1
|
Zhao L, Hou Y, Picariello T, Craige B, Witman GB. Proteome of the central apparatus of a ciliary axoneme. J Cell Biol 2019; 218:2051-2070. [PMID: 31092556 PMCID: PMC6548120 DOI: 10.1083/jcb.201902017] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022] Open
Abstract
The central apparatus is an essential component of “9+2” cilia. Zhao et al. identify more than 40 new potential components of the central apparatus of Chlamydomonas. Many are conserved and will facilitate genetic screening of patients with a form of primary ciliary dyskinesia that is difficult to diagnose. Nearly all motile cilia have a “9+2” axoneme containing a central apparatus (CA), consisting of two central microtubules with projections, that is essential for motility. To date, only 22 proteins are known to be CA components. To identify new candidate CA proteins, we used mass spectrometry to compare axonemes of wild-type Chlamydomonas and a CA-less mutant. We identified 44 novel candidate CA proteins, of which 13 are conserved in humans. Five of the latter were studied more closely, and all five localized to the CA; therefore, most of the other candidates are likely to also be CA components. Our results reveal that the CA is far more compositionally complex than previously recognized and provide a greatly expanded knowledge base for studies to understand the architecture of the CA and how it functions. The discovery of the new conserved CA proteins will facilitate genetic screening to identify patients with a form of primary ciliary dyskinesia that has been difficult to diagnose.
Collapse
Affiliation(s)
- Lei Zhao
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Tyler Picariello
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Branch Craige
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - George B Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
2
|
Prevo B, Scholey JM, Peterman EJG. Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery. FEBS J 2017; 284:2905-2931. [PMID: 28342295 PMCID: PMC5603355 DOI: 10.1111/febs.14068] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/20/2017] [Accepted: 03/23/2017] [Indexed: 02/06/2023]
Abstract
Intraflagellar transport (IFT) is a form of motor-dependent cargo transport that is essential for the assembly, maintenance, and length control of cilia, which play critical roles in motility, sensory reception, and signal transduction in virtually all eukaryotic cells. During IFT, anterograde kinesin-2 and retrograde IFT dynein motors drive the bidirectional transport of IFT trains that deliver cargo, for example, axoneme precursors such as tubulins as well as molecules of the signal transduction machinery, to their site of assembly within the cilium. Following its discovery in Chlamydomonas, IFT has emerged as a powerful model system for studying general principles of motor-dependent cargo transport and we now appreciate the diversity that exists in the mechanism of IFT within cilia of different cell types. The absence of heterotrimeric kinesin-2 function, for example, causes a complete loss of both IFT and cilia in Chlamydomonas, but following its loss in Caenorhabditis elegans, where its primary function is loading the IFT machinery into cilia, homodimeric kinesin-2-driven IFT persists and assembles a full-length cilium. Generally, heterotrimeric kinesin-2 and IFT dynein motors are thought to play widespread roles as core IFT motors, whereas homodimeric kinesin-2 motors are accessory motors that mediate different functions in a broad range of cilia, in some cases contributing to axoneme assembly or the delivery of signaling molecules but in many other cases their ciliary functions, if any, remain unknown. In this review, we focus on mechanisms of motor action, motor cooperation, and motor-dependent cargo delivery during IFT.
Collapse
Affiliation(s)
- Bram Prevo
- Department of Cellular & Molecular Medicine, University of California San Diego, CA, USA
- Ludwig Institute for Cancer Research, San Diego, CA, USA
| | - Jonathan M Scholey
- Department of Molecular & Cell Biology, University of California Davis, CA, USA
| | - Erwin J G Peterman
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Loreng TD, Smith EF. The Central Apparatus of Cilia and Eukaryotic Flagella. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028118. [PMID: 27770014 DOI: 10.1101/cshperspect.a028118] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The motile cilium is a complex organelle that is typically comprised of a 9+2 microtubule skeleton; nine doublet microtubules surrounding a pair of central singlet microtubules. Like the doublet microtubules, the central microtubules form a scaffold for the assembly of protein complexes forming an intricate network of interconnected projections. The central microtubules and associated structures are collectively referred to as the central apparatus (CA). Studies using a variety of experimental approaches and model organisms have led to the discovery of a number of highly conserved protein complexes, unprecedented high-resolution views of projection structure, and new insights into regulation of dynein-driven microtubule sliding. Here, we review recent progress in defining mechanisms for the assembly and function of the CA and include possible implications for the importance of the CA in human health.
