1
|
Adams JC, Tucker RP. The evolution of tenascins. BMC Ecol Evol 2024; 24:121. [PMID: 39277743 PMCID: PMC11401434 DOI: 10.1186/s12862-024-02306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND The evolution of extracellular matrix is tightly linked to the evolution of organogenesis in metazoans. Tenascins are extracellular matrix glycoproteins of chordates that participate in integrin-signaling and morphogenetic events. Single tenascins are encoded by invertebrate chordates, and multiple tenascin paralogs are found in vertebrates (designated tenascin-C, tenascin-R, tenascin-W and tenascin-X) yet, overall, the evolution of this family has remained unclear. RESULTS This study examines the genomes of hemichordates, cephalochordates, tunicates, agnathans, cartilaginous fishes, lobe-finned fishes, ray-finned fishes and representative tetrapods to identify predicted tenascin proteins. We comprehensively assess their evolutionary relationships by sequence conservation, molecular phylogeny and examination of conservation of synteny of the encoding genes. The resulting new evolutionary model posits the origin of tenascin in an ancestral chordate, with tenascin-C-like and tenascin-R-like paralogs emerging after a whole genome duplication event in an ancestral vertebrate. Tenascin-X appeared following a second round of whole genome duplication in an ancestral gnathostome, most likely from duplication of the gene encoding the tenascin-R homolog. The fourth gene, encoding tenascin-W (also known as tenascin-N), apparently arose from a local duplication of tenascin-R. CONCLUSIONS The diversity of tenascin paralogs observed in agnathans and gnathostomes has evolved through selective retention of novel genes that arose from a combination of whole genome and local duplication events. The evolutionary appearance of specific tenascin paralogs coincides with the appearance of vertebrate-specific cell and tissue types where the paralogs are abundantly expressed, such as the endocranium and facial skeleton (tenascin-C), an expanded central nervous system (tenascin-R), and bone (tenascin-W).
Collapse
Affiliation(s)
| | - Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Goggins E, Mironchik Y, Kakkad S, Jacob D, Wildes F, Bhujwalla ZM, Krishnamachary B. Reprogramming of VEGF-mediated extracellular matrix changes through autocrine signaling. Cancer Biol Ther 2023; 24:2184145. [PMID: 37389973 PMCID: PMC10012930 DOI: 10.1080/15384047.2023.2184145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 03/11/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) plays key roles in angiogenesis, vasculogenesis, and wound healing. In cancers, including triple negative breast cancer (TNBC), VEGF has been associated with increased invasion and metastasis, processes that require cancer cells to traverse through the extracellular matrix (ECM) and establish angiogenesis at distant sites. To further understand the role of VEGF in modifying the ECM, we characterized VEGF-mediated changes in the ECM of tumors derived from TNBC MDA-MB-231 cells engineered to overexpress VEGF. We established that increased VEGF expression by these cells resulted in tumors with reduced collagen 1 (Col1) fibers, fibronectin, and hyaluronan. Molecular characterization of tumors identified an increase of MMP1, uPAR, and LOX, and a decrease of MMP2, and ADAMTS1. α-SMA, a marker of cancer associated fibroblasts (CAFs), increased, and FAP-α, a marker of a subset of CAFs associated with immune suppression, decreased with VEGF overexpression. Analysis of human data from The Cancer Genome Atlas Program confirmed mRNA differences for several molecules when comparing TNBC with high and low VEGF expression. We additionally characterized enzymatic changes induced by VEGF overexpression in three different cancer cell lines that clearly identified autocrine-mediated changes, specifically uPAR, in these enzymes. Unlike the increase of Col1 fibers and fibronectin mediated by VEGF during wound healing, in the TNBC model, VEGF significantly reduced key protein components of the ECM. These results further expand our understanding of the role of VEGF in cancer progression and identify potential ECM-related targets to disrupt this progression.
Collapse
Affiliation(s)
- Eibhlin Goggins
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yelena Mironchik
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samata Kakkad
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Desmond Jacob
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Flonne Wildes
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zaver M. Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Wu T, Liu C, Kannan RM. Systemic Dendrimer-Peptide Therapies for Wet Age-Related Macular Degeneration. Pharmaceutics 2023; 15:2428. [PMID: 37896188 PMCID: PMC10609940 DOI: 10.3390/pharmaceutics15102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Wet age-related macular degeneration (AMD) is an end-stage event in a complex pathogenesis of macular degeneration, involving the abnormal growth of blood vessels at the retinal pigment epithelium driven by vascular endothelial growth factor (VEGF). Current therapies seek to interrupt VEGF signaling to halt the progress of neovascularization, but a significant patient population is not responsive. New treatment modalities such as integrin-binding peptides (risuteganib/Luminate/ALG-1001) are being explored to address this clinical need but these treatments necessitate the use of intravitreal injections (IVT), which carries risks of complications and restricts its availability in less-developed countries. Successful systemic delivery of peptide-based therapeutics must overcome obstacles such as degradation by proteinases in circulation and off-target binding. In this work, we present a novel dendrimer-integrin-binding peptide (D-ALG) synthesized with a noncleavable, "clickable" linker. In vitro, D-ALG protected the peptide payload from enzymatic degradation for up to 1.5 h (~90% of the compound remained intact) in a high concentration of proteinase (2 mg/mL) whereas ~90% of free ALG-1001 was degraded in the same period. Further, dendrimer conjugation preserved the antiangiogenic activity of ALG-1001 in vitro with significant reductions in endothelial vessel network formation compared to untreated controls. In vivo, direct intravitreal injections of ALG-1001 and D-ALG produced reductions in the CNV lesion area but in systemically dosed animals, only D-ALG produced significant reductions of CNV lesion area at 14 days. Imaging data suggested that the difference in efficacy may be due to more D-ALG remaining in the target area than ALG-1001 after administration. The results presented here offer a clinically relevant route for peptide therapeutics by addressing the major obstacles that these therapies face in delivery.
Collapse
Affiliation(s)
| | | | - Rangaramanujam M. Kannan
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (T.W.); (C.L.)
| |
Collapse
|
4
|
Complement C9 binding site and the anti-microbial activity of caprine vitronectin are localized in close proximity in the N-terminal region of the protein. Microb Pathog 2020; 149:104111. [PMID: 32135222 DOI: 10.1016/j.micpath.2020.104111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 11/21/2022]
Abstract
Vitronectin (Vn) is a ligand for complement C9 and modulates its activity that favors bacterial growth and survival. At the same time, the anti-microbial activity of the heparin-binding region of human Vn has been documented. To understand these diverse and opposite functions of the protein, we have analyzed the interaction of caprine Vn with C9 in the homologous system. In a previous study, the C9 binding activity was mapped to the N-fragment of the caprine Vn (N-Vn), representing the first 200 amino acids. Interestingly, this fragment also inhibited bacterial growth. In this study, we have generated four sub-fragments of N-Vn and analyzed C9 binding by ELISA, blot overlay, surface plasmon resonance and circular dichroism spectroscopy. These sub-fragments were also tested for antimicrobial activity against E. coli and S. aureus by drop plate method and analyzing cell death by flow cytometry. Results of these analyses together with previous data suggest that in addition to the second RGD motif (106-108 amino acids), the first 47 residues are also required for C9 binding. The anti-microbial tests employed indicate that the growth inhibitory property is contributed by 101-150 residues of Vn. These results provide an initial insight into two diverse Vn functions.
Collapse
|
5
|
Safari Z, Soudi S, Jafarzadeh N, Hosseini AZ, Vojoudi E, Sadeghizadeh M. Promotion of angiogenesis by M13 phage and RGD peptide in vitro and in vivo. Sci Rep 2019; 9:11182. [PMID: 31371773 PMCID: PMC6672002 DOI: 10.1038/s41598-019-47413-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/16/2019] [Indexed: 01/11/2023] Open
Abstract
One of the most important goals of regenerative medicines is to generate alternative tissues with a developed vascular network. Endothelial cells are the most important cell type required in angiogenesis process, contributing to the blood vessels formation. The stimulation of endothelial cells to initiate angiogenesis requires appropriate extrinsic signals. The aim of this study was to evaluate the effects of M13 phage along with RGD peptide motif on in vitro and in vivo vascularization. The obtained results demonstrated the increased cellular proliferation, HUVECs migration, cells altered morphology, and cells attachment to M13 phage-RGD coated surface. In addition, the expression of Vascular Endothelial Growth Factor A (VEGF-A), VEGF Receptors 2 and 3, Matrix Metalloproteinase 9 (MMP9), and epithelial nitric oxide synthase (eNOS) transcripts were significantly upregulated due to the HUVECs culturing on M13 phage-RGD coated surface. Furthermore, VEGF protein secretion, nitric oxide, and reactive oxygen species (ROS) production were significantly increased in cells cultured on M13 phage-RGD coated surface.
