1
|
Picard B, Gagaoua M. Muscle Fiber Properties in Cattle and Their Relationships with Meat Qualities: An Overview. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6021-6039. [PMID: 32374594 DOI: 10.1021/acs.jafc.0c02086] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The control of meat quality traits constitutes an important target for any farm animal production, including cattle. Therefore, better understanding of the biochemical properties that drive muscle development and final outcomes constitutes one of the main challenging topics of animal production and meat science. Accordingly, this review has focused on skeletal muscle fibers in cattle and their relationships with beef qualities. It aimed to describe the chemical and structural properties of muscle fibers as well as a comprehensive review of their contractile and metabolic characteristics during the life of the animal. The existing methods for the classification of muscle fibers were reviewed, compared, and discussed. Then, the different stages of myogenesis in cattle were defined. The main factors regulating fetal and postnatal growth and the plasticity of muscle fibers were evidenced, especially the role of myostatin growth factor and the impact of nutritional factors. This review highlights that the knowledge about muscle fibers is paramount for a better understanding of how to control the muscle properties throughout the life of the animal for better management of the final eating qualities of beef. Accordingly, the associations between bovine muscle fibers and different meat eating qualities such as tenderness, pH decline, and color traits were further presented.
Collapse
Affiliation(s)
- Brigitte Picard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| | - Mohammed Gagaoua
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| |
Collapse
|
2
|
Farini A, Sitzia C, Cassinelli L, Colleoni F, Parolini D, Giovanella U, Maciotta S, Colombo A, Meregalli M, Torrente Y. Inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ signaling mediates delayed myogenesis in Duchenne muscular dystrophy fetal muscle. Development 2016; 143:658-69. [DOI: 10.1242/dev.126193] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disorder characterized by muscle wasting and premature death. The defective gene is dystrophin, a structural protein, absence of which causes membrane fragility and myofiber necrosis. Several lines of evidence showed that in adult DMD patients dystrophin is involved in signaling pathways that regulate calcium homeostasis and differentiation programs. However, secondary aspects of the disease, such as inflammation and fibrosis development, might represent a bias in the analysis. Because fetal muscle is not influenced by gravity and does not suffer from mechanical load and/or inflammation, we investigated 12-week-old fetal DMD skeletal muscles, highlighting for the first time early alterations in signaling pathways mediated by the absence of dystrophin itself. We found that PLC/IP3/IP3R/Ryr1/Ca2+ signaling is widely active in fetal DMD skeletal muscles and, through the calcium-dependent PKCα protein, exerts a fundamental regulatory role in delaying myogenesis and in myofiber commitment. These data provide new insights into the origin of DMD pathology during muscle development.
Collapse
Affiliation(s)
- Andrea Farini
- Laboratorio di Cellule Staminali, Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Centro Dino Ferrari, Via Francesco Sforza 35, Milan 20122, Centro Dino Ferrari, Italy
| | - Clementina Sitzia
- Laboratorio di Cellule Staminali, Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Centro Dino Ferrari, Via Francesco Sforza 35, Milan 20122, Centro Dino Ferrari, Italy