Collapse
Affiliation(s)
- Thomas D Loreng
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Elizabeth F Smith
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
4
|
Talman AM, Prieto JH, Marques S, Ubaida-Mohien C, Lawniczak M, Wass MN, Xu T, Frank R, Ecker A, Stanway RS, Krishna S, Sternberg MJE, Christophides GK, Graham DR, Dinglasan RR, Yates JR, Sinden RE. Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility. Malar J 2014; 13:315. [PMID: 25124718 PMCID: PMC4150949 DOI: 10.1186/1475-2875-13-315] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/28/2014] [Indexed: 12/22/2022] Open
Abstract
Background Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown. Methods Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163. Results 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway. Conclusions This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-315) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arthur M Talman
- Division of Cell and Molecular Biology, Imperial College, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Dunlap WC, Starcevic A, Baranasic D, Diminic J, Zucko J, Gacesa R, van Oppen MJH, Hranueli D, Cullum J, Long PF. KEGG orthology-based annotation of the predicted proteome of Acropora digitifera: ZoophyteBase - an open access and searchable database of a coral genome. BMC Genomics 2013; 14:509. [PMID: 23889801 PMCID: PMC3750612 DOI: 10.1186/1471-2164-14-509] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/15/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Contemporary coral reef research has firmly established that a genomic approach is urgently needed to better understand the effects of anthropogenic environmental stress and global climate change on coral holobiont interactions. Here we present KEGG orthology-based annotation of the complete genome sequence of the scleractinian coral Acropora digitifera and provide the first comprehensive view of the genome of a reef-building coral by applying advanced bioinformatics. DESCRIPTION Sequences from the KEGG database of protein function were used to construct hidden Markov models. These models were used to search the predicted proteome of A. digitifera to establish complete genomic annotation. The annotated dataset is published in ZoophyteBase, an open access format with different options for searching the data. A particularly useful feature is the ability to use a Google-like search engine that links query words to protein attributes. We present features of the annotation that underpin the molecular structure of key processes of coral physiology that include (1) regulatory proteins of symbiosis, (2) planula and early developmental proteins, (3) neural messengers, receptors and sensory proteins, (4) calcification and Ca2+-signalling proteins, (5) plant-derived proteins, (6) proteins of nitrogen metabolism, (7) DNA repair proteins, (8) stress response proteins, (9) antioxidant and redox-protective proteins, (10) proteins of cellular apoptosis, (11) microbial symbioses and pathogenicity proteins, (12) proteins of viral pathogenicity, (13) toxins and venom, (14) proteins of the chemical defensome and (15) coral epigenetics. CONCLUSIONS We advocate that providing annotation in an open-access searchable database available to the public domain will give an unprecedented foundation to interrogate the fundamental molecular structure and interactions of coral symbiosis and allow critical questions to be addressed at the genomic level based on combined aspects of evolutionary, developmental, metabolic, and environmental perspectives.
Collapse
Affiliation(s)
- Walter C Dunlap
- Centre for Marine Microbiology and Genetics, Australian Institute of Marine Science, PMB No. 3 Townsville MC, Townsville 4810, Queensland, Australia
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Antonio Starcevic
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Damir Baranasic
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Janko Diminic
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Jurica Zucko
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Ranko Gacesa
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Madeleine JH van Oppen
- Centre for Marine Microbiology and Genetics, Australian Institute of Marine Science, PMB No. 3 Townsville MC, Townsville 4810, Queensland, Australia
| | - Daslav Hranueli
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - John Cullum
- Department of Genetics, University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
| | - Paul F Long
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
- Department of Chemistry King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
6
|
Abstract
Intraflagellar transport (IFT), the motor-dependent movement of IFT particles along the axoneme, is critical for the assembly, maintenance, and function of motile and sensory cilia, and, consequently, this process underlies ciliary motility, cilium-based signaling, and ciliopathies. Here, I present my perspective on IFT as a model system for studying motor-driven cargo transport. I review evidence that kinesin-2 motors physically transport IFT particles as cargo and hypothesize that several accessory kinesins confer cilia-specific functions by augmenting the action of the two core IFT motors, kinesin-2 and dynein 1b, which assemble the cilium foundation.
Collapse
Affiliation(s)
- Jonathan M Scholey
- Department of Molecular and Cell Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Vucica Y, Diener DR, Rosenbaum JL, Koutoulis A. Ultrastructural and biochemical analysis of a new mutation in Chlamydomonas reinhardtii affecting the central pair apparatus. PROTOPLASMA 2007; 232:121-130. [PMID: 18157500 DOI: 10.1007/s00709-007-0273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 04/19/2007] [Indexed: 05/25/2023]
Abstract
We present a new Chlamydomonas reinhardtii flagellar mutant in which central pair projections are missing and the central pair microtubules are twisted along the length of the flagellum. We have named this mutant tcp1 for twisted central pair. Immunoblots using an antibody that recognizes the heavy chain of sea urchin kinesin reveal that a 70 kDa protein present in wild-type and pf18 (central pairless) axonemes is absent in tcp1, suggesting the presence of an uncharacterized kinesin associated with the central pair apparatus. We demonstrate that the kinesin-like protein Klp1 is not attached to central pair microtubules in tcp1, but rather is located in, or is part of, a region we have termed the internal axonemal matrix. It is proposed that this matrix acts as a scaffold for axonemal proteins that may also be associated with the central pair apparatus.