Collapse
Affiliation(s)
- Zohreh Safari
- Department of genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Nazli Jafarzadeh
- Department of genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Zavaran Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elham Vojoudi
- Department of Regenerative Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Stukel JM, Willits RK. The interplay of peptide affinity and scaffold stiffness on neuronal differentiation of neural stem cells. ACTA ACUST UNITED AC 2018; 13:024102. [PMID: 29133625 DOI: 10.1088/1748-605x/aa9a4b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cells are sensitive to physical cues in their environment, such as the stiffness of the substrate, peptide density, and peptide affinity. Understanding how neural stem cells (NSCs) sense and respond to these matrix cues has the potential to improve disease outcome, particularly if a regenerative response can be exploited. While the material properties are known to influence other stem cells, little is known about how NSC differentiation is altered by this interplay of mechanical, or bulk properties, with peptide concentration and affinity, or microscale properties. We are interested in the combined effect of bulk and microscale features in an in vitro hydrogel model and therefore we investigated NSC differentiation by focusing on integrin interactions via RGD peptide affinity and concentration. Our studies demonstrated that the peptide concentration affected adhesion as there were more cells on scaffolds with 1 mM RGD than 2.5 mM RGD. The hydrogel stiffness affected neurite length in differentiating NSCs, as 0.1-0.8 kPa substrates promoted greater neurite extension than 4.2-7.9 kPa substrates. The NSCs differentiated towards β-ΙΙΙ tubulin positive cells on scaffolds with RGD after 7 days and those scaffolds containing 1 mM linear or cyclic RGD had longer neurite extensions than scaffolds containing 0.1 or 2.5 mM RGD. While peptide affinity had a lesser effect on the NSC response in our hydrogel system, blocking actin, myosin II, or integrin interactions resulted in changes to the cell morphology and focal adhesion assembly. Overall, these results demonstrated NSCs are more responsive to a change in tissue stiffness than peptide affinity in the range of gels tested, which may influence design of materials for neural tissue engineering.
Collapse
|
7
|
Elasticity-based development of functionally enhanced multicellular 3D liver encapsulated in hybrid hydrogel. Acta Biomater 2017; 64:67-79. [PMID: 28966094 DOI: 10.1016/j.actbio.2017.09.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/30/2017] [Accepted: 09/27/2017] [Indexed: 12/23/2022]
Abstract
Current in vitro liver models provide three-dimensional (3-D) microenvironments in combination with tissue engineering technology and can perform more accurate in vivo mimicry than two-dimensional models. However, a human cell-based, functionally mature liver model is still desired, which would provide an alternative to animal experiments and resolve low-prediction issues on species differences. Here, we prepared hybrid hydrogels of varying elasticity and compared them with a normal liver, to develop a more mature liver model that preserves liver properties in vitro. We encapsulated HepaRG cells, either alone or with supporting cells, in a biodegradable hybrid hydrogel. The elastic modulus of the 3D liver dynamically changed during culture due to the combined effects of prolonged degradation of hydrogel and extracellular matrix formation provided by the supporting cells. As a result, when the elastic modulus of the 3D liver model converges close to that of the in vivo liver (≅ 2.3 to 5.9 kPa), both phenotypic and functional maturation of the 3D liver were realized, while hepatic gene expression, albumin secretion, cytochrome p450-3A4 activity, and drug metabolism were enhanced. Finally, the 3D liver model was expanded to applications with embryonic stem cell-derived hepatocytes and primary human hepatocytes, and it supported prolonged hepatocyte survival and functionality in long-term culture. Our model represents critical progress in developing a biomimetic liver system to simulate liver tissue remodeling, and provides a versatile platform in drug development and disease modeling, ranging from physiology to pathology. STATEMENT OF SIGNIFICANCE We provide a functionally improved 3D liver model that recapitulates in vivo liver stiffness. We have experimentally addressed the issues of orchestrated effects of mechanical compliance, controlled matrix formation by stromal cells in conjunction with hepatic differentiation, and functional maturation of hepatocytes in a dynamic 3D microenvironment. Our model represents critical progress in developing a biomimetic liver system to simulate liver tissue remodeling, and provides a versatile platform in drug development and disease modeling, ranging from physiology to pathology. Additionally, recent advances in the stem-cell technologies have made the development of 3D organoid possible, and thus, our study also provides further contribution to the development of physiologically relevant stem-cell-based 3D tissues that provide an elasticity-based predefined biomimetic 3D microenvironment.
Collapse
|
8
|
The role of α9β1 integrin and its ligands in the development of autoimmune diseases. J Cell Commun Signal 2017; 12:333-342. [PMID: 28975544 DOI: 10.1007/s12079-017-0413-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023] Open
Abstract
Adhesion of cells to extracellular matrix proteins through integrins expressed on the cell surface is important for cell adhesion/motility, survival, and differentiation. Recently, α9β1 integrin was reported to be important for the development of autoimmune diseases including rheumatoid arthritis, multiple sclerosis, and their murine models. In addition, ligands for α9β1 integrin, such as osteopontin and tenascin-C, are well established as key regulators of autoimmune diseases. Therefore, this review focused on the role of interactions between α9β1 integrin and its ligands in the development of autoimmune diseases.
Collapse
|
9
|
Arakawa CK, Badeau BA, Zheng Y, DeForest CA. Multicellular Vascularized Engineered Tissues through User-Programmable Biomaterial Photodegradation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201703156. [PMID: 28737278 PMCID: PMC5628157 DOI: 10.1002/adma.201703156] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/20/2017] [Indexed: 05/18/2023]
Abstract
A photodegradable material-based approach to generate endothelialized 3D vascular networks within cell-laden hydrogel biomaterials is introduced. Exploiting multiphoton lithography, microchannel networks spanning nearly all size scales of native human vasculature are readily generated with unprecedented user-defined 4D control. Intraluminal channel architectures of synthetic vessels are fully customizable, providing new opportunities for next-generation microfluidics and directed cell function.
Collapse
Affiliation(s)
- Christopher K Arakawa
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98105, USA
| | - Barry A Badeau
- Department of Chemical Engineering, University of Washington, 3781, Okanogan Lane NE, Seattle, WA, 98195, USA
| | - Ying Zheng
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98105, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA
| | - Cole A DeForest
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98105, USA
- Department of Chemical Engineering, University of Washington, 3781, Okanogan Lane NE, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA
| |
Collapse
|
10
|
The Promoting Effect of the Extracellular Matrix Peptide TNIIIA2 Derived from Tenascin-C in Colon Cancer Cell Infiltration. Int J Mol Sci 2017; 18:ijms18010181. [PMID: 28106752 PMCID: PMC5297813 DOI: 10.3390/ijms18010181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/26/2016] [Accepted: 01/11/2017] [Indexed: 12/18/2022] Open
Abstract
The extracellular matrix (ECM) molecule tenascin C (TNC) is known to be highly expressed under various pathological conditions such as inflammation and cancer. It has been reported that the expression of TNC is correlated with the malignant potential of cancer. In our laboratory, it was found that the peptide derived from the alternative splicing domain A2 in TNC, termed TNIIIA2, has been shown to influence a variety of cellular processes, such as survival, proliferation, migration, and differentiation. In this study, we investigated the effect of TNC/TNIIIA2 on the invasion and metastasis of colon cancer cells, Colon26-M3.1, or PMF-Ko14, using an in vitro and in vivo experimental system. The degree of cell invasion was increased by the addition of TNC and TNIIIA2 in a dose-dependent manner. The invasion by TNC and TNIIIA2 were suppressed by an MMP inhibitor or TNIIIA2-blocking antibody. In an in vivo experiment, pulmonary metastasis was promoted conspicuously by the addition of TNIIIA2. In this study, we found that colon cancer cell invasion and metastasis was accelerated by TNC/TNIIIA2 via MMP induction. This result suggests the possibility of a new strategy targeting TNC/TNIIIA2 for colon cancer.
Collapse
|
11
|
Expressed miRNAs target feather related mRNAs involved in cell signaling, cell adhesion and structure during chicken epidermal development. Gene 2016; 591:393-402. [PMID: 27320726 DOI: 10.1016/j.gene.2016.06.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 01/12/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Previous studies have shown that miRNA regulation contributes to a diverse set of processes including cellular differentiation and morphogenesis which leads to the creation of different cell types in multicellular organisms and is thus key to animal development. Feathers are one of the most distinctive features of extant birds and are important for multiple functions including flight, thermal regulation, and sexual selection. However, the role of miRNAs in feather development has been woefully understudied despite the identification of cell signaling pathways, cell adhesion molecules and structural genes involved in feather development. In this study, we performed a microarray experiment comparing the expression of miRNAs and mRNAs among three embryonic stages of development and two tissues (scutate scale and feather) of the chicken. We combined this expression data with miRNA target prediction tools and a curated list of feather related genes to produce a set of 19 miRNA-mRNA duplexes. These targeted mRNAs have been previously identified as important cell signaling and cell adhesion genes as well as structural genes involved in feather and scale morphogenesis. Interestingly, the miRNA target site of the cell signaling pathway gene, Aldehyde Dehydrogenase 1 Family, Member A3 (ALDH1A3), is unique to birds indicating a novel role in Aves. The identified miRNA target site of the cell adhesion gene, Tenascin C (TNC), is only found in specific chicken TNC splice variants that are differentially expressed in developing scutate scale and feather tissue indicating an important role of miRNA regulation in epidermal differentiation. Additionally, we found that β-keratins, a major structural component of avian and reptilian epidermal appendages, are targeted by multiple miRNA genes. In conclusion, our work provides quantitative expression data on miRNAs and mRNAs during feather and scale development and has produced a highly diverse, but manageable list of miRNA-mRNA duplexes for future validation experiments.
Collapse
|
12
|
Abstract
Tenascin-C (TNC), a multifunctional matricellular glyco-protein, is highly expressed in the majority of melanoma cell lines and has been implicated in the progression of melanoma. A growing body of evidence has implicated the role of TNC in the process of invasion and metastasis for melanoma. However, the mechanism and individual signaling pathways by which TNC drives melanoma progression have not been illuminated. Herein we provide perspectives from the investigation of TNC in other settings that may hint at the mechanistic role of TNC in this disease.