| | - Letizia Cassinelli
- Laboratorio di Cellule Staminali, Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Centro Dino Ferrari, Via Francesco Sforza 35, Milan 20122, Centro Dino Ferrari, Italy
| | - Federica Colleoni
- Laboratorio di Cellule Staminali, Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Centro Dino Ferrari, Via Francesco Sforza 35, Milan 20122, Centro Dino Ferrari, Italy
| | - Daniele Parolini
- Laboratorio di Cellule Staminali, Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Centro Dino Ferrari, Via Francesco Sforza 35, Milan 20122, Centro Dino Ferrari, Italy
| | - Umberto Giovanella
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio delle Macromolecole (CNR-ISMAC), via Bassini 15, Milano 20133, Italy
| | - Simona Maciotta
- Laboratorio di Cellule Staminali, Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Centro Dino Ferrari, Via Francesco Sforza 35, Milan 20122, Centro Dino Ferrari, Italy
| | - Augusto Colombo
- Servizio ‘Legge 194’ Dipartimento BDN-Fondazione IRCCS, Policlinico Mangiagalli-Regina Elena, Via Francesco Sforza 35, Milan 20122, Italy
| | - Mirella Meregalli
- Laboratorio di Cellule Staminali, Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Centro Dino Ferrari, Via Francesco Sforza 35, Milan 20122, Centro Dino Ferrari, Italy
| | - Yvan Torrente
- Laboratorio di Cellule Staminali, Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Centro Dino Ferrari, Via Francesco Sforza 35, Milan 20122, Centro Dino Ferrari, Italy
| |
Collapse
|
3
|
Song Y, Forsgren S, Liu JX, Yu JG, Stål P. Unilateral muscle overuse causes bilateral changes in muscle fiber composition and vascular supply. PLoS One 2014; 9:e116455. [PMID: 25545800 PMCID: PMC4278887 DOI: 10.1371/journal.pone.0116455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/08/2014] [Indexed: 12/28/2022] Open
Abstract
Unilateral strength training can cause cross-transfer strength effects to the homologous contralateral muscles. However, the impact of the cross-over effects on the muscle tissue is unclear. To test the hypothesis that unilateral muscle overuse causes bilateral alterations in muscle fiber composition and vascular supply, we have used an experimental rabbit model with unilateral unloaded overstrain exercise via electrical muscle stimulation (E/EMS). The soleus (SOL) and gastrocnemius (GA) muscles of both exercised (E) and contralateral non-exercised (NE) legs (n = 24) were morphologically analyzed after 1 w, 3 w and 6 w of EMS. Non-exercised rabbits served as controls (n = 6). After unilateral intervention the muscles of both E and NE legs showed myositis and structural and molecular tissue changes that to various degrees mirrored each other. The fiber area was bilaterally smaller than in controls after 3 w of E/EMS in both SOL (E 4420 and NE 4333 µm2 vs. 5183 µm2, p<0.05) and GA (E 3572 and NE 2983 µm2 vs. 4697 µm2, p<0.02) muscles. After 6 w of E/EMS, the percentage of slow MyHCI fibers was lower than in controls in the NE legs of SOL (88.1% vs. 98.1%, p<0.009), while the percentage of fast MyHCIIa fibers was higher in the NE legs of GA (25.7% vs. 15.8%, p = 0.02). The number of capillaries around fibers in the E and NE legs was lower (SOL 13% and 15%, respectively, GA 25% and 23%, respectively, p<0.05) than in controls. The overall alterations were more marked in the fast GA muscle than in the slow SOL muscle, which on the other hand showed more histopathological muscle changes. We conclude that unilateral repetitive unloaded overuse exercise via EMS causes myositis and muscle changes in fiber type proportions, fiber area and fiber capillarization not only in the exercised leg, but also in the homologous muscles in the non-exercised leg.