Collapse
Affiliation(s)
- Y Vucica
- Cell Biology Group, School of Plant Science, University of Tasmania, Hobart, Tasmania, Australia
| | | | | | | |
Collapse
|
8
|
Dymek EE, Goduti D, Kramer T, Smith EF. A kinesin-like calmodulin-binding protein in Chlamydomonas: evidence for a role in cell division and flagellar functions. J Cell Sci 2006; 119:3107-16. [PMID: 16835274 DOI: 10.1242/jcs.03028] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Kinesin-like calmodulin-binding protein, KCBP, is a novel member of the C-kinesin superfamily first discovered in flowering plants. This minus-end-directed kinesin exhibits Ca(2+)-calmodulin-sensitive motor activity in vitro and has been implicated in trichome morphogenesis and cell division. A homologue of KCBP is also found in the unicellular, biflagellate green alga Chlamydomonas reinhardtii (CrKCBP). Unlike plant cells, Chlamydomonas cells do not form trichomes and do not assemble a phragmoplast before cell division. To test whether CrKCBP is involved in additional microtubule-based processes not observed in plants, we generated antibodies against the putative calmodulin-binding domain and used these antibodies in biochemical and localization studies. In interphase cells CrKCBP primarily localizes near the base of the flagella, although surprisingly, a small fraction also localizes along the length of the flagella. CrKCBP is bound to isolated axonemes in an ATP-dependent fashion and is not a component of the dynein arms, radial spokes or central apparatus. During mitosis, CrKCBP appears concentrated at the centrosomes during prophase and metaphase. However, during telophase and cytokinesis CrKCBP co-localizes with the microtubules associated with the phycoplast. These studies implicate CrKCBP in flagellar functions as well as cell division.
Collapse
Affiliation(s)
- Erin E Dymek
- Dartmouth College, Department of Biological Sciences, 301 Gilman, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
9
|
Abstract
Cilia and flagella are widespread cell organelles that have been highly conserved throughout evolution and play important roles in motility, sensory perception, and the life cycles of eukaryotes ranging from protists to humans. Despite the ubiquity and importance of these organelles, their composition is not well known. Here we use mass spectrometry to identify proteins in purified flagella from the green alga Chlamydomonas reinhardtii. 360 proteins were identified with high confidence, and 292 more with moderate confidence. 97 out of 101 previously known flagellar proteins were found, indicating that this is a very complete dataset. The flagellar proteome is rich in motor and signal transduction components, and contains numerous proteins with homologues associated with diseases such as cystic kidney disease, male sterility, and hydrocephalus in humans and model vertebrates. The flagellum also contains many proteins that are conserved in humans but have not been previously characterized in any organism. The results indicate that flagella are far more complex than previously estimated.
Collapse
Affiliation(s)
- Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
10
|
Yokoyama R, O'toole E, Ghosh S, Mitchell DR. Regulation of flagellar dynein activity by a central pair kinesin. Proc Natl Acad Sci U S A 2004; 101:17398-403. [PMID: 15572440 PMCID: PMC536025 DOI: 10.1073/pnas.0406817101] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The motility of cilia and flagella is powered by dynein ATPases associated with outer doublet microtubules. However, a flagellar kinesin-like protein that may function as a motor associates with the central pair complex. We determined that Chlamydomonas reinhardtii central pair kinesin Klp1 is a phosphoprotein and, like conventional kinesins, binds to microtubules in vitro in the presence of adenosine 5'-[beta,gamma-imido]triphosphate, but not ATP. To characterize the function of Klp1, we generated RNA interference expression constructs that reduce in vivo flagellar Klp1 levels. Klp1 knockdown cells have flagella that either beat very slowly or are paralyzed. EM image averages show disruption of two structures associated with the C2 central pair microtubule, C2b and C2c. Greatest density is lost from part of projection C2c, which is in a position to interact with doublet-associated radial spokes. Klp1 therefore retains properties of a motor protein and is essential for normal flagellar motility. We hypothesize that Klp1 acts as a conformational switch to signal spoke-dependent control of dynein activity.