Collapse
|
13
|
Tucker RP, Chiquet-Ehrismann R. Tenascin-C: Its functions as an integrin ligand. Int J Biochem Cell Biol 2015; 65:165-8. [PMID: 26055518 DOI: 10.1016/j.biocel.2015.06.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/19/2015] [Accepted: 06/01/2015] [Indexed: 01/28/2023]
Abstract
This review summarizes the experimental evidence of tenascin-C/integrin interactions, emphasizing the identification of integrin binding sites and the effects of specific interactions on cell behavior. At least four integrins appear to bind to the third fibronectin-type 3 domain of tenascin-C: α9β1, αVβ3, α8β1 and αVβ6. The α9β1 integrin recognizes a highly conserved IDG motif in this domain, while the others recognize an RGD motif. There is also significant evidence that the collagen receptor α2β1 can bind to tenascin-C, but the interacting site is unknown. Tenascin-C interactions with α9β1 and αVβ3 can promote cell proliferation and interactions with αVβ3 can also inhibit apoptosis. Interactions with α7β1 integrin, which may bind to the alternatively spliced domain of tenascin-C, and α9β1 integrin are able to influence the differentiation of mesenchymal stem cells into the neuronal lineage. This illustrates the potential for using our knowledge of tenascins and their integrin receptors in stem cell-based therapies.
Collapse
Affiliation(s)
- Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California at Davis, 1 Shields Avenue, Davis, CA 95616, USA.
| | - Ruth Chiquet-Ehrismann
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Faculty of Science, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| |
Collapse
|
14
|
Duval C, Zaniolo K, Leclerc S, Salesse C, Guérin SL. Characterization of the human α9 integrin subunit gene: Promoter analysis and transcriptional regulation in ocular cells. Exp Eye Res 2015; 135:146-63. [PMID: 25746835 DOI: 10.1016/j.exer.2015.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/26/2015] [Accepted: 03/02/2015] [Indexed: 11/29/2022]
Abstract
α9β1 is the most recent addition to the integrin family of membrane receptors and consequently remains the one that is the least characterized. To better understand how transcription of the human gene encoding the α9 subunit is regulated, we cloned the α9 promoter and characterized the regulatory elements that are required to ensure its transcription. Transfection of α9 promoter/CAT plasmids in primary cultured human corneal epithelial cells (HCECs) and uveal melanoma cell lines demonstrated the presence of both negative and positive regulatory elements along the α9 promoter and positioned the basal α9 promoter to within 118 bp from the α9 mRNA start site. In vitro DNaseI footprinting and in vivo ChIP analyses demonstrated the binding of the transcription factors Sp1, c-Myb and NFI to the most upstream α9 negative regulatory element. The transcription factors Sp1 and NFI were found to bind the basal α9 promoter individually but Sp1 binding clearly predominates when both transcription factors are present in the same extract. Suppression of Sp1 expression through RNAi also caused a dramatic reduction in the expression of the α9 gene. Most of all, addition of tenascin-C (TNC), the ligand of α9β1, to the tissue culture plates prior to seeding HCECs increased α9 transcription whereas it simultaneously decreased expression of the α5 integrin subunit gene. This dual regulatory action of TNC on the transcription of the α9 and α5 genes suggests that both these integrins must work together to appropriately regulate cell adhesion, migration and differentiation that are hallmarks of tissue wound healing.
Collapse
Affiliation(s)
- Céline Duval
- Centre Universitaire d'Ophtalmologie-Recherche, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Québec, Canada
| | - Karine Zaniolo
- Centre Universitaire d'Ophtalmologie-Recherche, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Québec, Canada
| | - Steeve Leclerc
- Centre Universitaire d'Ophtalmologie-Recherche, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Québec, Canada
| | - Christian Salesse
- Centre Universitaire d'Ophtalmologie-Recherche, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Québec, Canada; Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Sylvain L Guérin
- Centre Universitaire d'Ophtalmologie-Recherche, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Québec, Canada; Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
15
|
Jones DR, Marchant RE, von Recum H, Sen Gupta A, Kottke-Marchant K. Photoinitiator-free synthesis of endothelial cell-adhesive and enzymatically degradable hydrogels. Acta Biomater 2015; 13:52-60. [PMID: 25462848 PMCID: PMC4416228 DOI: 10.1016/j.actbio.2014.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/07/2014] [Accepted: 11/05/2014] [Indexed: 12/13/2022]
Abstract
We report on a photoinitiator-free synthetic method of incorporating bioactivity into poly(ethylene glycol) (PEG) hydrogels in order to control physical properties, enzymatic biodegradability and cell-specific adhesiveness of the polymer network, while eliminating the need for UV-mediated photopolymerization. To accomplish this, hydrogel networks were polymerized using Michael addition with four-arm PEG acrylate (10 kDa), using a collagenase-sensitive peptide (CSP) as a crosslinker, and introducing an endothelial cell-adhesive peptide either terminally (RGD) or attached to the crosslinking peptide sequence (CSP-RGD). The efficiency of the Michael addition reactions were determined by nuclear magnetic resonance and Ellman's assay. Successful decoupling of cell adhesivity and physical properties was demonstrated by quantifying and comparing the swelling ratios and Young's moduli of various hydrogel formulations. Degradation profiles were established by incubating functionalized hydrogels in collagenase solutions (0.0-1.0 μg ml(-1)), demonstrating that functionalized hydrogels degraded at a rate dependent upon collagenase concentration. Moreover, it was shown that the degradation rate was independent of CSP-RGD concentration. Cell attachment and proliferation on functionalized hydrogels were compared for various RGD concentrations, providing evidence that cell attachment and proliferation were directly related to relative amounts of the CSP-RGD combination peptide. An increase in cell viability was achieved using Michael addition techniques when compared to UV polymerization, and was assessed by a LIVE/DEAD fluorescence assay. This photoinitiator-free method shows promise in creating hydrogel-based tissue engineering scaffolds allow for decoupled cell adhesivity and physical properties and that render greater cell viability.
Collapse
Affiliation(s)
- Derek R Jones
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Roger E Marchant
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Horst von Recum
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kandice Kottke-Marchant
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
16
|
Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev 2015; 44:5680-742. [DOI: 10.1039/c4cs00483c] [Citation(s) in RCA: 359] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the recent developments of surface modification and endothelialization of biomaterials in vascular tissue engineering applications.
Collapse
Affiliation(s)
- Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Haixia Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Qian Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xuefang Hao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Juan Lv
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Nan Ma
- Institute of Chemistry and Biochemistry
- Free University of Berlin
- D-14195 Berlin
- Germany
| | - Wenzhong Li
- Department of Cardiac Surgery
- University of Rostock
- D-18057 Rostock
- Germany
| |
Collapse
|
17
|
Tanaka R, Seki Y, Saito Y, Kamiya S, Fujita M, Okutsu H, Iyoda T, Takai T, Owaki T, Yajima H, Taira J, Hayashi R, Kodama H, Matsunaga T, Fukai F. Tenascin-C-derived peptide TNIIIA2 highly enhances cell survival and platelet-derived growth factor (PDGF)-dependent cell proliferation through potentiated and sustained activation of integrin α5β1. J Biol Chem 2014; 289:17699-708. [PMID: 24808173 DOI: 10.1074/jbc.m113.546622] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tenascin-C is an adhesion modulatory matrix protein that is highly expressed in tumors; however, its biochemical activity involved in tumorigenesis is not fully understood. On the other hand, increasing evidence indicates the importance of integrin α5β1 in cancer development. We previously demonstrated that tenascin-C harbors a functional site that can be released as a proadhesive peptide such as TNIIIA2. Peptide TNIIIA2 is capable of inducing activation of β1-integrins including α5β1 via syndecan-4. In this study the proadhesive effect of TNIIIA2 was characterized by potentiated and sustained activation of integrin α5β1. Based on this effect, TNIIIA2 rendered nontransformed fibroblasts (NIH3T3) resistant to serum deprivation-elicited anoikis through activation of the Akt/Bcl-2 pathway. Moreover, TNIIIA2 hyperstimulated PDGF-dependent proliferation of NIH3T3 by activating integrin α5β1. Tenascin-C, a parental protein of TNIIIA2, also stimulated PDGF-dependent proliferation, which was blocked by a matrix metalloproteinase-2/9 inhibitor and an anti-TNIIIA2 function-blocking antibody, suggesting proteolytic exposure of the proadhesive effect of TNIIIA2. Mechanistic analyses revealed that TNIIIA2 induced a lateral association of PDGF receptor β with the molecular complex of activated integrin α5β1 and syndecan-4 in the membrane microdomains enriched with cholesterol/caveolin-1, resulting in prolonged activation of PDGF receptor β and the subsequent Ras/mitogen-activated protein kinase pathway in a PDGF-dependent manner. Of note, TNIIIA2 induced continuous proliferation in NIH3T3 in an integrin α5β1-dependent manner even after they formed a confluent monolayer. Thus, it was proposed that tenascin-C might be involved in deregulated cell growth through potentiated and sustained activation of integrin α5β1 after exposure of the proadhesive effect of TNIIIA2.