Collapse
Affiliation(s)
- Yafeng Song
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | - Sture Forsgren
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | - Jing-Xia Liu
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | - Ji-Guo Yu
- Department of Surgical and Perioperative Sciences, Sports Medicine Unit, Umeå University, Umeå, Sweden
| | - Per Stål
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
4
|
Luo Q, Douglas M, Burkholder T, Sokoloff AJ. Absence of developmental and unconventional myosin heavy chain in human suprahyoid muscles. Muscle Nerve 2014; 49:534-44. [PMID: 23835800 DOI: 10.1002/mus.23946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Contradictory reports of the myosin heavy chain (MHC) composition of adult human suprahyoid muscles leave unresolved the extent to which these muscles express developmental and unconventional MHC. METHODS By immunohistochemistry, separation sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)-Coomassie, separation SDS-PAGE-Western blot, and mRNA PCR, we tested for conventional MHCI, MHCIIA, MHCIIX, developmental MHC embryonic and MHC neonatal, and unconventional MHC alpha-cardiac, MHC extraocular, and MHC slow tonic in adult human anterior digastric (AD), geniohyoid (GH), and mylohyoid (MH) muscles. RESULTS By separation SDS-PAGE-Coomassie and Western blot, only conventional MHC are present. By immunohistochemistry all muscle fibers are positive for MHCI, MHCIIA, or MHCIIX, and fewer than 4 fibers/mm(2) are positive for developmental or unconventional MHC. By PCR, mRNA of MHCI and MHCIIA dominate, with sporadically detectable MHC alpha-cardiac and without detectable mRNA of other developmental and unconventional MHC. CONCLUSIONS We conclude that human suprahyoid muscles AD, GH, and MH are composed almost exclusively of conventional MHC isoforms.
Collapse
Affiliation(s)
- Qingwei Luo
- Department of Physiology, Emory University, 615 Michael Street, Atlanta, Georgia, 30322, USA
| | | | | | | |
Collapse
|
5
|
Proteome dynamics during contractile and metabolic differentiation of bovine foetal muscle. Animal 2012; 3:980-1000. [PMID: 22444818 DOI: 10.1017/s1751731109004315] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Contractile and metabolic properties of bovine muscles play an important role in meat sensorial quality, particularly tenderness. Earlier studies based on Myosin heavy chain isoforms analyses and measurements of glycolytic and oxidative enzyme activities have demonstrated that the third trimester of foetal life in bovine is characterized by contractile and metabolic differentiation. In order to complete this data and to obtain a precise view of this phase and its regulation, we performed a proteomic analysis of Semitendinosus muscle from Charolais foetuses analysed at three stages of the third trimester of gestation (180, 210 and 260 days). The results complete the knowledge of important changes in the profiles of proteins from metabolic and contractile pathways. They provide new insights about proteins such as Aldehyde dehydrogenase family, Enolase, Dihydrolipoyl dehydrogenase, Troponin T or Myosin light chains isoforms. These data have agronomical applications not only for the management of beef sensorial quality but also in medical context, as bovine myogenesis appears very similar to human one.
Collapse
|
6
|
Daugherty M, Luo Q, Sokoloff AJ. Myosin heavy chain composition of the human genioglossus muscle. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2012; 55:609-25. [PMID: 22337492 PMCID: PMC3816748 DOI: 10.1044/1092-4388(2011/10-0287)] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND The human tongue muscle genioglossus (GG) is active in speech, swallowing, respiration, and oral transport, behaviors encompassing a wide range of tongue shapes and movement speeds. Studies demonstrate substantial diversity in patterns of human GG motor unit activation, but whether this is accompanied by complex expression of muscle contractile proteins is not known. PURPOSE The authors tested for conventional myosin heavy chain (MHC) MHCI, MHCIIA, MHCIIX, developmental MHCembryonic and MHCneonatal and unconventional MHCαcardiac, MHCextraocular, and MHCslow tonic in antero-superior (GG-A) and posterior (GG-P) adult human GG. METHOD SDS-PAGE, Western blot, and immunohistochemistry were used to describe MHC composition of GG-A and GG-P and the prevalence of muscle fiber MHC phenotypes in GG-A. RESULTS By SDS-PAGE, only conventional MHC are present with ranking from most to least prevalent MHCIIA > MHCI > MHCIIX in GG-A and MHCI > MHCIIA > MHCIIX in GG-P. By immunohistochemistry, many muscle fibers contain MHCI, MHCIIA, and MHCIIX, but few contain developmental or unconventional MHC. GG-A is composed of 5 phenotypes (MHCIIA > MHCI-IIX > MHCI > MHCI-IIA > MHCIIX). Phenotypes MHCI, MHCIIA, and MHCI-IIX account for 96% of muscle fibers. CONCLUSIONS Despite activation of GG during kinematically diverse behaviors and complex patterns of GG motor unit activity, the human GG is composed of conventional MHC isoforms and 3 primary MHC phenotypes.
