1
|
Serrano-Juárez CA, Prieto-Corona B, Rodríguez-Camacho M, Sandoval-Lira L, Villalva-Sánchez ÁF, Yáñez-Téllez MG, López MFR. Neuropsychological Genotype-Phenotype in Patients with Williams Syndrome with Atypical Deletions: A Systematic Review. Neuropsychol Rev 2023; 33:891-911. [PMID: 36520254 DOI: 10.1007/s11065-022-09571-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/04/2022] [Indexed: 12/16/2022]
Abstract
Williams syndrome (WS) is a neurodevelopmental disorder caused by a microdeletion in the q11.23 region of chromosome 7. Recent case series reports and clinical case studies have suggested that the cognitive, behavioral, emotional, and social profile in WS could depend on the genes involved in the deletion. The objective of this systematic review was to analyze and synthesize the variability of the cognitive and behavioral profile of WS with atypical deletion and its probable relationship with the affected genes. The medical subject headings searched were "Williams syndrome," "genotype," "phenotype," "cognitive profile," and "atypical deletion." The studies included were in English or Spanish, with children and adults, and published between January 2000 and October 2022. Twenty-three studies are reported. The characteristics of the participants, the genes involved, the neuropsychological domains and instruments, and the prevalence of the WS cognitive profile criteria were used for the genotype-phenotype analysis. The genes with a major impact on the cognitive profile of WS were (a) LIMK1 and those belonging to the GTF2I family, the former with a greater influence on visuospatial abilities; (b) GTF2IRD1 and GTF2I, which have an impact on intellectual capacity as well as on visuospatial and social skills; (c) FZD9, BAZ1B, STX1A, and CLIP2, which influence the cognitive profile if other genes are also effected; and (d) GTF2IRD2, which is related to the severity of the effect on visuospatial and social skills, producing a behavioral phenotype like that of the autism spectrum. The review revealed four neuropsychological phenotypes, depending on the genes involved, and established the need for more comprehensive study of the neuropsychological profile of these patients. Based on the results found, we propose a model for the investigation of and clinical approach to the WS neuropsychological phenotype.
Collapse
Affiliation(s)
- Carlos Alberto Serrano-Juárez
- Neuroscience Group. Laboratorio de Neurometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios #1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, México
| | - Belén Prieto-Corona
- Neuroscience Group. Laboratorio de Neurometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios #1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, México.
| | - Mario Rodríguez-Camacho
- Neuroscience Group. Laboratorio de Neurometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios #1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, México
| | - Lucero Sandoval-Lira
- Neuroscience Group. Laboratorio de Neurometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios #1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, México
| | - Ángel Fernando Villalva-Sánchez
- Neuroscience Group. Laboratorio de Neurometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios #1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, México
| | - Ma Guillermina Yáñez-Téllez
- Neuroscience Group. Laboratorio de Neurometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios #1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, México
| | | |
Collapse
|
2
|
Serrano-Juárez CA, Prieto-Corona B, Rodríguez-Camacho M, Venegas-Vega CA, Yáñez-Téllez MG, Silva-Pereyra J, Salgado-Ceballos H, Arias-Trejo N, De León Miranda MA. An Exploration of Social Cognition in Children with Different Degrees of Genetic Deletion in Williams Syndrome. J Autism Dev Disord 2020; 51:1695-1704. [PMID: 32812194 DOI: 10.1007/s10803-020-04656-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
An explanation for the social dysfunction observed in Williams syndrome may be deficits in social cognition. This study explored aspects of social cognition in children with Williams syndrome with different genotypes. The 12 participants included one with a 1.1 Mb deletion that retained the GTF2IRD1, GTF2I, and GTF2IRD2 genes, seven with a 1.5 Mb deletion that preserved the GTF2IRD2 gene, and four with a 1.8 Mb deletion with loss of all three genes. The participant retaining all three genes was found to have better performance on social judgment and first-order theory of mind tasks than the group with loss of all three genes. These results may reflect the influence of the GTF2I gene family on social cognition in Williams syndrome.