Collapse
Affiliation(s)
- Rika Tanaka
- From the Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Yutaka Seki
- From the Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Yohei Saito
- From the Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Sadahiro Kamiya
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane-shi, Chiba 283-8555, Japan
| | - Motomichi Fujita
- From the Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Hiroaki Okutsu
- From the Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Takuya Iyoda
- From the Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Tatsuya Takai
- From the Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Toshiyuki Owaki
- From the Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Hirofumi Yajima
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Junichi Taira
- Department of Chemistry, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Ryo Hayashi
- Faculty of Science and Engineering, Saga University, Saga 849-0922, Japan, and
| | - Hiroaki Kodama
- Faculty of Science and Engineering, Saga University, Saga 849-0922, Japan, and
| | - Takuya Matsunaga
- From the Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Fumio Fukai
- From the Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan,
| |
Collapse
|
18
|
Guo J, Chen H, Wang Y, Cao CB, Guan GQ. A novel porcine acellular dermal matrix scaffold used in periodontal regeneration. Int J Oral Sci 2013; 5:37-43. [PMID: 23492902 PMCID: PMC3632768 DOI: 10.1038/ijos.2013.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 01/14/2013] [Indexed: 01/07/2023] Open
Abstract
Regeneration of periodontal tissue is the most promising method for restoring periodontal structures. To find a suitable bioactive three-dimensional scaffold promoting cell proliferation and differentiation is critical in periodontal tissue engineering. The objective of this study was to evaluate the biocompatibility of a novel porcine acellular dermal matrix as periodontal tissue scaffolds both in vitro and in vivo. The scaffolds in this study were purified porcine acellular dermal matrix (PADM) and hydroxyapatite-treated PADM (HA-PADM). The biodegradation patterns of the scaffolds were evaluated in vitro. The biocompatibility of the scaffolds in vivo was assessed by implanting them into the sacrospinal muscle of 20 New Zealand white rabbits. The hPDL cells were cultured with PADM or HA-PADM scaffolds for 3, 7, 14, 21 and 28 days. Cell viability assay, scanning electron microscopy (SEM), hematoxylin and eosin (H&E) staining, immunohistochemistry and confocal microscopy were used to evaluate the biocompatibility of the scaffolds. In vitro, both PADM and HA-PADM scaffolds displayed appropriate biodegradation pattern, and also, demonstrated favorable tissue compatibility without tissue necrosis, fibrosis and other abnormal response. The absorbance readings of the WST-1 assay were increased with the time course, suggesting the cell proliferation in the scaffolds. The hPDL cells attaching, spreading and morphology on the surface of the scaffold were visualized by SEM, H&E staining, immnuohistochemistry and confocal microscopy, demonstrated that hPDL cells were able to grow into the HA-PADM scaffolds and the amount of cells were growing up in the course of time. This study proved that HA-PADM scaffold had good biocompatibility in animals in vivo and appropriate biodegrading characteristics in vitro. The hPDL cells were able to proliferate and migrate into the scaffold. These observations may suggest that HA-PADM scaffold is a potential cell carrier for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Jing Guo
- Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, China
| | | | | | | | | |
Collapse
|
19
|
Guo J, Wang Y, Cao C, Dziak R, Preston B, Guan G. Human periodontal ligament cells reaction on a novel hydroxyapatite-collagen scaffold. Dent Traumatol 2012; 29:103-9. [PMID: 22681634 DOI: 10.1111/j.1600-9657.2012.01152.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Periodontal tissue regeneration presents a highly promising method for restoring periodontal structures. The development of a suitable bioactive scaffold that promotes cell proliferation and differentiation is critical in periodontal tissue engineering. The aim of this study was to evaluate the biocompatibility of a novel 3-dimensional hydroxyapatite-collagen scaffold with human periodontal ligament (hPDL) cell culture. METHODS The scaffold was produced from a natural collagen matrix - purified porcine acellular dermal matrix (PADM), which was then treated with hydroxyapatite (HA) through a biomimetic chemical process to obtain hydroxyapatite-porcine acellular dermal matrix (HA-PADM) scaffold. The hPDL cells were cultured with HA-PADM scaffolds for 1, 3, 6, 14, and 28 days. The cell viability assay, scanning electron microscopy (SEM), hematoxylin and eosin (H&E) staining, immunohistochemistry, and confocal microscopy were employed in different time points to evaluate the biocompatibility of the scaffolds with hPDL cells. RESULTS The cell viability assay (WST-1 test) verified cell proliferation on the HA-PADM scaffolds. The SEM study showed unique morphology of hPDL cells, which attach and spread on the surface of the scaffolds. The H&E staining, immunohistochemistry, and confocal microscopy demonstrated that hPDL cells were able to grow into the HA-PADM scaffolds and maintain viability after prolonged culture. CONCLUSIONS This study proved that HA-PADM scaffold is -biocompatible for hPDL cells. The cells were able to proliferate and migrate into the scaffold. These observations suggest that HA-PADM is a potential cell carrier for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Jing Guo
- Department of Orthodontics, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | | | | | | | | | | |
Collapse
|
20
|
Endothelialization and patency of RGD-functionalized vascular grafts in a rabbit carotid artery model. Biomaterials 2012; 33:2880-91. [DOI: 10.1016/j.biomaterials.2011.12.047] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 12/26/2011] [Indexed: 01/22/2023]
|
21
|
Helbig D, Paasch U. Molecular changes during skin aging and wound healing after fractional ablative photothermolysis. Skin Res Technol 2011; 17:119-28. [DOI: 10.1111/j.1600-0846.2010.00477.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Soucy PA, Werbin J, Heinz W, Hoh JH, Romer LH. Microelastic properties of lung cell-derived extracellular matrix. Acta Biomater 2011; 7:96-105. [PMID: 20656080 DOI: 10.1016/j.actbio.2010.07.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 07/18/2010] [Accepted: 07/19/2010] [Indexed: 01/11/2023]
Abstract
The mechanical properties of the extracellular microenvironment regulate cell behavior, including migration, proliferation and morphogenesis. Although the elastic moduli of synthetic materials have been studied, little is known about the properties of naturally produced extracellular matrix. Here we have utilized atomic force microscopy to characterize the microelastic properties of decellularized cell-derived matrix from human pulmonary fibroblasts. This heterogeneous three-dimensional matrix had an average thickness of 5 ± 0.4 μm and a Young's modulus of 105 ± 14 Pa. Ascorbate treatment of the lung fibroblasts prior to extraction produced a twofold increase in collagen I content, but did not affect the stiffness of the matrices compared with matrices produced in standard medium. However, fibroblast-derived matrices that were crosslinked with glutaraldehyde demonstrated a 67% increase in stiffness. This work provides a microscale characterization of fibroblast-derived matrix mechanical properties. An accurate understanding of native three-dimensional extracellular microenvironments will be essential for controlling cell responses in tissue engineering applications.
Collapse
|
23
|
Wiig H, Keskin D, Kalluri R. Interaction between the extracellular matrix and lymphatics: consequences for lymphangiogenesis and lymphatic function. Matrix Biol 2010; 29:645-56. [PMID: 20727409 PMCID: PMC3992865 DOI: 10.1016/j.matbio.2010.08.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 08/03/2010] [Accepted: 08/03/2010] [Indexed: 12/19/2022]
Abstract
The lymphatic system is important for body fluid balance as well as immunological surveillance. Due to the identification of new molecular markers during the last decade, there has been a recent dramatic increase in our knowledge on the molecular mechanisms involved in lymphatic vessel growth (lymphangiogenesis) and lymphatic function. Here we review data showing that although it is often overlooked, the extracellular matrix plays an important role in the generation of new lymphatic vessels as a response to physiological and pathological stimuli. Extracellular matrix-lymphatic interactions as well as biophysical characteristics of the stroma have consequences for tumor formation, growth and metastasis. During the recent years, anti-lymphangiogenesis has emerged as an additional therapeutic modality to the clinically applied anti-angiogenesis strategy. Oppositely, enhancement of lymphangiogenesis in situations of lymph accumulation is seen as a promising strategy to a set of conditions where few therapeutic avenues are available. Knowledge on the interaction between the extracellular matrix and the lymphatics may enhance our understanding of the underlying mechanisms and may ultimately lead to better therapies for conditions where reduced or increased lymphatic function is the therapeutic target.
Collapse
Affiliation(s)
- Helge Wiig
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, United States
| | | | | |
Collapse
|
24
|
Andrade FK, Costa R, Domingues L, Soares R, Gama M. Improving bacterial cellulose for blood vessel replacement: Functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide. Acta Biomater 2010; 6:4034-41. [PMID: 20438872 DOI: 10.1016/j.actbio.2010.04.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Revised: 04/24/2010] [Accepted: 04/27/2010] [Indexed: 02/02/2023]
Abstract
Chimeric proteins containing a cellulose-binding module (CBM) and an adhesion peptide (RGD or GRGDY) were produced and used to improve the adhesion of human microvascular endothelial cells (HMEC) to bacterial cellulose (BC). The effect of these proteins on the HMEC-BC interaction was studied. The results obtained demonstrated that recombinant proteins containing adhesion sequences were able to significantly increase the attachment of HMEC to BC surfaces, especially the RGD sequence. The images obtained by scanning electron microscopy showed that the cells on the RGD-treated BC present a more elongated morphology 48h after cell seeding. The results also showed that RGD decreased the in-growth of HMEC cells through the BC and stimulated the early formation of cord-like structures by these endothelial cells. Thus, the use of recombinant proteins containing a CBM domain, with high affinity and specificity for cellulose surfaces allows control of the interaction of this material with cells. CBM may be combined with virtually any biologically active protein for the modification of cellulose-based materials, for in vitro or in vivo applications.