Collapse
|
7
|
Chakkalakal JV, Kuang S, Buffelli M, Lichtman JW, Sanes JR. Mouse transgenic lines that selectively label Type I, Type IIA, and Types IIX+B skeletal muscle fibers. Genesis 2012; 50:50-8. [PMID: 21898764 DOI: 10.1002/dvg.20794] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/02/2011] [Accepted: 08/14/2011] [Indexed: 11/08/2022]
Abstract
Skeletal muscle fibers vary in contractile and metabolic properties. Four main fiber types are present in mammalian trunk and limb muscles; they are called I, IIA, IIX, and IIB, ranging from slowest- to fastest-contracting. Individual muscles contain stereotyped proportions of two or more fiber types. Fiber type is determined by a combination of nerve-dependent and -independent influences, leading to formation of "homogeneous motor units" in which all branches of a single motor neuron form synapses on fibers of a single type. Fiber type composition of muscles can be altered in adulthood by multiple factors including exercise, denervation, hormones, and aging. To facilitate analysis of muscle development, plasticity, and innervation, we generated transgenic mouse lines in which Type I, Type IIA, and Type IIX+B fibers can be selectively labeled with distinguishable fluorophores. We demonstrate their use for motor unit reconstruction and live imaging of nerve-dependent alterations in fiber type.
Collapse
|
8
|
Sokoloff AJ, Daugherty M, Li H. Myosin heavy-chain composition of the human hyoglossus muscle. Dysphagia 2010; 25:81-93. [PMID: 19526266 PMCID: PMC3818084 DOI: 10.1007/s00455-009-9227-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 04/22/2009] [Indexed: 10/20/2022]
Abstract
The human tongue muscle hyoglossus (HG) is active in oromotor behaviors encompassing a wide range of tongue movement speeds. Here we test the hypothesis that the human HG is composed of "uncommon" myosin heavy-chain (MHC) isoforms MHCembryonic, MHCneonatal, and MHCslow tonic as has been reported for other head and neck muscles active during kinematically diverse behaviors. Following reaction of human HG with antibodies specific for MHCI, MHCIIA, MHCII, MHCembryonic, MHCextraocular, MHCneonatal, and MHCslow tonic, only antibodies to MHCI, MHCIIA, and MHCII label more than occasional muscle fibers. These antibodies describe five phenotypes with prevalence MHCIIA > MHCI > MHCI-IIX > MHCI-IIA > MHCIIX. In MHC composition, the human HG is thus similar to human appendicular muscles and many human head and neck muscles but different from human masseter and extraocular muscles which contain five or more MHC isoforms.