Collapse
Affiliation(s)
- Carlos Alberto Serrano-Juárez
- Laboratorio de Neurometría, Grupo de Neurociencias, FES Iztacala, UNAM, Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. Méx, 54090, CDMX, México.,Iskalti Atención y Educación Psicológica SC, CDMX, México
| | - Belén Prieto-Corona
- Laboratorio de Neurometría, Grupo de Neurociencias, FES Iztacala, UNAM, Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. Méx, 54090, CDMX, México.
| | - Mario Rodríguez-Camacho
- Laboratorio de Neurometría, Grupo de Neurociencias, FES Iztacala, UNAM, Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. Méx, 54090, CDMX, México
| | | | - Ma Guillermina Yáñez-Téllez
- Laboratorio de Neurometría, Grupo de Neurociencias, FES Iztacala, UNAM, Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. Méx, 54090, CDMX, México
| | - Juan Silva-Pereyra
- Laboratorio de Neurometría, Grupo de Neurociencias, FES Iztacala, UNAM, Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. Méx, 54090, CDMX, México
| | | | | | | |
Collapse
|
3
|
A transcriptomic study of Williams-Beuren syndrome associated genes in mouse embryonic stem cells. Sci Data 2019; 6:262. [PMID: 31695049 PMCID: PMC6834640 DOI: 10.1038/s41597-019-0281-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
Williams-Beuren syndrome (WBS) is a relatively rare disease caused by the deletion of 1.5 to 1.8 Mb on chromosome 7 which contains approximately 28 genes. This multisystem disorder is mainly characterized by supravalvular aortic stenosis, mental retardation, and distinctive facial features. We generated mouse embryonic stem (ES) cells clones expressing each of the 4 human WBS genes (WBSCR1, GTF2I, GTF2IRD1 and GTF2IRD2) found in the specific delated region 7q11.23 causative of the WBS. We generated at least three stable clones for each gene with stable integration in the ROSA26 locus of a tetracycline-inducible upstream of the coding sequence of the genet tagged with a 3xFLAG epitope. Three clones for each gene were transcriptionally profiled in inducing versus non-inducing conditions for a total of 24 profiles. This small collection of human WBS-ES cell clones represents a resource to facilitate the study of the function of these genes during differentiation. Measurement(s) | transcription profiling assay • regulation of transcription, DNA-templated | Technology Type(s) | microarray assay • gene overexpression | Factor Type(s) | WBSCR1, GTF2I, GTF2IRD1 and GTF2IRD2 | Sample Characteristic - Organism | Homo sapiens |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.10003127
Collapse
|
4
|
Cognitive, Behavioral, and Adaptive Profiles in Williams Syndrome With and Without Loss of GTF2IRD2. J Int Neuropsychol Soc 2018; 24:896-904. [PMID: 30375319 DOI: 10.1017/s1355617718000711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
UNLABELLED Williams syndrome (WS) is a neurodevelopmental disorder that results from a heterozygous microdeletion on chromosome 7q11.23. Most of the time, the affected region contains ~1.5 Mb of sequence encoding approximately 24 genes. Some 5-8% of patients with WS have a deletion exceeding 1.8 Mb, thereby affecting two additional genes, including GTF2IRD2. Currently, there is no consensus regarding the implications of GTF2IRD2 loss for the neuropsychological phenotype of WS patients. OBJECTIVES The present study aimed to identify the role of GTF2IRD2 in the cognitive, behavioral, and adaptive profile of WS patients. METHODS Twelve patients diagnosed with WS participated, four with GTF2IRD2 deletion (atypical WS group), and eight without this deletion (typical WS group). The age range of both groups was 7-18 years old. Each patient's 7q11.23 deletion scope was determined by chromosomal microarray analysis. Cognitive, behavioral, and adaptive abilities were assessed with a battery of neuropsychological tests. RESULTS Compared with the typical WS group, the atypical WS patients with GTF2IRD2 deletion had more impaired visuospatial abilities and more significant behavioral problems, mainly related to the construct of social cognition. CONCLUSIONS These findings provide new evidence regarding the influence of the GTF2IRD2 gene on the severity of behavioral symptoms of WS related to social cognition and certain visuospatial abilities. (JINS, 2018, 24, 896-904).