Collapse
Affiliation(s)
- Ruth Yokoyama
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
11
|
Smith EF, Yang P. The radial spokes and central apparatus: mechano-chemical transducers that regulate flagellar motility. ACTA ACUST UNITED AC 2004; 57:8-17. [PMID: 14648553 PMCID: PMC1950942 DOI: 10.1002/cm.10155] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Elizabeth F Smith
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA.
| | | |
Collapse
|
12
|
Rupp G, O'Toole E, Porter ME. The Chlamydomonas PF6 locus encodes a large alanine/proline-rich polypeptide that is required for assembly of a central pair projection and regulates flagellar motility. Mol Biol Cell 2001; 12:739-51. [PMID: 11251084 PMCID: PMC30977 DOI: 10.1091/mbc.12.3.739] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2000] [Revised: 11/29/2000] [Accepted: 01/16/2000] [Indexed: 11/11/2022] Open
Abstract
Efficient motility of the eukaryotic flagellum requires precise temporal and spatial control of its constituent dynein motors. The central pair and its associated structures have been implicated as important members of a signal transduction cascade that ultimately regulates dynein arm activity. To identify central pair components involved in this process, we characterized a Chlamydomonas motility mutant (pf6-2) obtained by insertional mutagenesis. pf6-2 flagella twitch ineffectively and lack the 1a projection on the C1 microtubule of the central pair. Transformation with constructs containing a full-length, wild-type copy of the PF6 gene rescues the functional, structural, and biochemical defects associated with the pf6 mutation. Sequence analysis indicates that the PF6 gene encodes a large polypeptide that contains numerous alanine-rich, proline-rich, and basic domains and has limited homology to an expressed sequence tag derived from a human testis cDNA library. Biochemical analysis of an epitope-tagged PF6 construct demonstrates that the PF6 polypeptide is an axonemal component that cosediments at 12.6S with several other polypeptides. The PF6 protein appears to be an essential component required for assembly of some of these polypeptides into the C1-1a projection.
Collapse
Affiliation(s)
- G Rupp
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
13
|
Henson JH, Cole DG, Roesener CD, Capuano S, Mendola RJ, Scholey JM. The heterotrimeric motor protein kinesin-II localizes to the midpiece and flagellum of sea urchin and sand dollar sperm. CELL MOTILITY AND THE CYTOSKELETON 2000; 38:29-37. [PMID: 9295139 DOI: 10.1002/(sici)1097-0169(1997)38:1<29::aid-cm4>3.0.co;2-c] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have utilized immunoblotting and light microscopic immunofluorescent staining methods to examine the expression and localization of sea urchin kinesin-II, a heterotrimeric plus end-directed microtubule motor protein (previously referred to as KRP(85/95)), in sea urchin and sand dollar sperm. We demonstrate the presence of the 85 K and 115 K subunits of kinesin-II in sperm and localize these proteins to the sperm flagella and midpiece. The kinesin-II localization pattern is punctate and discontinuous, and in the flagella it is quite distinct from the continuous labeling present in sperm labeled with anti-flagellar dynein. The kinesin-II staining is largely insensitive to prefixation detergent extraction, suggesting that it is not associated with membranous elements in the sperm. In the midpiece the kinesin-II staining is similar to the pattern present in sperm labeled with an anti-centrosomal antibody. To our knowledge, this is the first localization of kinesin-like proteins in mature sperm and corroborates the recent identification and localization of kinesin-like proteins in the flagella and basal body of the unicellular green alga Chlamydomonas. We hypothesize that kinesin-II in the sperm may play functional roles in intraflagellar transport and/or the formation of flagella during spermatogenesis.
Collapse
Affiliation(s)
- J H Henson
- Department of Biology, Dickinson College, Carlisle, Pennsylvania 17013, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Smith EF, Lefebvre PA. The role of central apparatus components in flagellar motility and microtubule assembly. CELL MOTILITY AND THE CYTOSKELETON 2000; 38:1-8. [PMID: 9295136 DOI: 10.1002/(sici)1097-0169(1997)38:1<1::aid-cm1>3.0.co;2-c] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In order to generate the complex waveforms typical of beating cilia and flagella, the action of the dynein arms must be regulated. This regulation not only depends on the presence of multiple dynein isoforms, but also clearly involves other structures in the axoneme such as the radial spokes and central apparatus; mutants lacking these structures have paralyzed flagella. In this article, we review recent progress in identifying protein components of the central apparatus and discuss the role of these components in regulation of flagellar motility and central apparatus assembly. The central apparatus is composed of two single microtubules and their associated structures which include the central pair projections, the central pair bridges linking the two tubules, and the central pair caps which are attached to the distal or plus ends of the microtubules. To date, the genes encoding four components of the central apparatus have been cloned, PF15, PF16, PF20 and KLP1. PF16, PF20 and KLP1 have been sequenced and their gene products localized. Two additional components have been identified immunologically, a 110 kD polypeptide recognized by an antibody generated against highly conserved kinesin peptide sequence, and a 97 kD polypeptide recognized by CREST antisera. Based on a variety of data, one model that has emerged to explain the role of the central apparatus in flagellar motility is that the central apparatus ultimately regulates dynein through interactions with the radial spokes. The challenge now is to determine the precise mechanism by which the polypeptides comprising the central apparatus and the radial spokes interact to transduce a regulatory signal to the dynein arms. In terms of assembly, the central apparatus microtubules assemble with their plus ends distal to the cell body but, unlike the nine doublet microtubules, they are not nucleated from the basal bodies. Since some central apparatus defective mutants fail to assemble the entire central apparatus, their gene products may eventually prove to have microtubule nucleating or stabilizing properties. By continuing to identify the genes that encode central apparatus components, we will begin to understand the contribution of these microtubules to flagellar motility and gain insight into their nucleation, assembly, and stability.