Collapse
Affiliation(s)
- Alan J Sokoloff
- Department of Physiology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
9
|
Tajsharghi H, Hilton-Jones D, Raheem O, Saukkonen AM, Oldfors A, Udd B. Human disease caused by loss of fast IIa myosin heavy chain due to recessive MYH2 mutations. Brain 2010; 133:1451-9. [DOI: 10.1093/brain/awq083] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
10
|
Ontogenesis of muscle and adipose tissues and their interactions in ruminants and other species. Animal 2010; 4:1093-109. [DOI: 10.1017/s1751731110000601] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
11
|
Merrick D, Stadler LKJ, Larner D, Smith J. Muscular dystrophy begins early in embryonic development deriving from stem cell loss and disrupted skeletal muscle formation. Dis Model Mech 2009; 2:374-88. [PMID: 19535499 DOI: 10.1242/dmm.001008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Examination of embryonic myogenesis of two distinct, but functionally related, skeletal muscle dystrophy mutants (mdx and cav-3(-/-)) establishes for the first time that key elements of the pathology of Duchenne muscular dystrophy (DMD) and limb-girdle muscular dystrophy type 1C (LGMD-1c) originate in the disruption of the embryonic cardiac and skeletal muscle patterning processes. Disruption of myogenesis occurs earlier in mdx mutants, which lack a functional form of dystrophin, than in cav-3(-/-) mutants, which lack the Cav3 gene that encodes the protein caveolin-3; this finding is consistent with the milder phenotype of LGMD-1c, a condition caused by mutations in Cav3, and the earlier [embryonic day (E)9.5] expression of dystrophin. Myogenesis is severely disrupted in mdx embryos, which display developmental delays; myotube morphology and displacement defects; and aberrant stem cell behaviour. In addition, the caveolin-3 protein is elevated in mdx embryos. Both cav-3(-/-) and mdx mutants (from E15.5 and E11.5, respectively) exhibit hyperproliferation and apoptosis of Myf5-positive embryonic myoblasts; attrition of Pax7-positive myoblasts in situ; and depletion of total Pax7 protein in late gestation. Furthermore, both cav-3(-/-) and mdx mutants have cardiac defects. In cav-3(-/-) mutants, there is a more restricted phenotype comprising hypaxial muscle defects, an excess of malformed hypertrophic myotubes, a twofold increase in myonuclei, and reduced fast myosin heavy chain (FMyHC) content. Several mdx mutant embryo pathologies, including myotube hypotrophy, reduced myotube numbers and increased FMyHC, have reciprocity with cav-3(-/-) mutants. In double mutant (mdxcav-3(+/-)) embryos that are deficient in dystrophin (mdx) and heterozygous for caveolin-3 (cav-3(+/-)), whereby caveolin-3 is reduced to 50% of wild-type (WT) levels, these phenotypes are severely exacerbated: intercostal muscle fibre density is reduced by 71%, and Pax7-positive cells are depleted entirely from the lower limbs and severely attenuated elsewhere; these data suggest a compensatory rather than a contributory role for the elevated caveolin-3 levels that are found in mdx embryos. These data establish a key role for dystrophin in early muscle formation and demonstrate that caveolin-3 and dystrophin are essential for correct fibre-type specification and emergent stem cell function. These data plug a significant gap in the natural history of muscular dystrophy and will be invaluable in establishing an earlier diagnosis for DMD/LGMD and in designing earlier treatment protocols, leading to better clinical outcome for these patients.
Collapse
Affiliation(s)
- Deborah Merrick
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
12
|
Maggs AM, Huxley C, Hughes SM. Nerve-dependent changes in skeletal muscle myosin heavy chain after experimental denervation and cross-reinnervation and in a demyelinating mouse model of Charcot-Marie-Tooth disease type 1A. Muscle Nerve 2009; 38:1572-84. [PMID: 19016545 DOI: 10.1002/mus.21106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Innervation regulates the contractile properties of vertebrate muscle fibers, in part through the effect of electrical activity on expression of distinct myosins. Herein we analyze the role of innervation in regulating the accumulation of the general, maturational, and adult forms of rodent slow myosin heavy chain (MyHC) that are defined by the presence of distinct antigenic epitopes. Denervation increases the number of fibers that express general slow MyHC, but it decreases the adult slow MyHC epitope. Cross-reinnervation of slow muscle by a fast nerve leads to an increase in the number of fibers that express fast MyHC. In both cases, there is an increase in the number of fibers that express slow and fast IIA MyHCs, but without the adult slow MyHC epitope. The data suggest that innervation is required for maturation and maintenance of diversity of both slow and fast fibers. The sequence of slow MyHC epitope transitions is a useful biomarker, and it may play a significant role during nerve-dependent changes in muscle fiber function. We applied this detailed muscle analysis to a transgenic mouse model of human motor and sensory neuropathy IA, also known as Charcot-Marie-Tooth disease type 1A (CMT1A), in which electrical conduction in some motor nerves is poor due to demyelination. The mice display atrophy of some muscle fibers and changes in slow and fast MyHC epitope expression, suggestive of a progressive increase in innervation of muscle fibers by fast motor neurons, even at early stages. The potential role of these early changes in disease pathogenesis is assessed.