Collapse
|
5
|
Collinson JM, Lindström NO, Neves C, Wallace K, Meharg C, Charles RH, Ross ZK, Fraser AM, Mbogo I, Oras K, Nakamoto M, Barker S, Duce S, Miedzybrodzka Z, Vargesson N. The developmental and genetic basis of 'clubfoot' in the peroneal muscular atrophy mutant mouse. Development 2018; 145:145/3/dev160093. [PMID: 29439133 DOI: 10.1242/dev.160093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/28/2017] [Indexed: 12/19/2022]
Abstract
Genetic factors underlying the human limb abnormality congenital talipes equinovarus ('clubfoot') remain incompletely understood. The spontaneous autosomal recessive mouse 'peroneal muscular atrophy' mutant (PMA) is a faithful morphological model of human clubfoot. In PMA mice, the dorsal (peroneal) branches of the sciatic nerves are absent. In this study, the primary developmental defect was identified as a reduced growth of sciatic nerve lateral motor column (LMC) neurons leading to failure to project to dorsal (peroneal) lower limb muscle blocks. The pma mutation was mapped and a candidate gene encoding LIM-domain kinase 1 (Limk1) identified, which is upregulated in mutant lateral LMC motor neurons. Genetic and molecular analyses showed that the mutation acts in the EphA4-Limk1-Cfl1/cofilin-actin pathway to modulate growth cone extension/collapse. In the chicken, both experimental upregulation of Limk1 by electroporation and pharmacological inhibition of actin turnover led to defects in hindlimb spinal motor neuron growth and pathfinding, and mimicked the clubfoot phenotype. The data support a neuromuscular aetiology for clubfoot and provide a mechanistic framework to understand clubfoot in humans.
Collapse
Affiliation(s)
- J Martin Collinson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Nils O Lindström
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Carlos Neves
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Karen Wallace
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Caroline Meharg
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Rebecca H Charles
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Zoe K Ross
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Amy M Fraser
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Ivan Mbogo
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Kadri Oras
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Masaru Nakamoto
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Simon Barker
- Royal Aberdeen Children's Hospital, Foresterhill, Aberdeen AB25 2ZN, UK
| | - Suzanne Duce
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Zosia Miedzybrodzka
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
6
|
Dennenmoser S, Sedlazeck FJ, Iwaszkiewicz E, Li X, Altmüller J, Nolte AW. Copy number increases of transposable elements and protein-coding genes in an invasive fish of hybrid origin. Mol Ecol 2017; 26:4712-4724. [PMID: 28390096 PMCID: PMC5638112 DOI: 10.1111/mec.14134] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/25/2022]
Abstract
Evolutionary dynamics of structural genetic variation in lineages of hybrid origin is not well explored, although structural mutations may increase in controlled hybrid crosses. We therefore tested whether structural variants accumulate in a fish of recent hybrid origin, invasive Cottus, relative to both parental species Cottus rhenanus and Cottus perifretum. Copy-number variation in exons of 10,979 genes was assessed using comparative genome hybridization arrays. Twelve genes showed significantly higher copy numbers in invasive Cottus compared to both parents. This coincided with increased expression for three genes related to vision, detoxification and muscle development, suggesting possible gene dosage effects. Copy number increases of putative transposons were assessed by comparative mapping of genomic DNA reads against a de novo assembly of 1,005 repetitive elements. In contrast to exons, copy number increases of repetitive elements were common (20.7%) in invasive Cottus, whereas decrease was very rare (0.01%). Among the increased repetitive elements, 53.8% occurred at higher numbers in C. perifretum compared to C. rhenanus, while only 1.4% were more abundant in C. rhenanus. This implies a biased mutational process that amplifies genetic material from one ancestor. To assess the frequency of de novo mutations through hybridization, we screened 64 laboratory-bred F2 offspring between the parental species for copy-number changes at five candidate loci. We found no evidence for new structural variants, indicating that they are too rare to be detected given our sampling scheme. Instead, they must have accumulated over more generations than we observed in a controlled cross.