Collapse
|
25
|
To WS, Midwood KS. Cryptic domains of tenascin-C differentially control fibronectin fibrillogenesis. Matrix Biol 2010; 29:573-85. [DOI: 10.1016/j.matbio.2010.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 08/02/2010] [Accepted: 08/04/2010] [Indexed: 12/20/2022]
|
26
|
Carnelio S, Vij H. Expression of tenascin and nucleolar organizer region in ameloblastoma and ameloblastic fibroma. J Oral Pathol Med 2010; 39:223-9. [DOI: 10.1111/j.1600-0714.2009.00838.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Saito Y, Owaki T, Matsunaga T, Saze M, Miura S, Maeda M, Eguchi M, Tanaka R, Taira J, Kodama H, Goto S, Niitsu Y, Terada H, Fukai F. Apoptotic death of hematopoietic tumor cells through potentiated and sustained adhesion to fibronectin via VLA-4. J Biol Chem 2009; 285:7006-15. [PMID: 20007695 DOI: 10.1074/jbc.m109.027581] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been postulated that inactivated beta1-integrins are involved in the disordered growth of hematopoietic tumor cells. We recently found that TNIIIA2, a peptide derived from tenascin-C, strongly activates beta1-integrins through binding with syndecan-4. We show here that Ramos Burkitt's lymphoma cells can survive and grow in suspension but undergo apoptosis when kept adhering to fibronectin by stimulation with TNIIIA2. Other integrin activators, Mg(2+) and TS2/16 (an integrin-activating antibody), were also capable of inducing apoptosis. The inactivation of ERK1/2 and Akt and the subsequent activation of Bad were involved in the apoptosis. The results using other hematopoietic tumor cell lines expressing different levels of fibronectin receptors (VLA-4 and VLA-5) showed that potentiated and sustained adhesion to fibronectin via VLA-4 causally induces apoptosis also in various types of hematopoietic tumor cells in addition to Ramos cells. Because TNIIIA2 requires syndecan-4 as a membrane receptor for activation of beta1-integrins, it induced apoptosis preferentially in hematopoietic tumor cells, which expressed both VLA-4 and syndecan-4 as membrane receptors mediating the effects of fibronectin and TNIIIA2, respectively. Therefore, normal peripheral blood cells, such as neutrophils, monocytes, and lymphocytes, which poorly expressed syndecan-4, were almost insusceptible to TNIIIA2-induced apoptosis. The TNIIIA2-related matricryptic site of TN-C could contribute, once exposed, to preventing prolonged survival of hematopoietic malignant progenitors through potentiated and sustained activation of VLA-4.
Collapse
Affiliation(s)
- Yohei Saito
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-Shi, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Sriramarao P, Bourdon MA. Melanoma Cell Invasive and Metastatic Potential Correlates with Endothelial Cell Reorganization and Tenascin Expression. ACTA ACUST UNITED AC 2009; 4:85-97. [DOI: 10.3109/10623329609024685] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Soucy PA, Romer LH. Endothelial cell adhesion, signaling, and morphogenesis in fibroblast-derived matrix. Matrix Biol 2009; 28:273-83. [DOI: 10.1016/j.matbio.2009.04.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 04/07/2009] [Accepted: 04/07/2009] [Indexed: 10/20/2022]
|
31
|
Lu X, Lu D, Scully M, Kakkar V. The Role of Integrins in Cancer and the Development of Anti-Integrin Therapeutic Agents for Cancer Therapy. PERSPECTIVES IN MEDICINAL CHEMISTRY 2008. [DOI: 10.1177/1177391x0800200003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Integrins have been reported to mediate cell survival, proliferation, differentiation, and migration programs. For this reason, the past few years have seen an increased interest in the implications of integrin receptors in cancer biology and tumor cell aggression. This review considers the potential role of integrins in cancer and also addresses why integrins are present attractive targets for drug design. It discusses of the several properties of the integrin-based chemotherapeutic agents currently under consideration clinically and provides an insight into cancer drug development using integrin as a target.
Collapse
Affiliation(s)
- Xinjie Lu
- Thrombosis Research Institute, Manresa Road, London, SW3 6LR U.K
| | - Dong Lu
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, U.K
| | - Mike Scully
- Thrombosis Research Institute, Manresa Road, London, SW3 6LR U.K
| | - Vijay Kakkar
- Thrombosis Research Institute, Manresa Road, London, SW3 6LR U.K
| |
Collapse
|
32
|
Experimental study on transarterial administration of GRGDSP combined with transarterial chemoembolization in rats with hepatic carcinoma. Cardiovasc Intervent Radiol 2007; 31:377-82. [PMID: 18058171 DOI: 10.1007/s00270-007-9233-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Revised: 01/30/2007] [Accepted: 10/16/2007] [Indexed: 12/19/2022]
Abstract
PURPOSE To evaluate the effects of transarterial administration of an integrin antagonist, GRGDSP (Gly-Arg-Gly-Asp-Ser-Pro), combined with transarterial chemoembolization (TACE) to treat hepatic carcinoma in rats. METHODS Walker-256 tumor was implanted beneath the liver capsule in 26 Wistar rats. Animal subjects were assigned to groups based on which treatment was injected into the hepatic artery: group A, GRGDSP + TACE; group B, TACE alone; and group C, normal saline. Magnetic resonance imaging (MRI), tumor pathology, and immunohistochemistry were performed to assess each treatment. RESULTS The ratios of the post-treatment to pretreatment tumor volumes (V2/V1) in groups A, B, and C were 4.42 +/- 0.48, 6.98 +/- 1.09, and 13.00 +/- 1.68, respectively. The metastatic potential of the tumors was assessed by tumor cell nest counts, which were 5.00 +/- 1.25, 6.63 +/- 1.60, and 7.22 +/- 1.92 in groups A, B, and C, respectively. Microvessel density (MVD) was quantified by measuring von Willebrand factor density values, which were 0.18 +/- 0.02, 0.22 +/- 0.02, and 0.23 +/- 0.02 in groups A, B, and C, respectively. CONCLUSIONS Transarterial infusion of GRGDSP combined with TACE noticeably inhibited the growth of hepatic carcinoma and intrahepatic metastases in rats.
Collapse
|
33
|
Pavon-Djavid G, Gamble LJ, Ciobanu M, Gueguen V, Castner DG, Migonney V. Bioactive Poly(ethylene terephthalate) Fibers and Fabrics: Grafting, Chemical Characterization, and Biological Assessment. Biomacromolecules 2007; 8:3317-25. [DOI: 10.1021/bm070344i] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- G. Pavon-Djavid
- Laboratoire de Biomatériaux et Polymères de Spécialité (LBPS/B2OA−UMR 7052) Institut Galilée, Université Paris 13, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France, and National Electron Spectroscopy for Chemical Analysis and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, Box 351750, University of Washington, Seattle, Washington 98195-1750
| | - L. J. Gamble
- Laboratoire de Biomatériaux et Polymères de Spécialité (LBPS/B2OA−UMR 7052) Institut Galilée, Université Paris 13, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France, and National Electron Spectroscopy for Chemical Analysis and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, Box 351750, University of Washington, Seattle, Washington 98195-1750
| | - M. Ciobanu
- Laboratoire de Biomatériaux et Polymères de Spécialité (LBPS/B2OA−UMR 7052) Institut Galilée, Université Paris 13, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France, and National Electron Spectroscopy for Chemical Analysis and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, Box 351750, University of Washington, Seattle, Washington 98195-1750
| | - V. Gueguen
- Laboratoire de Biomatériaux et Polymères de Spécialité (LBPS/B2OA−UMR 7052) Institut Galilée, Université Paris 13, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France, and National Electron Spectroscopy for Chemical Analysis and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, Box 351750, University of Washington, Seattle, Washington 98195-1750
| | - D. G. Castner
- Laboratoire de Biomatériaux et Polymères de Spécialité (LBPS/B2OA−UMR 7052) Institut Galilée, Université Paris 13, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France, and National Electron Spectroscopy for Chemical Analysis and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, Box 351750, University of Washington, Seattle, Washington 98195-1750
| | - V. Migonney
- Laboratoire de Biomatériaux et Polymères de Spécialité (LBPS/B2OA−UMR 7052) Institut Galilée, Université Paris 13, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France, and National Electron Spectroscopy for Chemical Analysis and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, Box 351750, University of Washington, Seattle, Washington 98195-1750
| |
Collapse
|
34
|
Saito Y, Imazeki H, Miura S, Yoshimura T, Okutsu H, Harada Y, Ohwaki T, Nagao O, Kamiya S, Hayashi R, Kodama H, Handa H, Yoshida T, Fukai F. A peptide derived from tenascin-C induces beta1 integrin activation through syndecan-4. J Biol Chem 2007; 282:34929-37. [PMID: 17901052 DOI: 10.1074/jbc.m705608200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Tenascin-C (TN-C) is unique for its cell adhesion modulatory function. We have shown that TNIIIA2, a synthetic 22-mer peptide derived from TN-C, stimulated beta1 integrin-mediated cell adhesion of nonadherent and adherent cell types, by inducing activation of beta1 integrin. The active site of TNIIIA2 appeared cryptic in the TN-C molecule but was exposed by MMP-2 processing of TN-C. The following results suggest that cell surface heparan sulfate (HS) proteoglycan (HSPG), including syndecan-4, participated in TNIIIA2-induced beta1 integrin activation: 1) TNIIIA2 bound to cell surface HSPG via its HS chains, as examined by photoaffinity labeling; 2) heparitinase I treatment of cells abrogated beta1 integrin activation induced by TNIIIA2; 3) syndecan-4 was isolated by affinity chromatography using TNIIIA2-immobilized beads; 4) small interfering RNA-based down-regulation of syndecan-4 expression reduced TNIIIA2-induced beta1 integrin activation, and consequent cell adhesion to fibronectin; 5) overexpression of syndecan-4 core protein enhanced TNIIIA2-induced activation of beta1 integrin. However, treatments that targeted the cytoplasmic region of syndecan-4, including ectopic expression of its mutant truncated with the cytoplasmic domains and treatment with protein kinase Calpha inhibitor Gö6976, did not influence the TNIIIA2 activity. These results suggest that a TNIIIA2-related matricryptic site of the TN-C molecule, exposed by MMP-2 processing, may have bound to syndecan-4 via its HS chains and then induced conformational change in beta1 integrin necessary for its functional activation. A lateral interaction of beta1 integrin with the extracellular region of the syndecan-4 molecule may be involved in this conformation change.