Collapse
Affiliation(s)
- Alison M Maggs
- Randall Division for Cell Biophysics, King's College London, UK
| | | | | |
Collapse
|
13
|
Hagiwara N, Yeh M, Liu A. Sox6 is required for normal fiber type differentiation of fetal skeletal muscle in mice. Dev Dyn 2007; 236:2062-76. [PMID: 17584907 DOI: 10.1002/dvdy.21223] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sox6, a member of the Sox family of transcription factors, is highly expressed in skeletal muscle. Despite its abundant expression, the role of Sox6 in muscle development is not well understood. We hypothesize that, in fetal muscle, Sox6 functions as a repressor of slow fiber type-specific genes. In the wild-type mouse, differentiation of fast and slow fibers becomes apparent during late fetal stages (after approximately embryonic day 16). However, in the Sox6 null-p(100H) mutant mouse, all fetal muscle fibers maintain slow fiber characteristics, as evidenced by expression of the slow myosin heavy chain MyHC-beta. Knockdown of Sox6 expression in wild-type myotubes results in a significant increase in MyHC-beta expression, supporting our hypothesis. Analysis of the MyHC-beta promoter revealed a Sox consensus sequence that likely functions as a negative cis-regulatory element. Together, our results suggest that Sox6 plays a critical role in the fiber type differentiation of fetal skeletal muscle.
Collapse
Affiliation(s)
- Nobuko Hagiwara
- University of California, Davis, Division of Cardiovascular Medicine/Rowe Program in Human Genetics, Davis, California 95616, USA.
| | | | | |
Collapse
|
14
|
Sokoloff AJ, Li H, Burkholder TJ. Limited expression of slow tonic myosin heavy chain in human cranial muscles. Muscle Nerve 2007; 36:183-9. [PMID: 17486578 PMCID: PMC3816747 DOI: 10.1002/mus.20797] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recent reports of slow tonic myosin heavy chain (MHCst) in human masticatory and laryngeal muscles suggest that MHCst may have a wider distribution in humans than previously thought. Because of the novelty of this finding, we sought to confirm the presence of MHCst in human masticatory and laryngeal muscles by reacting tissue from these muscles and controls from extraocular, intrafusal, cardiac, appendicular, and developmental muscle with antibodies (Abs) ALD-58 and S46, considered highly specific for MHCst. At Ab dilutions producing minimal reaction to muscle fibers positive for MHCI, only extraocular, intrafusal, and fetal tongue tissue reacted with Ab S46 had strong immunoreaction in an appreciable number of muscle fibers. In immunoblots, Ab S46, but not Ab ALD-58, labeled adult extraocular muscles; no other muscles were labeled with either Ab. We conclude that, in humans, Ab S46 has greater specificity for MHCst than does Ab ALD-58. We suggest that reports of MHCst in human masticatory and laryngeal muscles reflect false-positive identification of MHCst due to cross-reactivity of Ab ALD-58 with another MHC isoform.
