1
|
Panda VK, Mishra B, Nath AN, Butti R, Yadav AS, Malhotra D, Khanra S, Mahapatra S, Mishra P, Swain B, Majhi S, Kumari K, Radharani NNV, Kundu GC. Osteopontin: A Key Multifaceted Regulator in Tumor Progression and Immunomodulation. Biomedicines 2024; 12:1527. [PMID: 39062100 PMCID: PMC11274826 DOI: 10.3390/biomedicines12071527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment (TME) is composed of various cellular components such as tumor cells, stromal cells including fibroblasts, adipocytes, mast cells, lymphatic vascular cells and infiltrating immune cells, macrophages, dendritic cells and lymphocytes. The intricate interplay between these cells influences tumor growth, metastasis and therapy failure. Significant advancements in breast cancer therapy have resulted in a substantial decrease in mortality. However, existing cancer treatments frequently result in toxicity and nonspecific side effects. Therefore, improving targeted drug delivery and increasing the efficacy of drugs is crucial for enhancing treatment outcome and reducing the burden of toxicity. In this review, we have provided an overview of how tumor and stroma-derived osteopontin (OPN) plays a key role in regulating the oncogenic potential of various cancers including breast. Next, we dissected the signaling network by which OPN regulates tumor progression through interaction with selective integrins and CD44 receptors. This review addresses the latest advancements in the roles of splice variants of OPN in cancer progression and OPN-mediated tumor-stromal interaction, EMT, CSC enhancement, immunomodulation, metastasis, chemoresistance and metabolic reprogramming, and further suggests that OPN might be a potential therapeutic target and prognostic biomarker for the evolving landscape of cancer management.
Collapse
Affiliation(s)
- Venketesh K. Panda
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Barnalee Mishra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Angitha N. Nath
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Ramesh Butti
- Division of Hematology and Oncology, Department of Internal Medicine, Southwestern Medical Center, University of Texas, Dallas, TX 75235, USA;
| | - Amit Singh Yadav
- Biomedical Centre, Faculty of Medicine, Lund University, 223 62 Lund, Sweden; (A.S.Y.); (N.N.V.R.)
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Sinjan Khanra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Samikshya Mahapatra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Priyanka Mishra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Biswajit Swain
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Sambhunath Majhi
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Kavita Kumari
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - N. N. V. Radharani
- Biomedical Centre, Faculty of Medicine, Lund University, 223 62 Lund, Sweden; (A.S.Y.); (N.N.V.R.)
| | - Gopal C. Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Bhubaneswar 751024, India
| |
Collapse
|
2
|
Fliri A, Kajiji S. Effects of vitamin D signaling in cardiovascular disease: centrality of macrophage polarization. Front Cardiovasc Med 2024; 11:1388025. [PMID: 38984353 PMCID: PMC11232491 DOI: 10.3389/fcvm.2024.1388025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/24/2024] [Indexed: 07/11/2024] Open
Abstract
Among the leading causes of natural death are cardiovascular diseases, cancer, and respiratory diseases. Factors causing illness include genetic predisposition, aging, stress, chronic inflammation, environmental factors, declining autophagy, and endocrine abnormalities including insufficient vitamin D levels. Inconclusive clinical outcomes of vitamin D supplements in cardiovascular diseases demonstrate the need to identify cause-effect relationships without bias. We employed a spectral clustering methodology capable of analyzing large diverse datasets for examining the role of vitamin D's genomic and non-genomic signaling in disease in this study. The results of this investigation showed the following: (1) vitamin D regulates multiple reciprocal feedback loops including p53, macrophage autophagy, nitric oxide, and redox-signaling; (2) these regulatory schemes are involved in over 2,000 diseases. Furthermore, the balance between genomic and non-genomic signaling by vitamin D affects autophagy regulation of macrophage polarization in tissue homeostasis. These findings provide a deeper understanding of how interactions between genomic and non-genomic signaling affect vitamin D pharmacology and offer opportunities for increasing the efficacy of vitamin D-centered treatment of cardiovascular disease and healthy lifespans.
Collapse
Affiliation(s)
- Anton Fliri
- Emergent System Analytics LLC, Clinton, CT, United States
| | - Shama Kajiji
- Emergent System Analytics LLC, Clinton, CT, United States
| |
Collapse
|
3
|
Śnieżewska A, Anisiewicz A, Gdesz-Birula K, Wietrzyk J, Filip-Psurska B. Age-Dependent Effect of Calcitriol on Mouse Regulatory T and B Lymphocytes. Nutrients 2023; 16:49. [PMID: 38201878 PMCID: PMC10780377 DOI: 10.3390/nu16010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The hormonally active vitamin D3 metabolite, calcitriol, functions as an important modulator of the immune system. We assumed that calcitriol exerts different effects on immune cells and cytokine production, depending on the age of the animal; therefore, we analyzed its effects on regulatory T lymphocytes and regulatory B lymphocytes in healthy young and old female C57Bl/6/Foxp3GFP mice. In the lymph nodes of young mice, calcitriol decreased the percentage of Tregs, including tTregs and pTregs, and the expression of GITR, CD103, and CD101; however, calcitriol increased the level of IL-35 in adipose tissue. In the case of aged mice, calcitriol decreased the percentages of tTregs and CD19+ cells in lymph nodes and the level of osteopontin in the plasma. Additionally, increases in the levels of IgG and the lowest levels of IFN-γ, IL-10, and IL-35 were observed in the adipose tissue of aged mice. This study showed that calcitriol treatment had different effects, mainly on Treg phenotypes and cytokine secretion, in young and old female mice; it seemed that calcitriol enhanced the immunosuppressive properties of the lymphatic organs and adipose tissue of healthy young mice but not of healthy aged mice, where the opposite effects were observed.
Collapse
Affiliation(s)
| | | | | | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.Ś.); (A.A.); (K.G.-B.)
| | - Beata Filip-Psurska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.Ś.); (A.A.); (K.G.-B.)
| |
Collapse
|
4
|
Yuan L, Lu Z, Sun G, Cao D. Identification and verification of a 4-gene signature predicting the overall survival of cervical cancer. Medicine (Baltimore) 2022; 101:e31299. [PMID: 36281082 PMCID: PMC9592452 DOI: 10.1097/md.0000000000031299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cervical cancer (CC) is one of the most common gynecological malignancies, ranking fourth in both incidence and mortality in women worldwide. Early screening and treatment are of great significance in reducing the incidence and mortality of CC. Due to the complex molecular mechanisms of tumor progression, the predictive power of traditional clinical information is limited. In this study, an effective molecular model is established to assess prognosis of patients with CC and guide clinical treatment so as to improve their survival rate. Three high quality datasets (GSE138080, GSE52904, GSE67522) of expression profiling were obtained from gene expression omnibus (GEO) database. Another mRNA expression and clinicopathological data of CC were obtained from The Cancer Genome Atlas (TCGA) dataset. The bioinformatic analyses such as univariate analysis, multivariate Cox proportional-hazards model (Cox) analysis and lasso regression analysis were conducted to select survival-related differentially expressed genes (DEGs) and further establish a prognostic gene signature. Moreover, the performance of prognostic gene signature was evaluated based on Kaplan-Meier curve and receiver operating characteristic (ROC) curve. Gene set enrichment analysis (GSEA) and tumor immunity analysis were carried out to elucidate the molecular mechanisms and immune relevance. A 4-gene signature comprising procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2), spondin1 (SPON1), secreted phosphoprotein 1 (SPP1), ribonuclease H2 subunit A (RNASEH2A) was established to predict overall survival (OS) of CC. The ROC curve indicated good performance of the 4-gene signature in predicting OS of CC based on the TCGA dataset. The 4-gene signature classified the patients into high-risk and low-risk groups with distinct OS rates of CC. Univariate analysis and multivariate Cox regression analysis revealed that the 4-gene signature was an independent factor affecting the prognosis of patients with CC. Our study developed a 4-gene signature capable of predicting the OS of CC. The findings may be beneficial to individualized clinical treatment and timely follow-up for patients with CC.
