toxins3030172] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 02/14/2011] [Accepted: 02/22/2011] [Indexed: 12/11/2022] Open
Abstract
The cytolethal distending toxins (CDTs), produced by a variety of Gram-negative pathogenic bacteria, are the first bacterial genotoxins described, since they cause DNA damage in the target cells. CDT is an A-B(2) toxin, where the CdtA and CdtC subunits are required to mediate the binding on the surface of the target cells, allowing internalization of the active CdtB subunit, which is functionally homologous to the mammalian deoxyribonuclease I. The nature of the surface receptor is still poorly characterized, however binding of CDT requires intact lipid rafts, and its internalization occurs via dynamin-dependent endocytosis. The toxin is retrograde transported through the Golgi complex and the endoplasmic reticulum, and subsequently translocated into the nuclear compartment, where it exerts the toxic activity. Cellular intoxication induces DNA damage and activation of the DNA damage responses, which results in arrest of the target cells in the G1 and/or G2 phases of the cell cycle and activation of DNA repair mechanisms. Cells that fail to repair the damage will senesce or undergo apoptosis. This review will focus on the well-characterized aspects of the CDT biology and discuss the questions that still remain unanswered.
Collapse
Affiliation(s)
- Lina Guerra
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden, Box 285, S-171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|