Collapse
Affiliation(s)
- Yohei Saito
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ng SP, Billings KS, Ohashi T, Allen MD, Best RB, Randles LG, Erickson HP, Clarke J. Designing an extracellular matrix protein with enhanced mechanical stability. Proc Natl Acad Sci U S A 2007; 104:9633-7. [PMID: 17535921 PMCID: PMC1887552 DOI: 10.1073/pnas.0609901104] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Indexed: 01/22/2023] Open
Abstract
The extracellular matrix proteins tenascin and fibronectin experience significant mechanical forces in vivo. Both contain a number of tandem repeating homologous fibronectin type III (fnIII) domains, and atomic force microscopy experiments have demonstrated that the mechanical strength of these domains can vary significantly. Previous work has shown that mutations in the core of an fnIII domain from human tenascin (TNfn3) reduce the unfolding force of that domain significantly: The composition of the core is apparently crucial to the mechanical stability of these proteins. Based on these results, we have used rational redesign to increase the mechanical stability of the 10th fnIII domain of human fibronectin, FNfn10, which is directly involved in integrin binding. The hydrophobic core of FNfn10 was replaced with that of the homologous, mechanically stronger TNfn3 domain. Despite the extensive substitution, FNoTNc retains both the three-dimensional structure and the cell adhesion activity of FNfn10. Atomic force microscopy experiments reveal that the unfolding forces of the engineered protein FNoTNc increase by approximately 20% to match those of TNfn3. Thus, we have specifically designed a protein with increased mechanical stability. Our results demonstrate that core engineering can be used to change the mechanical strength of proteins while retaining functional surface interactions.
Collapse
Affiliation(s)
- Sean P. Ng
- *Cambridge University Chemical Laboratory, Medical Research Council Centre for Protein Engineering, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Kate S. Billings
- *Cambridge University Chemical Laboratory, Medical Research Council Centre for Protein Engineering, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tomoo Ohashi
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710; and
| | - Mark D. Allen
- Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Robert B. Best
- *Cambridge University Chemical Laboratory, Medical Research Council Centre for Protein Engineering, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Lucy G. Randles
- *Cambridge University Chemical Laboratory, Medical Research Council Centre for Protein Engineering, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Harold P. Erickson
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710; and
| | - Jane Clarke
- *Cambridge University Chemical Laboratory, Medical Research Council Centre for Protein Engineering, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
36
|
Orend G, Chiquet-Ehrismann R. Tenascin-C induced signaling in cancer. Cancer Lett 2006; 244:143-63. [PMID: 16632194 DOI: 10.1016/j.canlet.2006.02.017] [Citation(s) in RCA: 283] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 02/21/2006] [Accepted: 02/21/2006] [Indexed: 12/11/2022]
Abstract
Tenascin-C is an adhesion modulatory extracellular matrix molecule that is highly expressed in the microenvironment of most solid tumors. High tenascin-C expression reduces the prognosis of disease-free survival in patients with some cancers. The possible role of tenascin-C in tumor initiation and progression is addressed with emphasis on underlying signaling mechanisms. How tenascin-C affects malignant transformation, uncontrolled proliferation, angiogenesis, metastasis and escape from tumor immunosurveillance is summarized. Finally, we discuss how the phenotypes of tenascin-C knock-out mice may help define the roles of tenascin-C in tumorigenesis and how this knowledge could be applied to cancer therapy.
Collapse
Affiliation(s)
- Gertraud Orend
- Department of Clinical and Biological Sciences, Institute of Biochemistry and Genetics, Center for Biomedicine, DKBW, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland.
| | | |
Collapse
|
37
|
Ballard VLT, Sharma A, Duignan I, Holm JM, Chin A, Choi R, Hajjar KA, Wong SC, Edelberg JM. Vascular tenascin‐C regulates cardiac endothelial phenotype and neovascularization. FASEB J 2006; 20:717-9. [PMID: 16461331 DOI: 10.1096/fj.05-5131fje] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Microenvironmental cues mediate postnatal neovascularization via modulation of endothelial cell and bone marrow-derived endothelial progenitor cell (EPC) activity. Numerous signals regulate the activity of both of these cell types in response to vascular injury, which suggests that parallel mechanisms regulate angiogenesis in the vascular beds of both the heart and bone marrow. To identify mediators of such shared pathways, in vivo bone marrow/cardiac phage display biopanning was performed and led to the identification of tenascin-C as a candidate protein. Functionally, tenascin-C inhibits cardiac endothelial cell spreading and enhances migration in response to angiogenic growth factors. Analysis of human coronary thrombi revealed tenascin-C protein expression colocalized with the endothelial cell/EPC marker Tie-2 in intrathrombi vascular channels. Immunostains in the rodent heart demonstrated that tenascin-C also colocalizes with EPCs homing to sites of cardiac angiogenic induction. To determine the importance of tenascin-C in cardiac neovascularization, we used an established cardiac transplantation model and showed that unlike wild-type mice, tenascin-C-/- mice fail to vascularize cardiac allografts. This demonstrates for the first time that tenascin-C is essential for postnatal cardiac angiogenic function. Together, our data highlight the role of tenascin-C as a microenvironmental regulator of cardiac endothelial/EPC activity.
Collapse
Affiliation(s)
- Victoria L T Ballard
- Department of Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ogawa K, Ito M, Takeuchi K, Nakada A, Heishi M, Suto H, Mitsuishi K, Sugita Y, Ogawa H, Ra C. Tenascin-C is upregulated in the skin lesions of patients with atopic dermatitis. J Dermatol Sci 2005; 40:35-41. [PMID: 16043328 DOI: 10.1016/j.jdermsci.2005.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Revised: 05/28/2005] [Accepted: 06/09/2005] [Indexed: 12/22/2022]
Abstract
BACKGROUND Tenascin-C is a large, hexameric extracellular matrix glycoprotein that is expressed during embryogenesis, carcinogenesis and wound healing. In normal adult human skin the expression level of tenascin-C is low, but levels are elevated in skin tumors and rise significantly in the dermal compartment during wound healing. Although the expression of tenascin-C could be upregulated by inflammatory cytokines, the role of tenascin-C in atopic dermatitis (AD) is still unclear. OBJECTIVE To identify genes that plays a role in AD. METHODS We screened for differentially expressed genes in lesional and non-lesional skin of AD patients using DNA microarray. Then we monitored with quantitative PCR the expression of the novel disease related genes in human keratinocytes or pinnae from NC/Nga mice. RESULTS We found that tenascin-C gene expression was expressed at higher levels in lesional skin compared to non-lesional skin of the patients, whereas it was not upregulated in the skin of psoriatic patients or healthy controls. In human cultured keratinocytes, tenascin-C was markedly upregulated by IL-4 and IL-13, and moderately upregulated by IFN-gamma. Tenascin-C expression was also upregulated in the AD-like skin lesions induced in NC/Nga mice ears by intradermal injection of mite antigen, and this upregulation was inhibited by prednisolone. CONCLUSION These results suggest that upregulation of the tenascin-C expression is specific to AD lesions, and that tenascin-C may therefore play a critical role in regulating the underlining inflammatory processes, which are involved in the pathology of AD.
Collapse
Affiliation(s)
- Kaoru Ogawa
- Genox Research Inc., Ibaraki, Laboratory of Seeds Finding Technology, Eisai Co. Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ng SP, Rounsevell RWS, Steward A, Geierhaas CD, Williams PM, Paci E, Clarke J. Mechanical Unfolding of TNfn3: The Unfolding Pathway of a fnIII Domain Probed by Protein Engineering, AFM and MD Simulation. J Mol Biol 2005; 350:776-89. [PMID: 15964016 DOI: 10.1016/j.jmb.2005.04.070] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 04/26/2005] [Accepted: 04/27/2005] [Indexed: 12/25/2022]
Abstract
Protein engineering Phi-value analysis combined with single molecule atomic force microscopy (AFM) was used to probe the molecular basis for the mechanical stability of TNfn3, the third fibronectin type III domain from human tenascin. This approach has been adopted previously to solve the forced unfolding pathway of a titin immunoglobulin domain, TI I27. TNfn3 and TI I27 are members of different protein superfamilies and have no sequence identity but they have the same beta-sandwich structure consisting of two antiparallel beta-sheets. TNfn3, however, unfolds at significantly lower forces than TI I27. We compare the response of these proteins to mechanical force. Mutational analysis shows that, as is the case with TI I27, TNfn3 unfolds via a force-stabilised intermediate. The key event in forced unfolding in TI I27 is largely the breaking of hydrogen bonds and hydrophobic interactions between the A' and G-strands. The mechanical Phi-value analysis and molecular dynamics simulations reported here reveal that significantly more of the TNfn3 molecule contributes to its resistance to force. Both AFM experimental data and molecular dynamics simulations suggest that the rate-limiting step of TNfn3 forced unfolding reflects a transition from the extended early intermediate to an aligned intermediate state. As well as losses of interactions of the A and G-strands and associated loops there are rearrangements throughout the core. As was the case for TI I27, the forced unfolding pathway of TNfn3 is different from that observed in denaturant studies in the absence of force.