Collapse
Affiliation(s)
- Lu Yuan
- From the Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No. 745, Wuhan, China
| | - Zijun Lu
- From the Department of Gynecology and Obstetrics, Wuhan University of Science and Technology, No. 2, Wuhan, China
| | - Guoqiang Sun
- From the Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No. 745, Wuhan, China
- * Correspondence: Dongmei Cao, Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No. 745, Wuluo Road, Hongshan District, Wuhan 430070, China (e-mail: ), and Guoqiang Sun, Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No. 745, Wuluo Road, Hongshan District, Wuhan 430070, China (e-mail: )
| | - Dongmei Cao
- From the Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No. 745, Wuhan, China
- * Correspondence: Dongmei Cao, Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No. 745, Wuluo Road, Hongshan District, Wuhan 430070, China (e-mail: ), and Guoqiang Sun, Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No. 745, Wuluo Road, Hongshan District, Wuhan 430070, China (e-mail: )
| |
Collapse
|
5
|
Elwakeel E, Weigert A. Breast Cancer CAFs: Spectrum of Phenotypes and Promising Targeting Avenues. Int J Mol Sci 2021; 22:11636. [PMID: 34769066 PMCID: PMC8583860 DOI: 10.3390/ijms222111636] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023] Open
Abstract
Activationof the tumor-associated stroma to support tumor growth is a common feature observed in different cancer entities. This principle is exemplified by cancer-associated fibroblasts (CAFs), which are educated by the tumor to shape its development across all stages. CAFs can alter the extracellular matrix (ECM) and secrete a variety of different molecules. In that manner they have the capability to affect activation, survival, proliferation, and migration of other stromal cells and cancer cell themselves. Alteration of the ECM, desmoplasia, is a common feature of breast cancer, indicating a prominent role for CAFs in shaping tumor development in the mammary gland. In this review, we summarize the multiple roles CAFs play in mammary carcinoma. We discuss experimental and clinical strategies to interfere with CAFs function in breast cancer. Moreover, we highlight the issues arising from CAFs heterogeneity and the need for further research to identify CAFs subpopulation(s) that can be targeted to improve breast cancer therapy.
Collapse
Affiliation(s)
- Eiman Elwakeel
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany;
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany;
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
| |
Collapse
|
6
|
Sadras F, Monteith GR, Roberts-Thomson SJ. An Emerging Role for Calcium Signaling in Cancer-Associated Fibroblasts. Int J Mol Sci 2021; 22:ijms222111366. [PMID: 34768796 PMCID: PMC8583802 DOI: 10.3390/ijms222111366] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/30/2022] Open
Abstract
Tumors exist in a complex milieu where interaction with their associated microenvironment significantly contributes to disease progression. Cancer-associated fibroblasts (CAFs) are the primary component of the tumor microenvironment and participate in complex bidirectional communication with tumor cells. CAFs support the development of various hallmarks of cancer through diverse processes, including direct cell-cell contact, paracrine signaling, and remodeling and deposition of the extracellular matrix. Calcium signaling is a key second messenger in intra- and inter-cellular signaling pathways that contributes to cancer progression; however, the links between calcium signaling and CAFs are less well-explored. In this review, we put into context the role of calcium signaling in interactions between cancer cells and CAFs, with a focus on migration, proliferation, chemoresistance, and genetic instability.
Collapse
Affiliation(s)
- Francisco Sadras
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia; (F.S.); (G.R.M.)
| | - Gregory R. Monteith
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia; (F.S.); (G.R.M.)
- Mater Research, Translational Research Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sarah J. Roberts-Thomson
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia; (F.S.); (G.R.M.)
- Correspondence:
| |
Collapse
|
7
|
Identification of Differentially Expressed Genes in Cervical Cancer Patients by Comparative Transcriptome Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8810074. [PMID: 33829064 PMCID: PMC8004372 DOI: 10.1155/2021/8810074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/02/2021] [Accepted: 02/23/2021] [Indexed: 12/09/2022]
Abstract
Cervical cancer is one of the most malignant reproductive diseases seen in women worldwide. The identification of dysregulated genes in clinical samples of cervical cancer may pave the way for development of better prognostic markers and therapeutic targets. To identify the dysregulated genes (DEGs), we have retrospectively collected 10 biopsies, seven from cervical cancer patients and three from normal subjects who underwent a hysterectomy. Total RNA isolated from biopsies was subjected to microarray analysis using the human Clariom D Affymetrix platform. Based on the results of principal component analysis (PCA), only eight samples are qualified for further studies; GO and KEGG were used to identify the key genes and were compared with TCGA and GEO datasets. Identified genes were further validated by quantitative real-time PCR and receiver operating characteristic (ROC) curves, and the highest Youden index was calculated in order to evaluate cutoff points (COPs) that allowed distinguishing of tissue samples of cervical squamous carcinoma patients from those of healthy individuals. By comparative microarray analysis, a total of 108 genes common across the six patients' samples were chosen; among these, 78 genes were upregulated and 26 genes were downregulated. The key genes identified were SPP1, LYN, ARRB2, COL6A3, FOXM1, CCL21, TTK, and MELK. Based on their relative expression, the genes were ordered as follows: TTK > ARRB2 > SPP1 > FOXM1 > LYN > MELK > CCL21 > COL6A3; this generated data is in sync with the TCGA datasets, except for ARRB2. Protein-protein interaction network analysis revealed that TTK and MELK are closely associated with SMC4, AURKA, PLK4, and KIF18A. The candidate genes SPP1, FOXM1, LYN, COL6A3, CCL21, TTK and MELK at mRNA level, emerge as promising candidate markers for cervical cancer prognosis and also emerge as potential therapeutic drug targets.