Collapse
Affiliation(s)
- Stefan Dennenmoser
- Department for Evolutionary GeneticsMax‐Planck Institute for Evolutionary BiologyPlönGermany
- Institute for BiologyCarl von Ossietzky University OldenburgOldenburgGermany
| | | | - Elzbieta Iwaszkiewicz
- Department for Evolutionary GeneticsMax‐Planck Institute for Evolutionary BiologyPlönGermany
| | - Xiang‐Yi Li
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Janine Altmüller
- Cologne Center for Genomics, and Institute of Human GeneticsUniversity of CologneCologneGermany
| | - Arne W. Nolte
- Department for Evolutionary GeneticsMax‐Planck Institute for Evolutionary BiologyPlönGermany
- Institute for BiologyCarl von Ossietzky University OldenburgOldenburgGermany
| |
Collapse
|
7
|
Crespi BJ, Procyshyn TL. Williams syndrome deletions and duplications: Genetic windows to understanding anxiety, sociality, autism, and schizophrenia. Neurosci Biobehav Rev 2017; 79:14-26. [DOI: 10.1016/j.neubiorev.2017.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/06/2017] [Accepted: 05/06/2017] [Indexed: 12/30/2022]
|
8
|
Carmona-Mora P, Widagdo J, Tomasetig F, Canales CP, Cha Y, Lee W, Alshawaf A, Dottori M, Whan RM, Hardeman EC, Palmer SJ. The nuclear localization pattern and interaction partners of GTF2IRD1 demonstrate a role in chromatin regulation. Hum Genet 2015; 134:1099-115. [PMID: 26275350 DOI: 10.1007/s00439-015-1591-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 08/04/2015] [Indexed: 12/11/2022]
Abstract
GTF2IRD1 is one of the three members of the GTF2I gene family, clustered on chromosome 7 within a 1.8 Mb region that is prone to duplications and deletions in humans. Hemizygous deletions cause Williams-Beuren syndrome (WBS) and duplications cause WBS duplication syndrome. These copy number variations disturb a variety of developmental systems and neurological functions. Human mapping data and analyses of knockout mice show that GTF2IRD1 and GTF2I underpin the craniofacial abnormalities, mental retardation, visuospatial deficits and hypersociability of WBS. However, the cellular role of the GTF2IRD1 protein is poorly understood due to its very low abundance and a paucity of reagents. Here, for the first time, we show that endogenous GTF2IRD1 has a punctate pattern in the nuclei of cultured human cell lines and neurons. To probe the functional relationships of GTF2IRD1 in an unbiased manner, yeast two-hybrid libraries were screened, isolating 38 novel interaction partners, which were validated in mammalian cell lines. These relationships illustrate GTF2IRD1 function, as the isolated partners are mostly involved in chromatin modification and transcriptional regulation, whilst others indicate an unexpected role in connection with the primary cilium. Mapping of the sites of protein interaction also indicates key features regarding the evolution of the GTF2IRD1 protein. These data provide a visual and molecular basis for GTF2IRD1 nuclear function that will lead to an understanding of its role in brain, behaviour and human disease.
Collapse
Affiliation(s)
- Paulina Carmona-Mora
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Jocelyn Widagdo
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Florence Tomasetig
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Cesar P Canales
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Yeojoon Cha
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Wei Lee
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Abdullah Alshawaf
- Centre for Neural Engineering, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Mirella Dottori
- Centre for Neural Engineering, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Renee M Whan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Stephen J Palmer
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia.