Collapse
Affiliation(s)
- E F Smith
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA
| | | |
Collapse
|
15
|
Escalante-Ochoa C, Ducatelle R, Charlier G, De Vos K, Haesebrouck F. Significance of host cell kinesin in the development of Chlamydia psittaci. Infect Immun 1999; 67:5441-6. [PMID: 10496927 PMCID: PMC96902 DOI: 10.1128/iai.67.10.5441-5446.1999] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The influence of the microtubule-associated motor protein kinesin on Chlamydia psittaci inclusion development in epithelial and fibroblast cell lines was addressed. Kinesin was blocked early after chlamydial internalization (4 h postinfection [p.i.]) and before the initiation of active chlamydial multiplication (8 h p.i.). Chlamydia development was monitored by fluorescence and transmission electron microscopy at different times during the cycle. In both host cell lines, kinesin blockage restricted mitochondria from the chlamydial vacuole. The effects of kinesin blockage on the C. psittaci replication cycle included the presence of multiple inclusions up to late in the cycle, the presence of enlarged pleomorphic reticulate bodies, and a delayed reappearance of elementary bodies. The last effect seems to be greater when kinesin is blocked early after infection. Our results show that kinesin activity is required for optimal development of these microorganisms, most probably acting through the apposition of mitochondria to the C. psittaci inclusions.
Collapse
Affiliation(s)
- C Escalante-Ochoa
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, University of Ghent, B-9820 Merelbeke, Belgium.
| | | | | | | | | |
Collapse
|
16
|
Porter ME, Bower R, Knott JA, Byrd P, Dentler W. Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Mol Biol Cell 1999; 10:693-712. [PMID: 10069812 PMCID: PMC25196 DOI: 10.1091/mbc.10.3.693] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A second cytoplasmic dynein heavy chain (cDhc) has recently been identified in several organisms, and its expression pattern is consistent with a possible role in axoneme assembly. We have used a genetic approach to ask whether cDhc1b is involved in flagellar assembly in Chlamydomonas. Using a modified PCR protocol, we recovered two cDhc sequences distinct from the axonemal Dhc sequences identified previously. cDhc1a is closely related to the major cytoplasmic Dhc, whereas cDhc1b is closely related to the minor cDhc isoform identified in sea urchins, Caenorhabditis elegans, and Tetrahymena. The Chlamydomonas cDhc1b transcript is a low-abundance mRNA whose expression is enhanced by deflagellation. To determine its role in flagellar assembly, we screened a collection of stumpy flagellar (stf) mutants generated by insertional mutagenesis and identified two strains in which portions of the cDhc1b gene have been deleted. The two mutants assemble short flagellar stumps (<1-2 micrometer) filled with aberrant microtubules, raft-like particles, and other amorphous material. The results indicate that cDhc1b is involved in the transport of components required for flagellar assembly in Chlamydomonas.
Collapse
Affiliation(s)
- M E Porter
- Department of Cell Biology and Neuroanatomy, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- J L Rosenbaum
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA.
| | | | | |
Collapse
|
18
|
Mitchell DR, Sale WS. Characterization of a Chlamydomonas insertional mutant that disrupts flagellar central pair microtubule-associated structures. J Cell Biol 1999; 144:293-304. [PMID: 9922455 PMCID: PMC2132896 DOI: 10.1083/jcb.144.2.293] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/1998] [Revised: 12/10/1998] [Indexed: 11/29/2022] Open
Abstract
Two alleles at a new locus, central pair-associated complex 1 (CPC1), were selected in a screen for Chlamydomonas flagellar motility mutations. These mutations disrupt structures associated with central pair microtubules and reduce flagellar beat frequency, but do not prevent changes in flagellar activity associated with either photophobic responses or phototactic accumulation of live cells. Comparison of cpc1 and pf6 axonemes shows that cpc1 affects a row of projections along C1 microtubules distinct from those missing in pf6, and a row of thin fibers that form an arc between the two central pair microtubules. Electron microscopic images of the central pair in axonemes from radial spoke-defective strains reveal previously undescribed central pair structures, including projections extending laterally toward radial spoke heads, and a diagonal link between the C2 microtubule and the cpc1 projection. By SDS-PAGE, cpc1 axonemes show reductions of 350-, 265-, and 79-kD proteins. When extracted from wild-type axonemes, these three proteins cosediment on sucrose gradients with three other central pair proteins (135, 125, and 56 kD) in a 16S complex. Characterization of cpc1 provides new insights into the structure and biochemistry of the central pair apparatus, and into its function as a regulator of dynein-based motility.