Collapse
Affiliation(s)
- Alan J Sokoloff
- Department of Physiology, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
15
|
A role for Insulin-like growth factor 2 in specification of the fast skeletal muscle fibre. BMC DEVELOPMENTAL BIOLOGY 2007; 7:65. [PMID: 17559643 PMCID: PMC1906852 DOI: 10.1186/1471-213x-7-65] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 06/08/2007] [Indexed: 01/11/2023]
Abstract
Background Fibre type specification is a poorly understood process beginning in embryogenesis in which skeletal muscle myotubes switch myosin-type to establish fast, slow and mixed fibre muscle groups with distinct function. Growth factors are required to establish slow fibres; it is unknown how fast twitch fibres are specified. Igf-2 is an embryonically expressed growth factor with established in vitro roles in skeletal muscle. Its localisation and role in embryonic muscle differentiation had not been established. Results Between E11.5 and E15.5 fast Myosin (FMyHC) localises to secondary myotubes evenly distributed throughout the embryonic musculature and gradually increasing in number so that by E15.5 around half contain FMyHC. The Igf-2 pattern closely correlates with FMyHC from E13.5 and peaks at E15.5 when over 90% of FMyHC+ myotubes also contain Igf-2. Igf-2 lags FMyHC and it is absent from muscle myotubes until E13.5. Igf-2 strongly down-regulates by E17.5. A striking feature of the FMyHC pattern is its increased heterogeneity and attenuation in many fibres from E15.5 to day one after birth (P1). Transgenic mice (MIG) which express Igf-2 in all of their myotubes, have increased FMyHC staining, a higher proportion of FMyHC+ myotubes and loose their FMyHC staining heterogeneity. In Igf-2 deficient mice (MatDi) FMyHC+ myotubes are reduced to 60% of WT by E15.5. In vitro, MIG induces a 50% excess of FMyHC+ and a 30% reduction of SMHyC+ myotubes in C2 cells which can be reversed by Igf-2-targeted ShRNA resulting in 50% reduction of FMyHC. Total number of myotubes was not affected. Conclusion In WT embryos the appearance of Igf-2 in embryonic myotubes lags FMyHC, but by E15.5 around 45% of secondary myotubes contain both proteins. Forced expression of Igf-2 into all myotubes causes an excess, and absence of Igf-2 suppresses, the FMyHC+ myotube component in both embryonic muscle and differentiated myoblasts. Igf-2 is thus required, not for initiating secondary myotube differentiation, but for establishing the correct proportion of FMyHC+ myotubes during fibre type specification (E15.5 - P1). Since specific loss of FMyHC fibres is associated with many skeletal muscle pathologies these data have important medical implications.
Collapse
|
16
|
Musa H, Meek S, Gautel M, Peddie D, Smith AJH, Peckham M. Targeted homozygous deletion of M-band titin in cardiomyocytes prevents sarcomere formation. J Cell Sci 2007; 119:4322-31. [PMID: 17038546 DOI: 10.1242/jcs.03198] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Titin, a multifunctional protein that stretches from the Z-disk to the M-band in heart and skeletal muscle, contains a kinase domain, phosphorylation sites and multiple binding sites for structural and signalling proteins in the M-band. To determine whether this region is crucial for normal sarcomere development, we created mouse embryonic stem cell (ES) lines in which either one or both alleles contained a targeted deletion of the entire M-band-coding region, leaving Z-disk-binding and myosin-filament-binding sites intact. ES cells were differentiated into cardiomyocytes, and myofibrillogenesis investigated by immunofluorescence microscopy. Surprisingly, deletion of one allele did not markedly affect differentiation into cardiomyocytes, suggesting that a single intact copy of the titin gene is sufficient for normal myofibrillogenesis. By contrast, deletion of both alleles resulted in a failure of differentiation beyond an early stage of myofibrillogenesis. Sarcomeric myosin remained in non-striated structures, Z-disk proteins, such as alpha-actinin, were mainly found in primitive dot-like structures on actin stress fibres, M-band-associated proteins (myomesin, obscurin, Nbr1, p62 and MURF2) remained punctate. These results show that integration of the M-band region of titin is required for myosin filament assembly, M-band formation and maturation of the Z-disk.