| |
Collapse
|
9
|
Crespi BJ, Hurd PL. Cognitive-behavioral phenotypes of Williams syndrome are associated with genetic variation in the GTF2I gene, in a healthy population. BMC Neurosci 2014; 15:127. [PMID: 25429715 PMCID: PMC4247780 DOI: 10.1186/s12868-014-0127-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/13/2014] [Indexed: 11/10/2022] Open
Abstract
Background Individuals with Williams syndrome, a neurogenetic condition caused by deletion of a set of genes at chromosomal location 7q11.23, exhibit a remarkable suite of traits including hypersociality with high, nonselective friendliness and low social anxiety, expressive language relatively well-developed but under-developed social-communication skills overall, and reduced visual-spatial abilities. Deletions and duplications of the Williams-syndrome region have also been associated with autism, and with schizophrenia, two disorders centrally involving social cognition. Several lines of evidence have linked the gene GTF2I (General Transcription Factor IIi) with the social phenotypes of Williams syndrome, but a role for this gene in sociality within healthy populations has yet to be investigated. Results We genotyped a large set of healthy individuals for two single-nucleotide polymorphisms in the GTF2I gene that have recently been significantly associated with autism, and thus apparently exhibit functional effects on autism-related social phenotypes. GTF2I genotypes for these SNPs showed highly significant association with low social anxiety combined with reduced social-communication abilities, which represents a metric of the Williams-syndrome cognitive profile as described from previous studies. Conclusions These findings implicate the GTF2I gene in the neurogenetic basis of social communication and social anxiety, both in Williams syndrome and among individuals in healthy populations.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biology, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, , BC, Canada.
| | | |
Collapse
|
10
|
Canales CP, Wong ACY, Gunning PW, Housley GD, Hardeman EC, Palmer SJ. The role of GTF2IRD1 in the auditory pathology of Williams-Beuren Syndrome. Eur J Hum Genet 2014; 23:774-80. [PMID: 25248400 DOI: 10.1038/ejhg.2014.188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 08/11/2014] [Accepted: 08/15/2014] [Indexed: 12/15/2022] Open
Abstract
Williams-Beuren Syndrome (WBS) is a rare genetic condition caused by a hemizygous deletion involving up to 28 genes within chromosome 7q11.23. Among the spectrum of physical and neurological defects in WBS, it is common to find a distinctive response to sound stimuli that includes extreme adverse reactions to loud, or sudden sounds and a fascination with certain sounds that may manifest as strengths in musical ability. However, hearing tests indicate that sensorineural hearing loss (SNHL) is frequently found in WBS patients. The functional and genetic basis of this unusual auditory phenotype is currently unknown. Here, we investigated the potential involvement of GTF2IRD1, a transcription factor encoded by a gene located within the WBS deletion that has been implicated as a contributor to the WBS assorted neurocognitive profile and craniofacial abnormalities. Using Gtf2ird1 knockout mice, we have analysed the expression of the gene in the inner ear and examined hearing capacity by evaluating the auditory brainstem response (ABR) and the distortion product of otoacoustic emissions (DPOAE). Our results show that Gtf2ird1 is expressed in a number of cell types within the cochlea, and Gtf2ird1 null mice showed higher auditory thresholds (hypoacusis) in both ABR and DPOAE hearing assessments. These data indicate that the principal hearing deficit in the mice can be traced to impairments in the amplification process mediated by the outer hair cells and suggests that similar mechanisms may underpin the SNHL experienced by WBS patients.
Collapse
Affiliation(s)
- Cesar P Canales
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Ann C Y Wong
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NWS, Australia
| | - Peter W Gunning
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Gary D Housley
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NWS, Australia
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Stephen J Palmer
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| |
Collapse
|
11
|
Segura-Puimedon M, Borralleras C, Pérez-Jurado LA, Campuzano V. TFII-I regulates target genes in the PI-3K and TGF-β signaling pathways through a novel DNA binding motif. Gene 2013; 527:529-36. [DOI: 10.1016/j.gene.2013.06.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 06/10/2013] [Accepted: 06/21/2013] [Indexed: 11/17/2022]
|
12
|
Sassa T. The Role of Human-Specific Gene Duplications During Brain Development and Evolution. J Neurogenet 2013; 27:86-96. [DOI: 10.3109/01677063.2013.789512] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|