Collapse
Affiliation(s)
- D R Mitchell
- Department of Anatomy and Cell Biology, State University of New York Health Science Center, Syracuse, New York 13210, USA.
| | | |
Collapse
|
19
|
Omoto CK, Gibbons IR, Kamiya R, Shingyoji C, Takahashi K, Witman GB. Rotation of the central pair microtubules in eukaryotic flagella. Mol Biol Cell 1999; 10:1-4. [PMID: 9880321 PMCID: PMC25148 DOI: 10.1091/mbc.10.1.1] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- C K Omoto
- Department of Genetics and Cell Biology, Washington State University, Pullman, Washington 99164-4234, USA
| | | | | | | | | | | |
Collapse
|
20
|
Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol 1998; 141:993-1008. [PMID: 9585417 PMCID: PMC2132775 DOI: 10.1083/jcb.141.4.993] [Citation(s) in RCA: 710] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/1998] [Revised: 04/08/1998] [Indexed: 02/07/2023] Open
Abstract
We previously described a kinesin-dependent movement of particles in the flagella of Chlamydomonas reinhardtii called intraflagellar transport (IFT) (Kozminski, K.G., K.A. Johnson, P. Forscher, and J.L. Rosenbaum. 1993. Proc. Natl. Acad. Sci. USA. 90:5519-5523). When IFT is inhibited by inactivation of a kinesin, FLA10, in the temperature-sensitive mutant, fla10, existing flagella resorb and new flagella cannot be assembled. We report here that: (a) the IFT-associated FLA10 protein is a subunit of a heterotrimeric kinesin; (b) IFT particles are composed of 15 polypeptides comprising two large complexes; (c) the FLA10 kinesin-II and IFT particle polypeptides, in addition to being found in flagella, are highly concentrated around the flagellar basal bodies; and, (d) mutations affecting homologs of two of the IFT particle polypeptides in Caenorhabditis elegans result in defects in the sensory cilia located on the dendritic processes of sensory neurons. In the accompanying report by Pazour, G.J., C.G. Wilkerson, and G.B. Witman (1998. J. Cell Biol. 141:979-992), a Chlamydomonas mutant (fla14) is described in which only the retrograde transport of IFT particles is disrupted, resulting in assembly-defective flagella filled with an excess of IFT particles. This microtubule- dependent transport process, IFT, defined by mutants in both the anterograde (fla10) and retrograde (fla14) transport of isolable particles, is probably essential for the maintenance and assembly of all eukaryotic motile flagella and nonmotile sensory cilia.
Collapse
Affiliation(s)
- D G Cole
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | | | | | | | |
Collapse
|
21
|
Pazour GJ, Wilkerson CG, Witman GB. A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT). J Cell Biol 1998; 141:979-92. [PMID: 9585416 PMCID: PMC2132779 DOI: 10.1083/jcb.141.4.979] [Citation(s) in RCA: 329] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/1998] [Revised: 04/06/1998] [Indexed: 02/07/2023] Open
Abstract
Several enzymes, including cytoplasmic and flagellar outer arm dynein, share an Mr 8,000 light chain termed LC8. The function of this chain is unknown, but it is highly conserved between a wide variety of organisms. We have identified deletion alleles of the gene (fla14) encoding this protein in Chlamydomonas reinhardtii. These mutants have short, immotile flagella with deficiencies in radial spokes, in the inner and outer arms, and in the beak-like projections in the B tubule of the outer doublet microtubules. Most dramatically, the space between the doublet microtubules and the flagellar membrane contains an unusually high number of rafts, the particles translocated by intraflagellar transport (IFT) (Kozminski, K.G., P.L. Beech, and J.L. Rosenbaum. 1995. J. Cell Biol. 131:1517-1527). IFT is a rapid bidirectional movement of rafts under the flagellar membrane along axonemal microtubules. Anterograde IFT is dependent on a kinesin whereas the motor for retrograde IFT is unknown. Anterograde IFT is normal in the LC8 mutants but retrograde IFT is absent; this undoubtedly accounts for the accumulation of rafts in the flagellum. This is the first mutation shown to specifically affect retrograde IFT; the fact that LC8 loss affects retrograde IFT strongly suggests that cytoplasmic dynein is the motor that drives this process. Concomitant with the accumulation of rafts, LC8 mutants accumulate proteins that are components of the 15-16S IFT complexes (Cole, D.G., D.R. Deiner, A.L. Himelblau, P.L. Beech, J.C. Fuster, and J.L. Rosenbaum. 1998. J. Cell Biol. 141:993-1008), confirming that these complexes are subunits of the rafts. Polystyrene microbeads are still translocated on the surface of the flagella of LC8 mutants, indicating that the motor for flagellar surface motility is different than the motor for retrograde IFT.