Collapse
Affiliation(s)
- Sean P Ng
- Cambridge University Department of Chemistry, MRC Centre for Protein Engineering, Lensfield Rd, Cambridge CB2 1EW, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
Maitz MF, Shevchenko N. Plasma-immersion ion-implanted nitinol surface with depressed nickel concentration for implants in blood. J Biomed Mater Res A 2005; 76:356-65. [PMID: 16270338 DOI: 10.1002/jbm.a.30526] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ion implantation into nitinol had been shown previously to decrease the surface nickel concentration of this alloy and produce a titanium oxide layer. Nothing is known yet about the blood compatibility of this surface and the suitability for implants in the blood vessels, like vascular stents. Nickel depletion of superelastic nitinol was obtained by oxygen or helium plasma-immersion ion implantation. The latter leads to the formation of a nickel-poor titanium-oxide surface with a nanoporous structure, which was used for comparison. Fibrinogen adsorption and conformation changes, blood platelet adhesion, and contact activation of the blood clotting cascade have been checked as in vitro parameters of blood compatibility; metabolic activity and release of cytokines IL-6 and IL-8 from cultured endothelial cells on these surfaces give information about the reaction of the blood vessel wall. The oxygen-ion-implanted nitinol surface adsorbed less fibrinogen on its surface and activated the contact system less than the untreated nitinol surface, but conformation changes of fibrinogen were higher on the oxygen-implanted nitinol. No difference between initial and oxygen-implanted nitinol was found for the platelet adherence, endothelial cell activity, or cytokine release. The nanoporous, helium-implanted nitinol behaved worse than the initial one in most aspects. Oxygen-ion implantation is seen as a useful method to decrease the nickel concentration in the surface of nitinol for cardiovascular applications.
Collapse
Affiliation(s)
- Manfred F Maitz
- Institut für Ionenstrahlphysik und Materialforschung, Forschungszentrum Rossendorf, PF 51 01 19, 01314 Dresden, Germany.
| | | |
Collapse
|
41
|
Kallenbach K, Leyh RG, Lefik E, Walles T, Wilhelmi M, Cebotari S, Schmiedl A, Haverich A, Mertsching H. Guided tissue regeneration: porcine matrix does not transmit PERV. Biomaterials 2004; 25:3613-20. [PMID: 15020135 DOI: 10.1016/j.biomaterials.2003.10.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Accepted: 10/13/2003] [Indexed: 10/26/2022]
Abstract
OBJECTIVE For cardiovascular tissue engineering, acellularized scaffolds of porcine matrices have been successfully used. However, the possibility of porcine endogenous retrovirus (PERV) transmission remains debatable. In this study, we investigated whether acellularized porcine vascular scaffolds cause cross-species transmission of PERV in a xenogenic model. METHODS Porcine pulmonary arteries were acellularized and implanted into sheep in orthotopic position (n=6). Cardiopulmonary bypass support was used for all operations. Blood samples were collected regularly up to 6 months after the operation, and cellular components were tested for PERV infection by PCR and RT-PCR. Grafts were explanted 6 and 12 months after implantation. Tissue samples were characterized by histology and electron microscopy and tested for PERV sequences. RESULTS All animals survived the procedure and follow up until explantation of the grafts. PERV DNA was detectable in acellularized scaffolds of porcine matrices. Acellular porcine pulmonary arteries scaffolds were repopulated in vivo by autologous cells of the host, leading to a vessel consisting of all cellular components of the vessel wall. No PERV sequences were detectable neither in all tested peripheral blood samples nor in tissue samples of in vivo recellularized grafts up to 6 months after implantation. Electron microscopy revealed no signs of graft infection by retrovirus. CONCLUSIONS Guided tissue regeneration of acellularized vascular porcine matrix scaffolds leads to structured vessels up to one year without risk of PERV transmisson.
Collapse
Affiliation(s)
- Klaus Kallenbach
- Department of Thoracic and Cardiovascular Surgery, Hennover Medical School, Carl-Neuberg-Strasse 1, 30623 Hannover, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Jang JH, Hwang JH, Chung CP, Choung PH. Identification and Kinetics Analysis of a Novel Heparin-binding Site (KEDK) in Human Tenascin-C. J Biol Chem 2004; 279:25562-6. [PMID: 15069070 DOI: 10.1074/jbc.m403170200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction between tenascin-C (TN-C), a multi-subunit extracellular matrix protein, and heparin was examined using a surface plasmon resonance-based technique on a Biacore system. The aims of the present study were to examine the affinity of fibronectin type III repeats of TN-C fragments (TNIII) for heparin, to investigate the role of the TNIII4 domains in the binding of TN-C to heparin, and to delineate a sequence of amino acids within the TNIII4 domain, which mediates cooperative heparin binding. At a physiological salt concentration, and pH 7.4, TNIII3-5 binds to heparin with high affinity (K(D) = 30 nm). However, a major heparin-binding site in TNIII5 produces a modest affinity binding at a K(D) near 4 microm, and a second site in TNIII4 enhances the binding by several orders of magnitude, although it was far too weak to produce an observable binding of TNIII4 by itself. Moreover, mutagenesis of the KEDK sequence in the TNIII4 domain resulted in the significant reduction of heparin-binding affinity. In addition, residues in the KEDK sequences are conserved in TN-C throughout mammalian evolution. Thus the structure-based sequence alignment, mutagenesis, and sequence conservation data together reveal a KEDK sequence in TNIII4 suggestive of a minor heparin-binding site. Finally, we demonstrate that TNIII4 contains binding sites for heparin sulfate proteoglycan and enhances the heparin sulfate proteoglycan-dependent human gingival fibroblast adhesion to TNIII5, thus providing the biological significance of heparin-binding site of TNIII4. These results suggest that the heparin-binding sites may traverse TNIII4-5 and thus require KEDK in TNIII4 for optimal heparin-binding.
Collapse
Affiliation(s)
- Jun-Hyeog Jang
- Intellectual Biointerface Engineering Center, Seoul National University College of Dentistry, Seoul 110-749, Korea.
| | | | | | | |
Collapse
|
43
|
Leyh RG, Wilhelmi M, Walles T, Kallenbach K, Rebe P, Oberbeck A, Herden T, Haverich A, Mertsching H. Acellularized porcine heart valve scaffolds for heart valve tissue engineering and the risk of cross-species transmission of porcine endogenous retrovirus. J Thorac Cardiovasc Surg 2003; 126:1000-4. [PMID: 14566238 DOI: 10.1016/s0022-5223(03)00353-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Acellularized porcine heart valve scaffolds have been successfully used for heart valve tissue engineering, creating living functioning heart valve tissue. However, there is concern about the possibility of porcine endogenous retrovirus transmission. In this study we investigated whether acellularized porcine heart valve scaffold causes cross-species transmission of porcine endogenous retrovirus in a sheep model. METHODS Acellularized porcine pulmonary valve conduits (n = 3) and in vitro autologous repopulated porcine pulmonary valve conduits (n = 5) were implanted into sheep in the pulmonary valve position. Surgery was carried out with cardiopulmonary bypass support. The animals were killed 6 months after the operation. Blood samples were collected regularly up to 6 months after the operation and tested for porcine endogenous retrovirus by means of polymerase chain reaction and reverse transcriptase-polymerase chain reaction. In addition, explanted tissue-engineered heart valves were tested for porcine endogenous retrovirus after 6 month in vivo. RESULTS Porcine endogenous retrovirus DNA was detectable in acellularized porcine heart valve tissue. However, 6 months after implantation of in vitro and in vivo repopulated acellularized porcine heart valve scaffolds, no porcine endogenous retrovirus sequences were detectable in heart valve tissue and peripheral blood. CONCLUSION Acellularized porcine matrix scaffolds used for creation of tissue-engineered heart valves do not transmit porcine endogenous retrovirus.
Collapse
Affiliation(s)
- R G Leyh
- Division of Thoracic and Cardiovascular Surgery, Hannover Medical School, Carl Neuberg St. 1, 30623 Hannover, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Leyh RG, Wilhelmi M, Rebe P, Fischer S, Kofidis T, Haverich A, Mertsching H. In vivo repopulation of xenogeneic and allogeneic acellular valve matrix conduits in the pulmonary circulation. Ann Thorac Surg 2003; 75:1457-63; discussion 1463. [PMID: 12735562 DOI: 10.1016/s0003-4975(02)04845-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Approaches to in vivo repopulation of acellularized valve matrix constructs have been described recently. However, early calcification of acellularized matrices repopulated in vivo remains a major obstacle. We hypothesised that the matrix composition has a significant influence on the onset of early calcification. Therefore, we evaluated the calcification of acellularized allogenic ovine (AVMC) and xenogenic porcine (XVMC) valve matrix conduits in the pulmonary circulation in a sheep model. METHODS Porcine (n = 3) and sheep (n = 3) pulmonary valve conduits were acellularized by trypsin/EDTA digestion and then implanted into healthy sheep in pulmonary valve position using extracorporeal bypass support. Transthoracic echocardiography (TTE) was performed at 12 and 24 weeks after the implantation. The animals were sacrificed at week 24 or earlier when severe calcification of the valve conduit became evident by TTE. The valves were examined histologically and biochemically. RESULTS All AVMC revealed severe calcification after 12 weeks with focal endothelial cell clustering and no interstitial valve tissue reconstitution. In contrast, after 24 weeks XVMC indicated mild calcification on histologic examination (von Kossa staining) with histologic reconstitution of valve tissue and confluent endothelial surface coverage. Furthermore, immunohistologic analysis revealed reconstitution of surface endothelial cell monolayer (von Willebrand factor), and interstitial myofibroblasts (Vimentin/Desmin). CONCLUSIONS Porcine acellularized XVMC are resistant to early calcification during in vivo reseeding. Furthermore, XVMC are repopulated in vivo with valve-specific cell types within 24 weeks resembling native valve tissue.