Collapse
|
8
|
Butti R, Kumar TVS, Nimma R, Banerjee P, Kundu IG, Kundu GC. Osteopontin Signaling in Shaping Tumor Microenvironment Conducive to Malignant Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:419-441. [PMID: 34664250 DOI: 10.1007/978-3-030-73119-9_20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Context-dependent reciprocal crosstalk between cancer and surrounding stromal cells in the tumor microenvironment is imperative for the regulation of various hallmarks of cancer. A myriad of growth factors, chemokines, and their receptors aids in the interaction between cancer cells and tumor microenvironmental components. Osteopontin is a chemokine-like protein, overexpressed in different types of cancers. Osteopontin plays a crucial role in orchestrating dialogue between cancer and stromal cells. Osteopontin, in tumor microenvironment, is produced in tumor as well as stromal cells. Tumor-derived osteopontin regulates proliferation, migration, activation, and differentiation of different types of stromal cells. Osteopontin secreted from tumor cells regulates the generation of cancer-associated fibroblasts from resident fibroblasts and mesenchymal stem cells. Osteopontin also shapes immunosuppressive tumor microenvironment by controlling regulatory T cells and tumor-associated macrophages. Moreover, secretion of osteopontin from tumor stroma has been highly documented. Stromal cell-derived osteopontin induces epithelial-to-mesenchymal transition, angiogenesis, metastasis, and cancer stem cell enrichment. Tumor- or stroma-derived osteopontin mainly functions through binding with cell surface receptors, integrins and CD44, and activates downstream signaling events like PI-3 kinase/Akt and MAPK pathways. Presumably, disrupting the communication between the tumor cells and surrounding microenvironment by targeting osteopontin-regulated signaling using specific antibodies, small-molecule inhibitors, and chemotherapeutic agents is a novel therapeutic strategy for clinical management of cancer.
Collapse
Affiliation(s)
- Ramesh Butti
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Totakura V S Kumar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Ramakrishna Nimma
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Pinaki Banerjee
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Ipsita G Kundu
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Institute of Eminence, Hyderabad, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, India. .,School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Institute of Eminence, Bhubaneswar, India.
| |
Collapse
|
9
|
Maltas J, Reed H, Porter A, Malliri A. Mechanisms and consequences of dysregulation of the Tiam family of Rac activators in disease. Biochem Soc Trans 2020; 48:2703-2719. [PMID: 33200195 DOI: 10.1042/bst20200481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022]
Abstract
The Tiam family proteins - Tiam1 and Tiam2/STEF - are Rac1-specific Guanine Nucleotide Exchange Factors (GEFs) with important functions in epithelial, neuronal, immune and other cell types. Tiam GEFs regulate cellular migration, proliferation and survival, mainly through activating and directing Rac1 signalling. Dysregulation of the Tiam GEFs is significantly associated with human diseases including cancer, immunological and neurological disorders. Uncovering the mechanisms and consequences of dysregulation is therefore imperative to improving the diagnosis and treatment of diseases. Here we compare and contrast the subcellular localisation and function of Tiam1 and Tiam2/STEF, and review the evidence for their dysregulation in disease.
Collapse
Affiliation(s)
- Joe Maltas
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, U.K
| | - Hannah Reed
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, U.K
| | - Andrew Porter
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, U.K
| | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, U.K
| |
Collapse
|
10
|
An YZ, Cho E, Ling J, Zhang X. The Axin2-snail axis promotes bone invasion by activating cancer-associated fibroblasts in oral squamous cell carcinoma. BMC Cancer 2020; 20:987. [PMID: 33046030 PMCID: PMC7552517 DOI: 10.1186/s12885-020-07495-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
Background In bone-invasive oral squamous cell carcinoma (OSCC), cancer-associated fibroblasts (CAFs) infiltrate into bony tissue ahead of OSCC cells. In the present study, we aimed to investigate the role of the Axin2-Snail axis in the biological behaviour of CAFs and bone invasion in OSCC. Methods The clinicopathological significance of Axin2 and Snail expression was investigated by immunohistochemistry in an OSCC cohort containing 217 tissue samples from patients with long-term follow-up. The influence of the Axin2-Snail axis on the biological behaviour of OSCC cells and CAFs was further investigated both in vitro and in vivo. Results Axin2 expression was significantly associated with Snail expression, the desmoplasia status, and bone invasion in patients with OSCC. In multivariate analysis, lymph node metastasis, desmoplasia, Axin2 expression, and Snail expression were independent poor prognostic factors in our cohort. Consistent with these findings, OSCC cells demonstrated attenuated oncogenic activity as well as decreased expression of Snail and various cytokines after Axin2 knockdown in vitro. Among the related cytokines, C-C motif chemokine ligand 5 (CCL5) and interleukin 8 (IL8) demonstrated a strong influence on the biological behaviour of CAFs in vitro. Moreover, both the desmoplastic reaction and osteolytic lesions in the calvaria were predominantly decreased after Axin2 knockdown in OSCC cells in vivo using a BALB/c athymic nude mouse xenograft model. Conclusions Oncogenic activities of the Axin2-Snail axis are not limited to the cancer cells themselves but rather extend to CAFs via regulation of the cytokine-mediated cancer-stromal interaction, with further implications for bone invasion as well as a poor prognosis in OSCC.
Collapse
Affiliation(s)
- Yin-Zhe An
- Key laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Eunae Cho
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea.,BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea.,Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Junqi Ling
- Key laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. .,Department of Endodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, Guangdong, China.
| | - Xianglan Zhang
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea. .,Department of Pathology, Yanbian University Hospital, Yanji City, 133000, Jilin Province, China.
| |
Collapse
|
11
|
Li S, Ou Y, Liu S, Yin J, Zhuo W, Huang M, Zhu T, Zhang W, Zhou H, Liu Z. The Fibroblast TIAM2 Promotes Lung Cancer Cell Invasion and Metastasis. J Cancer 2019; 10:1879-1889. [PMID: 31205545 PMCID: PMC6547987 DOI: 10.7150/jca.30477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 02/22/2019] [Indexed: 12/29/2022] Open
Abstract
Purpose: TIAM2 (T-cell lymphoma invasion and metastasis 2), a RAC1 guanine nucleotide exchange factor, plays crucial roles in human cancer cells. Its homolog, TIAM1, has been reported to promote the migration and invasion of cancer cells through regulating the functions of cancer associated fibroblasts (CAFs). However, the functions of TIAM2 in CAFs have not been investigated. In this study, we explored how fibroblast TIAM2 influences the migration and invasion of lung cancer cells. Methods: We cultured primary lung CAFs and adjacent normal lung fibroblasts (NFs) from 12 non-small cell lung cancer (NSCLC) patients. RT-PCR and western blot were used to compare TIAM2 levels between CAFs and NFs. Two co-culture systems were designed, in which cancer cells were directly co-cultured with fibroblasts and indirectly co-cultured with conditional medium (CM) from fibroblasts. Subsequently, the wound healing and transwell tests were conducted to assess the migration and invasion ability of fibroblasts and co-cultured cancer cells. Finally, cytokine antibody arrays were used to screen differentially secreted cytokines in the CM. Results: The expression levels of TIAM2 were significantly higher in CAFs than NFs, and TIAM2-silenced fibroblasts showed decreased migration and invasion ability. In the direct co-culture system, the migration and invasion of cancer cells were retarded when co-culturing with TIAM2-silenced fibroblasts, and the expression levels of EMT-related genes also changed in cancer cells. Decreased migration and invasion of cancer cells were also observed when culturing with the CM from TIAM2-silenced fibroblasts. In addition, the cytokine antibody arrays revealed that Osteoprotegerin (OPG) was significantly decreased in the CM of TIAM2-silenced fibroblasts. This result suggested that OPG might be one of the main cytokines contributing to the migration and invasion of cancer cells in co-culture systems. Conclusion: Our results suggest that fibroblast TIAM2 promotes the invasion and migration of lung cancer cell, and OPG might be one of the main cytokines contributing to this pro-cancer process.