Collapse
Affiliation(s)
- G J Pazour
- Department of Cell Biology, University of Massachusetts Medical Center (UMMC), Worcester Foundation Campus, Shrewsbury, Massachusetts 01545, USA
| | | | | |
Collapse
|
22
|
Beech PL, Pagh-Roehl K, Noda Y, Hirokawa N, Burnside B, Rosenbaum JL. Localization of kinesin superfamily proteins to the connecting cilium of fish photoreceptors. J Cell Sci 1996; 109 ( Pt 4):889-97. [PMID: 8718680 DOI: 10.1242/jcs.109.4.889] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kinesin superfamily proteins (KIFs) are probable motors in vesicular and non-vesicular transport along microtubular tracks. Since a variety of KIFs have been recently identified in the motile flagella of Chlamydomonas, we sought to ascertain whether KIFs are also associated with the connecting cilia of vertebrate rod photoreceptors. As the only structural link between the rod inner segment and the photosensitive rod outer segment, the connecting cilium is thought to be the channel through which all material passes into and out of the outer segment from the rod cell body. We have performed immunological tests on isolated sunfish rod inner-outer segments (RIS-ROS) using two antibodies that recognize the conserved motor domain of numerous KIFs (anti-LAGSE, a peptide antibody, and anti-Klp1 head, generated against the N terminus of Chlamydomonas Klp1) as well as an antibody specific to a neuronal KIF, KIF3A. On immunoblots of RIS-ROS, LAGSE antibody detected a prominent band at approximately 117 kDa, which is likely to be kinesin heavy chain, and Klp1 head antibody detected a single band at approximately 170 kDa; KIF3A antibody detected a polypeptide at approximately 85 kDa which co-migrated with mammalian KIF3A and displayed ATP-dependent release from rod cytoskeletons. Immunofluorescence localizations with anti-LAGSE and anti-Klp1 head antibodies detected epitopes in the axoneme and ellipsoid, and immunoelectron microscopy with the LAGSE antibody showed that the connecting cilium region was particularly antigenic. Immunofluorescence with anti-KIF3A showed prominent labelling of the connecting cilium and the area surrounding its basal body; the outer segment axoneme and parts of the inner segment coincident with microtubules were also labelled. We propose that these putative kinesin superfamily proteins may be involved in the translocation of material between the rod inner and outer segments.
Collapse
Affiliation(s)
- P L Beech
- Department of Biology, Yale University, New Haven, CT 06520-8103, USA
| | | | | | | | | | | |
Collapse
|
23
|
Thaler CD, Haimo LT. Microtubules and microtubule motors: mechanisms of regulation. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 164:269-327. [PMID: 8575892 DOI: 10.1016/s0074-7696(08)62388-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Microtubule-based motility is precisely regulated, and the targets of regulation may be the motor proteins, the microtubules, or both components of this intricately controlled system. Regulation of microtubule behavior can be mediated by cell cycle-dependent changes in centrosomal microtubule nucleating ability and by cell-specific, microtubule-associated proteins (MAPs). Changes in microtubule organization and dynamics have been correlated with changes in phosphorylation. Regulation of motor proteins may be required both to initiate movement and to dictate its direction. Axonemal and cytoplasmic dyneins as well as kinesin can be phosphorylated and this modification may affect the motor activities of these enzymes or their ability to interact with organelles. A more complete understanding of how motors can be modulated by phosphorylation, either of the motor proteins or of other associated substrates, will be necessary in order to understand how bidirectional transport is regulated.
Collapse
Affiliation(s)
- C D Thaler
- Department of Biology, University of California, Riverside, USA
| | | |
Collapse
|
24
|
Bloch MA, Johnson KA. Identification of a molecular chaperone in the eukaryotic flagellum and its localization to the site of microtubule assembly. J Cell Sci 1995; 108 ( Pt 11):3541-5. [PMID: 8586665 DOI: 10.1242/jcs.108.11.3541] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Monoclonal antibodies that recognize HSP70 family members from evolutionarily divergent organisms were used to identify both constitutively-expressed and stress-inducible HSP70 proteins in the green alga Chlamydomonas. These monoclonal antibodies also cross-reacted with a 70 kDa flagellar protein that comigrated with the constitutively-expressed HSP70 isoform(s) present in the cell body; this is the first identification of a molecular chaperone within the eukaryotic flagellum. Fractionation experiments demonstrated that much of the flagellar HSP70 was bound to the ‘9+2’ microtubule axoneme. Incubation of isolated axonemes in ATP, but not AMP or AMP-PNP, caused significant release of the previously bound HSP70 as is characteristic of complexed HSP70s. Immunofluorescent localization in whole flagella showed that flagellar HSP70 was concentrated at the distal ends of flagella, sites of axonemal assembly in vivo. Extraction of axonemes under ionic conditions known to cause the release of capping structures that link the distal ends of the axonemal microtubules to the flagellar membrane also caused the release of axonemal-bound HSP70. Taken together, these results suggest a model in which an HSP70 chaperone may assist in targeting tubulin and other unassembled axonemal components to the flagellar tip where the chaperone may also participate in the assembly of the ‘9+2’ flagellar axoneme.