Collapse
Affiliation(s)
- Rainer G Leyh
- Division of Thoracic and Cardiovascular Surgery, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
45
|
Rothenburger M, Volker W, Vischer JP, Berendes E, Glasmacher B, Scheld HH, Deiwick M. Tissue engineering of heart valves: formation of a three-dimensional tissue using porcine heart valve cells. ASAIO J 2002; 48:586-91. [PMID: 12455767 DOI: 10.1097/00002480-200211000-00003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Tissue engineering is a promising approach to obtaining lifetime durability of heart valves. The goal of this study was to develop a heart valve-like tissue and to compare the ultrastructure with normal valves. Myofibroblasts and endothelial cells were seeded on a type I collagen scaffold. The histologic organization and extracellular matrix were compared in light and electron micrographs. Radiolabeled proteoglycans were characterized by enzymatic degradation experiments. In tissue engineered specimens, cross sectional evaluation revealed that the scaffold (300 microm) was consistently infiltrated with myofibroblasts. Both sides were covered with a multicellular layer of myofibroblasts and overlaid by endothelial cells (50 microm). A newly formed extracellular matrix containing collagen fibrils and proteoglycans was found in the interstitial space. Collagen fibrils with a 60 nm banding pattern were found in both specimens. Small sized proteoglycans (65 nm) were associated and aligned at intervals of 60 nm with collagen fibrils. Large sized proteoglycans (180 nm) were located outside the collagen bundles in amorphous compartments of the extracellular matrix. The majority of glycosaminoglycans were chondroitin/dermatan sulfate, and a minority were heparan sulfate. The morphology and topography of cells and the organization of extracellular matrix in artificial tissues strongly resembles those of native valve tissues.
Collapse
Affiliation(s)
- Markus Rothenburger
- Department of Thoracic and Cardiovascular Surgery, Institute for Arteriosclerosis Research, University of Muenster, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Ljubimov AV, Saghizadeh M, Pytela R, Sheppard D, Kenney MC. Increased expression of tenascin-C-binding epithelial integrins in human bullous keratopathy corneas. J Histochem Cytochem 2001; 49:1341-50. [PMID: 11668187 DOI: 10.1177/002215540104901102] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We previously found an abnormal deposition of an extracellular matrix glycoprotein, tenascin-C (TN-C), in human corneas with pseudophakic/aphakic bullous keratopathy (PBK/ABK). In this work, we studied cellular TN-C receptors in normal and PBK/ABK corneas. Cryostat sections of normal and PBK/ABK corneas were stained by immuno-fluorescence for TN-C receptors: alpha2, alpha8, alpha9, alphaVbeta3, beta1, and beta6 integrins, and annexin II. Beta6 integrin mRNA levels were assessed by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) using beta2-microglobulin gene to normalize the samples. In PBK/ABK compared to normal corneas, relatively minor changes were observed for alpha2 and beta1 integrins, and for annexin II. Alpha8, alpha9, and beta6 subunits of TN-C receptors, alpha8beta1 alpha9beta1, and alphaVbeta6, respectively, were absent from normal central corneas but were found in the central epithelium of PBK/ABK corneas. Beta6 integrin showed the most significant accumulation. It correlated best with the expression of TN-C rather than with the expression of other alphaVbeta6 ligands, fibronectin, and vitronectin. RT-PCR analysis also showed elevated levels of beta6 mRNA in PBK/ABK compared to normal corneas. Therefore, accumulation of TN-C in PBK/ABK corneas was accompanied by an increased expression of its three binding integrins, especially alphaVbeta6 in the corneal epithelium. The interaction of tenascin-C with these integrins may contribute to the fibrotic process that occurs in PBK/ABK corneas.
Collapse
Affiliation(s)
- A V Ljubimov
- Ophthalmology Research Laboratories, Burns & Allen Research Institute, Cedars-Sinai Medical Center, University of California Los Angeles School of Medicine, Los Angeles, California 90048, USA.
| | | | | | | | | |
Collapse
|
47
|
Stock UA, Mayer JE. Valves in development for autogenous tissue valve replacement. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2001; 2:51-64. [PMID: 11486225 DOI: 10.1016/s1092-9126(99)70005-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Currently available valve and conduit artery substitutes have one or more significant disadvantages including limited durability, thrombogenicity, susceptibility to infection, and a lack of growth potential. Prior attempts to use autologous tissues in the construction of valve or arterial substitutes to overcome some of these limitations have not been successful. The use of tissue engineering techniques to construct valve and arterial substitutes from individual autologous cell lines and biodegradable polymer scaffolds are now under investigation in the laboratory, and the initial short term results in animals have been encouraging. These tissue engineering techniques offer the possibility of creating structures for replacement of valves and conduit arteries which are viable and have the capacity for self-repair and therefore greater durability. In addition, these structures should be non-thrombogenic and less susceptible to infection, and will have growth potential. Copyright 1999 by W.B. Saunders Company
Collapse
Affiliation(s)
- Ulrich A. Stock
- Department of Cardiovascular Surgery, Children's Hospital, Boston, MA
| | | |
Collapse
|
48
|
Teebken OE, Pichlmaier AM, Haverich A. Cell seeded decellularised allogeneic matrix grafts and biodegradable polydioxanone-prostheses compared with arterial autografts in a porcine model. Eur J Vasc Endovasc Surg 2001; 22:139-45. [PMID: 11472047 DOI: 10.1053/ejvs.2001.1403] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND small diameter vascular grafts are limited by their restricted availability, early thrombosis, and requirement for anticoagulants. OBJECTIVE to evaluate different approaches to biocompatible vascular grafts. METHODS sixteen allogeneic acellularised arteries seeded with autologous endothelial cells were implanted to replace a segment of the common carotid artery (group I). Other animals received polydioxanone prostheses (group II: inner diameter, i.d. 4 mm, n=18; group III, i.d. 5 mm, n=20) or arterial autografts (group IV, n=8). Graft patency was evaluated by means of ultrasound duplex scanning, angiography and histology. RESULTS patency was 54% (71%), 17% (0%), 50% (50%), and 100% (100%) in group I, II, III, and IV after 1 week (4 months), respectively. Significant differences (p<0.05) were found for group IV versus all other groups at 1 week, as well as for group IV versus groups II and III, for group II versus III, and group I versus II at 4 months. CONCLUSION small diameter vascular grafts can be engineered from an acellular allogeneic matrix seeded with autologous cells. Patency is superior to polydioxanone prostheses but inferior to the arterial autograft.
Collapse
Affiliation(s)
- O E Teebken
- Leibniz Research Laboratories for Biotechnology & Artificial Organs, LEBAO, Hannover, Germany
| | | | | |
Collapse
|
49
|
Ghert MA, Qi WN, Erickson HP, Block JA, Scully SP. Tenascin-C splice variant adhesive/anti-adhesive effects on chondrosarcoma cell attachment to fibronectin. Cell Struct Funct 2001; 26:179-87. [PMID: 11565810 DOI: 10.1247/csf.26.179] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tenascin-C is an oligomeric glycoprotein of the extracellular matrix that has been found to have both adhesive and anti-adhesive properties for cells. Recent elucidation of the two major TNC splice variants (320 kDa and 220 kDa) has shed light on the possibility of varying functions of the molecule based on its splicing pattern. Tenascin-C is prominently expressed in embryogenesis and in pathologic conditions such as tumorogenesis and wound healing. Fibronectin is a prominent adhesive molecule of the extracellular matrix that is often co-localized with tenascin-C in these processes. We studied the chondrosarcoma cell line JJ012 with enzyme-linked immunoabsorbance assays, cell attachment assays and antibody-blocking assays to determine the adhesive/anti-adhesive properties of the two major tenascin-C splice variants with respect to fibronectin and their effect on chondrosarcoma cell attachment. We found that the small tenascin-C splice variant (220 kDa) binds to fibronectin, whereas the large tenascin-C splice variant (320 kDa) does not. In addition, the small tenascin-C splice variant was found to decrease adhesion for cells when bound to fibronectin, but contributed to adhesion when bound to plastic in fibronectin-coated wells. Antibody blocking experiments confirmed that both the small tenascin-C splice variant and fibronectin contribute to cell adhesion when bound to plastic. The large tenascin-C splice variant did not promote specific cell attachment. We hypothesize that the biologic activity of tenascin-C is dependent on the tissue-specific splicing pattern. The smaller tenascin-C isoform likely plays a structural and adhesive role, whereas the larger isoform, preferentially expressed in malignant tissue, likely plays a role in cell egress and metastasis.
Collapse
Affiliation(s)
- M A Ghert
- Division of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | |
Collapse
|
50
|
Lethias C, Elefteriou F, Parsiegla G, Exposito JY, Garrone R. Identification and characterization of a conformational heparin-binding site involving two fibronectin type III modules of bovine tenascin-X. J Biol Chem 2001; 276:16432-8. [PMID: 11278641 DOI: 10.1074/jbc.m010210200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tenascin-X is known as a heparin-binding molecule, but the localization of the heparin-binding site has not been investigated until now. We show here that, unlike tenascin-C, the recombinant fibrinogen-like domain of tenascin-X is not involved in heparin binding. On the other hand, the two contiguous fibronectin type III repeats b10 and b11 have a predicted positive charge at physiological pH, hence a set of recombinant proteins comprising these domains was tested for interaction with heparin. Using solid phase assays and affinity chromatography, we found that interaction with heparin was conformational and involved both domains 10 and 11. Construction of a three-dimensional model of domains 10 and 11 led us to predict exposed residues that were then submitted to site-directed mutagenesis. In this way, we identified the basic residues within each domain that are crucial for this interaction. Blocking experiments using antibodies against domain 10 were performed to test the efficiency of this site within intact tenascin-X. Binding was significantly reduced, arguing for the activity of a heparin-binding site involving domains 10 and 11 in the whole molecule. Finally, the biological significance of this site was tested by cell adhesion studies. Heparan sulfate cell surface receptors are able to interact with proteins bearing domains 10 and 11, suggesting that tenascin-X may activate different signals to regulate cell behavior.
Collapse
Affiliation(s)
- C Lethias
- Institut de Biologie et Chimie des Protéines, CNRS UMR 5086, Université Claude Bernard, 7 passage du Vercors, 69367 Lyon Cedex 07, France.
| | | | | | | | | |
Collapse
|