Collapse
Affiliation(s)
- Shuoke Li
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, People's Republic of China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Yangwei Ou
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Shaobo Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Jiye Yin
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, People's Republic of China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Wei Zhuo
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, People's Republic of China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Masha Huang
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, People's Republic of China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Tao Zhu
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, People's Republic of China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Wei Zhang
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, People's Republic of China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Honghao Zhou
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, People's Republic of China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Zhaoqian Liu
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, People's Republic of China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| |
Collapse
|
12
|
Chen J, Wu Y, Zhang L, Fang X, Hu X. Evidence for calpains in cancer metastasis. J Cell Physiol 2018; 234:8233-8240. [PMID: 30370545 DOI: 10.1002/jcp.27649] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023]
Abstract
Metastatic dissemination represents the final stage of tumor progression as well as the principal cause of cancer-associated deaths. Calpains are a conserved family of calcium-dependent cysteine proteinases with ubiquitous or tissue-specific expression. Accumulating evidence indicates a central role for calpains in tumor migration and invasion via participating in several key processes, including focal adhesion dynamics, cytoskeletal remodeling, epithelial-to-mesenchymal transition, and apoptosis. Activated after the increased intracellular calcium concentration ( [ Ca 2 + ] i ) induced by membrane channels and extracellular or intracellular stimuli, calpains induce the limited cleavage or functional modulation of various substrates that serve as metastatic mediators. This review covers established literature to summarize the mechanisms and underlying signaling pathways of calpains in cancer metastasis, making calpains attractive targets for aggressive tumor therapies.
Collapse
Affiliation(s)
- Jiaxin Chen
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yizheng Wu
- Department of Orthopaedic Surgery and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Lumin Zhang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiao Fang
- Department of Anesthesiology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiaotong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Pawlik A, Anisiewicz A, Filip-Psurska B, Nowak M, Turlej E, Trynda J, Banach J, Gretkierewicz P, Wietrzyk J. Calcitriol and Its Analogs Establish the Immunosuppressive Microenvironment That Drives Metastasis in 4T1 Mouse Mammary Gland Cancer. Int J Mol Sci 2018; 19:ijms19072116. [PMID: 30037009 PMCID: PMC6073894 DOI: 10.3390/ijms19072116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/15/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023] Open
Abstract
In our previous study, calcitriol and its analogs PRI-2191 and PRI-2205 stimulated 4T1 mouse mammary gland cancer metastasis. Therefore, we aimed to analyze the inflammatory response in 4T1-bearing mice treated with these compounds. Gene expression analysis of the splenocytes and regional lymph nodes demonstrated prevalence of the T helper lymphocytes (Th2) response with an increased activity of regulatory T (Treg) lymphocytes in mice treated with these compounds. We also observed an increased number of mature granulocytes and B lymphocytes and a decreased number of TCD4+, TCD4+CD25+, and TCD8+, as well as natural killer (NK) CD335+, cells in the blood of mice treated with calcitriol and its analogs. Among the splenocytes, we observed a significant decrease in NK CD335+ cells and an increase in TCD8+ cells. Calcitriol and its analogs decreased the levels of interleukin (IL)-1β and IL-10 and increased the level of interferon gamma (IFN-γ) in the plasma. In the tumor tissue, they caused an increase in the level of IL-10. Gene expression analysis of lung tissue demonstrated an increased level of osteopontin (Spp1) and transforming growth factor β (TGF-β) mRNA. The expression of Spp1 was also elevated in lymph nodes. Calcitriol and its analogs caused prevalence of tumor-conducive changes in the immune system of 4T1 tumor-bearing mice, despite the induction of some tumor-disadvantageous effects.
Collapse
Affiliation(s)
- Agata Pawlik
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Artur Anisiewicz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Beata Filip-Psurska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Marcin Nowak
- Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-3754 Wroclaw, Poland.
| | - Eliza Turlej
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Justyna Trynda
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Joanna Banach
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Paweł Gretkierewicz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| |
Collapse
|
14
|
Post-surgical resection prognostic value of combined OPN, MMP7, and PSG9 plasma biomarkers in hepatocellular carcinoma. Front Med 2018; 13:250-258. [PMID: 29770948 DOI: 10.1007/s11684-018-0632-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022]
Abstract
Biomarkers for hepatocellular carcinoma (HCC) following curative resection are not currently sufficient for prognostic indication of overall survival (OS) and disease-free survival (DFS). The aim of this study was to investigate the prognostic performance of osteopontin (OPN), matrix metalloproteinase 7 (MMP7), and pregnancy specific glycoprotein 9 (PSG9) in patients with HCC. A total of 179 prospective patients with HCC provided plasma before hepatectomy. Plasma OPN, MMP7, and PSG9 levels were determined by enzyme-linked immunosorbent assay. Correlations between plasma levels, clinical parameters, and outcomes (OS and DFS) were overall analyzed. High OPN ( ⩾ 149.97 ng/mL), MMP7 ( ⩾ 2.28 ng/mL), and PSG9 ( ⩾ 45.59 ng/mL) were prognostic indicators of reduced OS (P < 0.001, P < 0.001, and P = 0.007, respectively). Plasma PSG9 protein level was an independent factor in predicting OS (P = 0.008) and DFS (P = 0.038). Plasma OPN + MMP7 + PSG9 elevation in combination was a prognostic factor for OS (P < 0.001). OPN was demonstrated to be a risk factorassociated OS in stage I patients with HCC and patients with low α-fetoprotein levels ( < 20 ng/mL). These findings suggested that OPN, MMP7, PSG9 and their combined panels may be useful for aiding in tumor recurrence and mortality risk prediction of patients with HCC, particularly in the early stage of HCC carcinogenesis.
Collapse
|
15
|
Kim EK, Moon S, Kim DK, Zhang X, Kim J. CXCL1 induces senescence of cancer-associated fibroblasts via autocrine loops in oral squamous cell carcinoma. PLoS One 2018; 13:e0188847. [PMID: 29360827 PMCID: PMC5779641 DOI: 10.1371/journal.pone.0188847] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/14/2017] [Indexed: 01/01/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) have emerged as one of the main factors related to cancer progression, however, the conversion mechanism of normal fibroblasts (NOFs) to CAFs has not been well elucidated. The aim of this study was to investigate the underlying mechanism of CAF transformation from NOFs in oral squamous cell carcinoma (OSCC). This study found that NOFs exposed to OSCC cells transformed to senescent cells. The cytokine antibody array showed the highest secretion levels of IL-6 and CXCL1 in NOFs co-cultured with OSCC cells. Despite that both IL-6 and CXCL1 induced the senescent phenotype of CAFs, CXCL1 secretion showed a cancer-specific response to transform NOFs into CAFs in OSCC, whereas IL-6 secretion was eventuated by common co-culture condition. Further, CXCL1 was released from NOFs co-cultured with OSCC cells, however, CXCL1 was undetectable in mono-cultured NOFs or co-cultured OSCC cells with NOFs. Taken together, this study demonstrates that CXCL1 can transform NOFs into senescent CAFs via an autocrine mechanism. These data might contribute to further understanding of CAFs and to development of a potential therapeutic approach targeting cancer cells-CAFs interactions.