Collapse
Affiliation(s)
- M A Bloch
- Department of Molecular, Cellular and Developmental Biology, Haverford College, PA 19041, USA
| | | |
Collapse
|
25
|
|
26
|
Abstract
The fact that multiple microtubule-based motors exist in brain inevitably raises questions about their function. Transcripts for at least seven kinesin superfamily genes and even more dynein heavy chain genes have been detected in brain cDNA libraries. The challenge now is to match their gene products to specific functions in cells of the nervous system. Recent studies have attempted to establish a function for each microtubule motor by using recombinant protein and immunochemical approaches.
Collapse
Affiliation(s)
- S T Brady
- Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical Center, Dallas 75235-9111, USA.
| | | |
Collapse
|
27
|
Abstract
The eukaryotic flagellum is a complex biochemical machine that moves cells or moves materials over the surface of cells, such as in the mammalian esophagus, oviduct or in protozoa. It is composed of over 250 polypeptides that must be assembled into a number of different structures and each structure must be attached with an exact periodicity along the microtubules. Once the flagellum is assembled, each of the components must act in concert and in three dimensions to produce a complex waveform. This review provides an outline of the composition and function of the different structures found in the flagella of Chlamydomonas.
Collapse
Affiliation(s)
- S K Dutcher
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309-0347, USA
| |
Collapse
|
28
|
Shingyoji C, Takahashi K. Cyclical bending movements induced locally by successive iontophoretic application of ATP to an elastase-treated flagellar axoneme. J Cell Sci 1995; 108 ( Pt 4):1359-69. [PMID: 7615658 DOI: 10.1242/jcs.108.4.1359] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To elucidate the mechanism of oscillatory bending in cilia and flagella, we studied the effect of protease digestion on the response of axonemes to localized application of ATP. When the axonemes were treated with elastase and then reactivated locally by ATP iontophoresis, a pair of local bends were formed due to localized unidirectional sliding in the vicinity of the ATP pipette. Upon repeated application of ATP, the direction of bending with respect to the sperm head axis changed cyclically from side to side over several cycles. The bends were planar and similar to those observed in axonemes that had not been treated with elastase. In trypsin-treated axonemes, in contrast, repetitive local reactivation did not induce such cyclical bending; instead, it induced a bend that grew only in one direction upon repeated application of ATP. Moreover, the bends were not planar. Electron microscopy of these protease-digested axonemes showed that both the interdoublet (nexin) links and the radial spokes were disrupted, but the effects of these proteases were different; trypsin disrupted 60–70% of these structures whereas elastase disrupted 20–30% of them. In both cases, spokes no. 3 and no. 8 (and no. 7) were more resistant to digestion than the others, although they tended to be more resistant to elastase than to trypsin. The importance of radial spokes and interdoublet links in the generation of cyclical bending and the determination of the bending plane is discussed.
Collapse
Affiliation(s)
- C Shingyoji
- Zoological Institute, Graduate School of Science, University of Tokyo, Japan
| | | |
Collapse
|
29
|
Bernstein M. Flagellar kinesins: new moves with an old beat. CELL MOTILITY AND THE CYTOSKELETON 1995; 32:125-8. [PMID: 8681393 DOI: 10.1002/cm.970320211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- M Bernstein
- Department of Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
30
|
Johnson KA, Haas MA, Rosenbaum JL. Localization of a kinesin-related protein to the central pair apparatus of the Chlamydomonas reinhardtii flagellum. J Cell Sci 1994; 107 ( Pt 6):1551-6. [PMID: 7962197 DOI: 10.1242/jcs.107.6.1551] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Affinity-purified polyclonal antibodies raised against the conserved motor domain of Drosophila kinesin (alpha HD) recognized a 110 kDa component of the Chlamydomonas flagellar axoneme. Whole-mount immunogold labeling of splayed axonemes showed the striking localization of this antigen along one of the two microtubules of the central pair apparatus. Interestingly, the alpha HD antigen was also localized along the central axis of mutant axonemes lacking the central pair microtubules. These results suggest that a 110 kDa kinesin-related protein is a structural component of the flagellar central pair apparatus and that it is correctly targeted even in the absence of the central pair microtubules.
Collapse
Affiliation(s)
- K A Johnson
- Department of Biology, Haverford College, PA 19041
| | | | | |
Collapse
|