Collapse
Affiliation(s)
- Eun Kyoung Kim
- Oral Cancer Research Institute, Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Sook Moon
- Oral Cancer Research Institute, Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Dental hygiene, College of nursing Healthcare, Sorabol college, Gyeongju, Republic of Korea
| | - Do Kyeong Kim
- Oral Cancer Research Institute, Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Xianglan Zhang
- Oral Cancer Research Institute, Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of pathology, Yanbian University Hospital, Yanji City, Jilin Province, China
| | - Jin Kim
- Oral Cancer Research Institute, Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
16
|
Yushi Q, Li Z, Von Roemeling CA, Doeppler H, Marlow LA, Kim BYS, Radisky DC, Storz P, Copland JA, Tun HW. Osteopontin is a multi-faceted pro-tumorigenic driver for central nervous system lymphoma. Oncotarget 2017; 7:32156-71. [PMID: 27050077 PMCID: PMC5078004 DOI: 10.18632/oncotarget.8537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/04/2016] [Indexed: 12/22/2022] Open
Abstract
Osteopontin (OPN) is the most upregulated gene in primary central nervous system lymphoma (PCNSL) compared to non-CNS diffuse large B cell lymphoma (DLBCL). We show here that OPN is a key mediator of intracerebral tumor growth, invasion, and dissemination in CNS lymphoma, and that these effects depend upon activation of NF-κB. We further show that activation of NF-κB by OPN occurs through a unique mechanism in which intracellular OPN (iOPN) causes transcriptional downregulation of the NF-κB inhibitors, A20/TNFAIP3 and ABIN1/TNIP1, and secretory OPN (sOPN) promotes receptor-mediated activation of NF-κB. We also identify NF-κB-mediated induction of matrix metalloproteinase-8 (MMP-8) as a specific feature of OPN-mediated tissue invasion. These results implicate OPN as a candidate for development of targeted therapy for patients with PCNSL.
Collapse
Affiliation(s)
- Qiu Yushi
- Department of Cancer Biology, Jacksonville, Florida, USA
| | - Zhimin Li
- Department of Cancer Biology, Jacksonville, Florida, USA
| | | | - Heike Doeppler
- Department of Cancer Biology, Jacksonville, Florida, USA
| | - Laura A Marlow
- Department of Cancer Biology, Jacksonville, Florida, USA
| | - Betty Y S Kim
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Peter Storz
- Department of Cancer Biology, Jacksonville, Florida, USA
| | - John A Copland
- Department of Cancer Biology, Jacksonville, Florida, USA
| | - Han W Tun
- Department of Cancer Biology, Jacksonville, Florida, USA.,Department of Hematology/Oncology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
17
|
Antropow AH, Xu K, Buchsbaum RJ, Movassaghi M. Synthesis and Evaluation of Agelastatin Derivatives as Potent Modulators for Cancer Invasion and Metastasis. J Org Chem 2017; 82:7720-7731. [PMID: 28696693 PMCID: PMC5600481 DOI: 10.1021/acs.joc.7b01162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The synthesis of new agelastatin alkaloid derivatives and their anticancer evaluation in the context of the breast cancer microenvironment is described. A variety of N1-alkyl and C5-ether agelastatin derivatives were accessed via application of our strategy for convergent imidazolone synthesis from a common thioester along with appropriately substituted urea and alcohol components. These agelastatin derivatives were evaluated in our three-dimensional coculture assay for the effects of mammary fibroblasts on associated breast cancer cells. We have discovered that agelastatin alkaloids are potent modulators for cancer invasion and metastasis at noncytotoxic doses. Herein, we discuss the increased potency of (-)-agelastatin E as compared to (-)-agelastatin A in this capacity, in addition to identification of new agelastatin derivatives with activity that is statistically equivalent to (-)-agelastatin E. The chemistry described in this report provides a platform for the rapid synthesis of agelastatin derivatives with excellent potency (50-100 nM) as modulators for cancer invasion and metastasis.
Collapse
Affiliation(s)
- Alyssa H. Antropow
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Kun Xu
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, USA
| | - Rachel J. Buchsbaum
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, USA
- Department of Medicine, Tufts Medical Center, Boston, Massachusetts 02111, USA
| | - Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
18
|
Osteopontin at the Crossroads of Inflammation and Tumor Progression. Mediators Inflamm 2017; 2017:4049098. [PMID: 28769537 PMCID: PMC5523273 DOI: 10.1155/2017/4049098] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/04/2017] [Indexed: 12/13/2022] Open
Abstract
Complex interactions between tumor and host cells regulate systemic tumor dissemination, a process that begins early at the primary tumor site and goes on until tumor cells detach themselves from the tumor mass and start migrating into the blood or lymphatic vessels. Metastatic cells colonize the target organs and are capable of surviving and growing at distant sites. In this context, osteopontin (OPN) appears to be a key determinant of the crosstalk between cancer cells and the host microenvironment, which in turn modulates immune evasion. OPN is overexpressed in several human carcinomas and has been implicated in inflammation, tumor progression, and metastasis. Thus, it represents one of the most attracting targets for cancer therapy. Within the tumor mass, OPN is secreted in various forms either by the tumor itself or by stroma cells, and it can exert either pro- or antitumorigenic effects according to the cell type and tumor microenvironment. Thus, targeting OPN for therapeutic purposes needs to take into account the heterogeneous functions of the multiple OPN forms with regard to cancer formation and progression. In this review, we will describe the role of systemic, tumor-derived, and stroma-derived OPN, highlighting its pivotal role at the crossroads of inflammation and tumor progression.
Collapse
|
19
|
Li Z, Liu Q, Piao J, Hua F, Wang J, Jin G, Lin Z, Zhang Y. Clinicopathological implications of Tiam1 overexpression in invasive ductal carcinoma of the breast. BMC Cancer 2016; 16:681. [PMID: 27562113 PMCID: PMC4997674 DOI: 10.1186/s12885-016-2724-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/04/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND T-lymphoma invasion and metastasis-inducing protein 1 (Tiam1) has been implicated in tumor occurrence and progression. Recent studies have shown that high expression levels of Tiam1 protein appear to be associated with the progression of numerous human tumors. This study attempted to explore the role of Tiam1 protein in tumor progression and the prognostic evaluation of breast cancer. METHODS The localization of the Tiam1 protein was determined in the MDA-MB-231 breast cancer cell line using immunofluorescence (IF) staining. In addition, a total of 283 breast tissue samples, including 153 breast cancer tissues, 67 ductal carcinoma in situ (DCIS) and 63 adjacent non-tumor breast tissues, were analyzed by immunohistochemical (IHC) staining of the Tiam1 protein. The correlation between Tiam1 expression and clinicopathological characteristics was evaluated by Chi-square test and Fisher's exact tests. Disease-free survival (DFS) and 10-year overall survival (OS) rates were calculated by the Kaplan-Meier method. Additionally, univariate and multivariate analyses were performed by the Cox proportional hazards regression models. RESULTS Tiam1 protein showed a mainly cytoplasmic staining pattern in breast cancer cells; however, nuclear staining was also observed. Tiam1 protein expression was significantly higher in breast cancers (42.5 %, 65/153) and DCIS (40.3 %, 27/67) than in adjacent non-tumor tissues (12.7 %, 8/63). In addition, Tiam1 associated with tumor stage and Ki-67 expression, but negatively correlated with receptor tyrosine-protein kinase erbB-2 (Her2) expression. Moreover, survival analyses showed that DFS and 10-year OS rates were significantly lower in breast cancer patients with high Tiam1 expression than those with low Tiam1 expression. Univariate analysis suggested that molecular types, clinical stage, Her2 expression levels and Tiam1 expression levels were also significantly associated with DFS and 10-year OS rates of breast cancer patients. Furthermore, multivariate analysis suggested that Tiam1 expression is a significant independent prognostic factor along with tumor stage in patients with breast cancer. CONCLUSIONS Tiam1 expression is frequently up-regulated in breast cancer. Tiam1 expression correlated with clinicopathological parameters, suggesting that it may be a useful prognostic biomarker and potential therapeutic target for patients with breast cancer.
Collapse
Affiliation(s)
- Zhenling Li
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China.,Department of Breast Surgery, the Second Hospital of Jilin University, Changchun, 130041, China
| | - Qixiang Liu
- Department of Breast Surgery, the Second Hospital of Jilin University, Changchun, 130041, China
| | - Junjie Piao
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
| | - Fenjian Hua
- Department of Breast Surgery, the Second Hospital of Jilin University, Changchun, 130041, China
| | - Jing Wang
- Department of Breast Surgery, the Second Hospital of Jilin University, Changchun, 130041, China
| | - Guang Jin
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
| | - Zhenhua Lin
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China.
| | - Yan Zhang
- Department of Breast Surgery, the Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
20
|
Xu K, Tian X, Oh SY, Movassaghi M, Naber SP, Kuperwasser C, Buchsbaum RJ. The fibroblast Tiam1-osteopontin pathway modulates breast cancer invasion and metastasis. Breast Cancer Res 2016; 18:14. [PMID: 26821678 PMCID: PMC4730665 DOI: 10.1186/s13058-016-0674-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/30/2015] [Indexed: 12/21/2022] Open
Abstract
Background The tumor microenvironment has complex effects in cancer pathophysiology that are not fully understood. Most cancer therapies are directed against malignant cells specifically, leaving pro-malignant signals from the microenvironment unaddressed. Defining specific mechanisms by which the tumor microenvironment contributes to breast cancer metastasis may lead to new therapeutic approaches against advanced breast cancer. Methods We use a novel method for manipulating three-dimensional mixed cell co-cultures, along with studies in mouse xenograft models of human breast cancer and a histologic study of human breast cancer samples, to investigate how breast cancer-associated fibroblasts affect the malignant behaviors of breast cancer cells. Results Altering fibroblast Tiam1 expression induces changes in invasion, migration, epithelial-mesenchymal transition, and cancer stem cell characteristics in associated breast cancer cells. These changes are both dependent on fibroblast secretion of osteopontin and also long-lasting even after cancer cell dissociation from the fibroblasts, indicating a novel Tiam1-osteopontin pathway in breast cancer-associated fibroblasts. Notably, inhibition of fibroblast osteopontin with low doses of a novel small molecule prevents lung metastasis in a mouse model of human breast cancer metastasis. Moreover, fibroblast expression patterns of Tiam1 and osteopontin in human breast cancers show converse changes correlating with invasion, supporting the hypothesis that this pathway in tumor-associated fibroblasts regulates breast cancer invasiveness in human disease and is thus clinically relevant. Conclusions These findings suggest a new therapeutic paradigm for preventing breast cancer metastasis. Pro-malignant signals from the tumor microenvironment with long-lasting effects on associated cancer cells may perpetuate the metastatic potential of developing cancers. Inhibition of these microenvironment signals represents a new therapeutic strategy against cancer metastasis that enables targeting of stromal cells with less genetic plasticity than associated cancer cells and opens new avenues for investigation of novel therapeutic targets and agents. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0674-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kun Xu
- Molecular Oncology Research Institute, Tufts Medical Center, 75 Kneeland Street, Boston, MA, 02111, USA.
| | - Xuejun Tian
- Department of Pathology, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA.
| | - Sun Y Oh
- Molecular Oncology Research Institute, Tufts Medical Center, 75 Kneeland Street, Boston, MA, 02111, USA. .,Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA.
| | - Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| | - Stephen P Naber
- Department of Pathology, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA.
| | - Charlotte Kuperwasser
- Molecular Oncology Research Institute, Tufts Medical Center, 75 Kneeland Street, Boston, MA, 02111, USA. .,Developmental, Molecular, and Chemical Biology Department, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA.
| | - Rachel J Buchsbaum
- Molecular Oncology Research Institute, Tufts Medical Center, 75 Kneeland Street, Boston, MA, 02111, USA. .,Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA.
| |
Collapse
|
21
|
Buchsbaum RJ, Oh SY. Breast Cancer-Associated Fibroblasts: Where We Are and Where We Need to Go. Cancers (Basel) 2016; 8:cancers8020019. [PMID: 26828520 PMCID: PMC4773742 DOI: 10.3390/cancers8020019] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/12/2016] [Accepted: 01/20/2016] [Indexed: 02/04/2023] Open
Abstract
Cancers are heterogeneous tissues comprised of multiple components, including tumor cells and microenvironment cells. The tumor microenvironment has a critical role in tumor progression. The tumor microenvironment is comprised of various cell types, including fibroblasts, macrophages and immune cells, as well as extracellular matrix and various cytokines and growth factors. Fibroblasts are the predominant cell type in the tumor microenvironment. However, neither the derivation of tissue-specific cancer-associated fibroblasts nor markers of tissue-specific cancer-associated fibroblasts are well defined. Despite these uncertainties it is increasingly apparent that cancer-associated fibroblasts have a crucial role in tumor progression. In breast cancer, there is evolving evidence showing that breast cancer-associated fibroblasts are actively involved in breast cancer initiation, proliferation, invasion and metastasis. Breast cancer-associated fibroblasts also play a critical role in metabolic reprogramming of the tumor microenvironment and therapy resistance. This review summarizes the current understanding of breast cancer-associated fibroblasts.
Collapse
Affiliation(s)
- Rachel J Buchsbaum
- Molecular Oncology Research Institute and Department of Medicine, Division of Hematology-Oncology, Tufts Medical Center, Boston, MA 02111, USA.
| | - Sun Young Oh
- Department of Medicine, Division of Medical Oncology, Montefiore Medical Center, New York, NY 10467, USA.
| |
Collapse
|
22
|
Boraldi F, Bartolomeo A, Di Bari C, Cocconi A, Quaglino D. Donor's age and replicative senescence favour the in-vitro mineralization potential of human fibroblasts. Exp Gerontol 2015; 72:218-26. [PMID: 26494600 DOI: 10.1016/j.exger.2015.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 11/30/2022]
Abstract
Aberrant mineralization of soft connective tissues (ectopic calcification) may occur as a frequent age-related complication. Still, it remains unclear the role of mesenchymal cell donor's age and of replicative senescence on ectopic calcification. Therefore, the ability of cells to deposit in-vitro hydroxyapatite crystals and the expression of progressive ankylosis protein homolog (ANKH), ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), tissue non specific alkaline phosphatase (TNAP) and osteopontin (OPN) have been evaluated in human dermal fibroblasts derived from neonatal (nHDF) and adult (aHDF) donors (ex-vivo ageing model) or at low and high cumulative population doublings (CPD) up to replicative senescence (in-vitro ageing model). This study demonstrates that: 1) replicative senescence favours hydroxyapatite formation in cultured fibroblasts; 2) donor's age acts as a major modulator of the mineralizing potential of HDF, since nHDF are less prone than aHDF to induce calcification; 3) donor's age and replicative senescence play in concert synergistically increasing the calcification process; 4) the ANKH+ENPP1/TNAP ratio, being crucial for pyrophosphate/inorganic phosphate balance, is greatly influenced by donor's age, as well as by replicative senescence, and regulates mineral deposition; 5) OPN is only modulated by replicative senescence.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Angelica Bartolomeo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Caterina Di Bari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cocconi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
23
|
Val MM, Mendes LA, Alarcão A, Carvalho L, Carreira I, Rodrigues CFD, Alpoim MC. Senescent bronchial fibroblasts induced to senescence by Cr(VI) promote epithelial-mesenchymal transition when co-cultured with bronchial epithelial cells in the presence of Cr(VI). Mutagenesis 2014; 30:277-86. [PMID: 25406472 DOI: 10.1093/mutage/geu070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cellular senescence is a physiological process that serves as a powerful barrier for tumorigenesis. However, senescent cells can be deleterious for the tissue microenvironment. Such is the case of senescent fibroblasts that release several pro-tumorigenic factors that promote malignant transformation in the nearby epithelial cells. Occupational exposure to hexavalent chromium [Cr(VI)] compounds is a cause of respiratory cancers. Although Cr(VI) is known to induce senescence in human foreskin fibroblasts, the role of senescent fibroblasts in the Cr(VI)-induced malignant transformation of human bronchial epithelial cells was never assessed. Thus, to study the evolutionary dynamics generated by the interaction between human bronchial epithelial cells and senescent bronchial fibroblasts, the non-tumorigenic human bronchial epithelial BEAS-2B cells were co-cultured with Cr(VI)-induced senescent human bronchial fibroblasts for 4 weeks. Under the pressure of 0.5 µM Cr(VI), senescent fibroblasts promoted the acquisition of mesenchymal features on BEAS-2B cells, e.g. the fusiform shape and increased Vimentin expression, consistent with the occurrence of an epithelial-mesenchymal transition-like process. Features of transformed cells including larger nuclei, as well as nuclei with heterogeneous size, were also observed. Altogether the results obtained demonstrate that besides acting over the epithelium, Cr(VI) also affects bronchial fibroblasts driving them senescent. As a consequence, a paracrine communication loop is established with the above-placed epithelium prompting the epithelial cells for malignant transformation and thus facilitating the initial steps of tumorigenesis.
Collapse
Affiliation(s)
- Mariana Monteiro Val
- Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal, Center of Investigation in Environment, Genetics and Oncobiology, University of Coimbra, Coimbra, Portugal, Center for Neuroscience and Cell Biology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal and
| | - Luís André Mendes
- Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal, Center of Investigation in Environment, Genetics and Oncobiology, University of Coimbra, Coimbra, Portugal, Center for Neuroscience and Cell Biology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal and
| | - Ana Alarcão
- Center of Investigation in Environment, Genetics and Oncobiology, University of Coimbra, Coimbra, Portugal, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Lina Carvalho
- Center of Investigation in Environment, Genetics and Oncobiology, University of Coimbra, Coimbra, Portugal, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Isabel Carreira
- Center of Investigation in Environment, Genetics and Oncobiology, University of Coimbra, Coimbra, Portugal, Center for Neuroscience and Cell Biology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Carlos Fernando D Rodrigues
- Center of Investigation in Environment, Genetics and Oncobiology, University of Coimbra, Coimbra, Portugal, Center for Neuroscience and Cell Biology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Maria Carmen Alpoim
- Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal, Center of Investigation in Environment, Genetics and Oncobiology, University of Coimbra, Coimbra, Portugal, Center for Neuroscience and Cell Biology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal and
| |
Collapse
|
24
|
Greer RM, Miller JD, Okoh VO, Halloran BA, Prince LS. Epithelial-mesenchymal co-culture model for studying alveolar morphogenesis. Organogenesis 2014; 10:340-9. [PMID: 25482312 DOI: 10.4161/org.29198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Division of large, immature alveolar structures into smaller, more numerous alveoli increases the surface area available for gas exchange. Alveolar division requires precise epithelial-mesenchymal interactions. However, few experimental models exist for studying how these cell-cell interactions produce changes in 3-dimensional structure. Here we report an epithelial-mesenchymal cell co-culture model where 3-dimensional peaks form with similar cellular orientation as alveolar structures in vivo. Co-culturing fetal mouse lung mesenchyme with A549 epithelial cells produced tall peaks of cells covered by epithelia with cores of mesenchymal cells. These structures did not form when using adult lung fibroblasts. Peak formation did not require localized areas of cell proliferation or apoptosis. Mesenchymal cells co-cultured with epithelia adopted an elongated cell morphology closely resembling myofibroblasts within alveolar septa in vivo. Because inflammation inhibits alveolar formation, we tested the effects of E. coli lipopolysaccharide on 3-dimensional peak formation. Confocal and time-lapse imaging demonstrated that lipopolysaccharide reduced mesenchymal cell migration, resulting in fewer, shorter peaks with mesenchymal cells present predominantly at the base. This epithelial-mesenchymal co-culture model may therefore prove useful in future studies of mechanisms regulating alveolar morphogenesis.
Collapse
Key Words
- 3-D, 3-dimensional
- ATCC, American Type Culture Collection
- BALB/cJ, Bagg Albino
- BMP4, bone morphogenetic protein 4
- CO2, carbon dioxide
- DAPI, 4′, 6-Diamidino-2-Phenylindole, Dihydrochloride
- DEVD, acetyl-Asp-Glu-Val-Asp p-nitroanilide
- DMEM, Dulbecco's modified eagle medium
- DiI, 1, 1′-dioctadecyl-3, 3, 3′3′-tetramethylindocarbocyanine perchlorate
- E-cad, e-cadherin
- E. coli, Escherichia coli
- E15, embryonic day 15
- FBS, fetal bovine serum
- FGF, fibroblast growth factor
- LPS, lipopolysaccharide
- PDGF, platelet derived growth factor
- SHH, sonic hedgehog
- TGF-β, transforming growth factor beta
- TO-PRO-3, 4-[3-(3-methyl-2(3H)-benzothiazolylidene)-1-propenyl]-1-[3-(trimethylammonio)propyl]-, diiodide
- VEGF, vascular endothelial growth factor
- Z-VAD-FMK, Z-Val-Ala-Asp-CH2F
- alveolarization
- bronchopulmonary dysplasia
- lung development
- myofibroblast
- α-SMA, alpha-smooth muscle actin
Collapse
Affiliation(s)
- Rachel M Greer
- a Department of Pediatrics ; University of California San Diego; Rady Children's Hospital, San Diego ; San Diego , CA USA
| | | | | | | | | |
Collapse
|
25
|
Shevde LA, Samant RS. Role of osteopontin in the pathophysiology of cancer. Matrix Biol 2014; 37:131-41. [PMID: 24657887 PMCID: PMC5916777 DOI: 10.1016/j.matbio.2014.03.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/10/2014] [Accepted: 03/10/2014] [Indexed: 12/12/2022]
Abstract
Osteopontin (OPN) is a multifunctional cytokine that impacts cell proliferation, survival, drug resistance, invasion, and stem like behavior. Due to its critical involvement in regulating cellular functions, its aberrant expression and/or splicing is functionally responsible for undesirable alterations in disease pathologies, specifically cancer. It is implicated in promoting invasive and metastatic progression of many carcinomas. Due to its autocrine and paracrine activities OPN has been shown to be a crucial mediator of cellular cross talk and an influential factor in the tumor microenvironment. OPN has been implicated as a prognostic and diagnostic marker for several cancer types. It has also been explored as a possible target for treatment. In this article we hope to provide a broad perspective on the importance of OPN in the pathophysiology of cancer.
Collapse
Affiliation(s)
- Lalita A Shevde
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, United States.
| | - Rajeev S Samant
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, United States.
| |
Collapse
|
26
|
Bandopadhyay M, Bulbule A, Butti R, Chakraborty G, Ghorpade P, Ghosh P, Gorain M, Kale S, Kumar D, Kumar S, Totakura KVS, Roy G, Sharma P, Shetti D, Soundararajan G, Thorat D, Tomar D, Nalukurthi R, Raja R, Mishra R, Yadav AS, Kundu GC. Osteopontin as a therapeutic target for cancer. Expert Opin Ther Targets 2014; 18:883-95. [DOI: 10.1517/14728222.2014.925447] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Berkenkamp B, Susnik N, Baisantry A, Kuznetsova I, Jacobi C, Sörensen-Zender I, Broecker V, Haller H, Melk A, Schmitt R. In vivo and in vitro analysis of age-associated changes and somatic cellular senescence in renal epithelial cells. PLoS One 2014; 9:e88071. [PMID: 24505380 PMCID: PMC3913727 DOI: 10.1371/journal.pone.0088071] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 01/05/2014] [Indexed: 12/22/2022] Open
Abstract
Acute kidney injury is a major clinical problem and advanced age is associated with ineffective renal regeneration and poor functional outcome. Data from kidney injury models suggest that a loss of tubular epithelial proliferation contributes to a decrease in renal repair capacity with aging, but aging can also lead to a higher severity of inflammation and damage which may influence repair. In this study we tested intrinsic age-dependent changes in tubular epithelial proliferation in young and old mice, by injecting low-dose lead acetate as a non-injurious mitogen. In parallel, we explored in vitro techniques of studying cellular senescence in primary tubular epithelial cells (PTEC). Lead acetate induced tubular epithelial proliferation at a significantly higher rate in young as compared to old mice. Old kidneys showed significantly more senescence as demonstrated by increased p16 (INK4a), senescence associated β-galactosidase, and γH2AX(+)/Ki-67(-) cells. This was paralleled in old kidneys by a higher number of Cyclin D1 positive tubular cells. This finding was corroborated by a positive correlation between Cyclin D1 positivity and age in human renal biopsies. When tubular cells were isolated from mouse kidneys they rapidly lost their age-associated differences under culture conditions. However, senescence was readily induced in PTEC by γ-irradiation representing a future model for study of cellular senescence in the renal epithelium. Together, our data indicate that the tubular epithelium of aged kidney has an intrinsically reduced proliferative capacity probably due to a higher load of senescent cells. Moreover, stress induced models of cellular senescence are preferable for study of the renal epithelium in vitro. Finally, the positive correlation of Cyclin D1 with age and cellular senescence in PTEC needs further evaluation as to a functional role of renal epithelial aging.
Collapse
Affiliation(s)
- Birgit Berkenkamp
- Department of Pediatric Nephrology and Gastroenterology, Medical School Hannover, Hannover, Lower Saxony, Germany
| | - Nathan Susnik
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Lower Saxony, Germany
| | - Arpita Baisantry
- Department of Pediatric Nephrology and Gastroenterology, Medical School Hannover, Hannover, Lower Saxony, Germany
| | - Inna Kuznetsova
- Department of Pediatric Nephrology and Gastroenterology, Medical School Hannover, Hannover, Lower Saxony, Germany
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Lower Saxony, Germany
| | - Christoph Jacobi
- Department of Pediatric Nephrology and Gastroenterology, Medical School Hannover, Hannover, Lower Saxony, Germany
| | - Inga Sörensen-Zender
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Lower Saxony, Germany
| | - Verena Broecker
- Department of Pathology, Medical School Hannover, Hannover, Lower Saxony, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Lower Saxony, Germany
| | - Anette Melk
- Department of Pediatric Nephrology and Gastroenterology, Medical School Hannover, Hannover, Lower Saxony, Germany
- * E-mail: (RS); (AM)
| | - Roland Schmitt
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Lower Saxony, Germany
- * E-mail: (RS); (AM)
| |
Collapse
|
28
|
De Wever O, Van Bockstal M, Mareel M, Hendrix A, Bracke M. Carcinoma-associated fibroblasts provide operational flexibility in metastasis. Semin Cancer Biol 2014; 25:33-46. [PMID: 24406210 DOI: 10.1016/j.semcancer.2013.12.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 12/20/2013] [Accepted: 12/30/2013] [Indexed: 01/11/2023]
Abstract
Malignant cancer cells do not act as lone wolves to achieve metastasis, as they exist within a complex ecosystem consisting of an extracellular matrix scaffold populated by carcinoma-associated fibroblasts (CAFs), endothelial cells and immune cells. We recognize local (primary tumor) and distant ecosystems (metastasis). CAFs, also termed myofibroblasts, may have other functions in the primary tumor versus the metastasis. Cellular origin and tumor heterogeneity lead to the expression of specific markers. The molecular characteristics of a CAF remain in evolution since CAFs show operational flexibility. CAFs respond dynamically to a cancer cell's fluctuating demands by shifting profitable signals necessary in metastasis. Local, tissue-resident fibroblasts and mesenchymal stem cells (MSCs) coming from reservoir sites such as bone marrow and adipose tissue are the main progenitor cells of CAFs. CAFs may induce awakening from metastatic dormancy, a major cause of cancer-specific death. Cancer management protocols influence CAF precursor recruitment and CAF activation. Since CAF signatures represent early changes in metastasis, including formation of pre-metastatic niches, we discuss whether liquid biopsies, including exosomes, may detect and monitor CAF reactions allowing optimized prognosis of cancer patients.
Collapse
Affiliation(s)
- Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium.
| | | | - Marc Mareel
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|