Collapse
Affiliation(s)
- Hanny Musa
- Institute for Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
17
|
Sokoloff AJ, Yang B, Li H, Burkholder TJ. Immunohistochemical characterization of slow and fast myosin heavy chain composition of muscle fibres in the styloglossus muscle of the human and macaque (Macaca rhesus). Arch Oral Biol 2007; 52:533-43. [PMID: 17210117 PMCID: PMC1991289 DOI: 10.1016/j.archoralbio.2006.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 10/09/2006] [Accepted: 11/16/2006] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Muscle fibre contractile diversity is thought to be increased by the hybridization of multiple myosin heavy chain (MHC) isoforms in single muscle fibres. Reports of hybrid fibres composed of MHCI and MHCII isoforms in human, but not macaque, tongue muscles, suggest a human adaptation for increased tongue muscle contractile diversity. Here we test whether hybrid fibres composed of MHCI and MHCII are unique to human tongue muscles or are present as well in the macaque. METHODS MHC composition of the macaque and human styloglossus was characterized with antibodies that allowed identification of three muscle fibre phenotypes, a slow phenotype composed of MHCI, a fast phenotype composed of MHCII and a hybrid phenotype composed of MHCI and MHCII. RESULTS The fast phenotype constitutes 68.5% of fibres in the macaque and 43.4% of fibres in the human (P<0.0001). The slow phenotype constitutes 20.2% of fibres in the macaque and 39.3% of fibres in the human (P<0.0001). The hybrid phenotype constitutes 11.2% of fibres in the macaque and 17.3% of fibres in the human (P=0.0002). Macaques and humans do not differ in fiber size (cross-sectional area, diameter). However, measures of fibre size differ by phenotype such that fast>hybrid>slow (P<0.05). CONCLUSION These data demonstrate differences in the relative percent of muscle fibre phenotypes in the macaque and human styloglossus but also demonstrate that all three phenotypes are present in both species. These data suggest a similar range of mechanical properties in styloglossus muscle fibres of the macaque and human.
Collapse
Affiliation(s)
- Alan J Sokoloff
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
18
|
Swailes NT, Colegrave M, Knight PJ, Peckham M. Non-muscle myosins 2A and 2B drive changes in cell morphology that occur as myoblasts align and fuse. J Cell Sci 2006; 119:3561-70. [PMID: 16895968 DOI: 10.1242/jcs.03096] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction of non-muscle myosins 2A and 2B with actin may drive changes in cell movement, shape and adhesion. To investigate this, we used cultured myoblasts as a model system. These cells characteristically change shape from triangular to bipolar when they form groups of aligned cells. Antisense oligonucleotide knockdown of non-muscle myosin 2A, but not non-muscle myosin 2B, inhibited this shape change, interfered with cell-cell adhesion, had a minor effect on tail retraction and prevented myoblast fusion. By contrast, non-muscle myosin 2B knockdown markedly inhibited tail retraction, increasing cell length by over 200% by 72 hours compared with controls. In addition it interfered with nuclei redistribution in myotubes. Non-muscle myosin 2C is not involved as western analysis showed that it is not expressed in myoblasts, but only in myotubes. To understand why non-muscle myosins 2A and 2B have such different roles, we analysed their distributions by immuno-electron microscopy, and found that non-muscle myosin 2A was more tightly associated with the plasma membrane than non-muscle myosin 2B. This suggests that non-muscle myosin 2A is more important for bipolar shape formation and adhesion owing to its preferential interaction with membrane-associated actin, whereas the role of non-muscle myosin 2B in retraction prevents over-elongation of myoblasts.
Collapse
Affiliation(s)
- Nathan T Swailes
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | |
Collapse
|
19
|
Hagiwara N, Ma B, Ly A. Slow and fast fiber isoform gene expression is systematically altered in skeletal muscle of the Sox6 mutant, p100H. Dev Dyn 2006; 234:301-11. [PMID: 16124007 DOI: 10.1002/dvdy.20535] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We have previously demonstrated that p100H mutant mice, which lack a functional Sox6 gene, exhibit skeletal and cardiac muscle degeneration and develop cardiac conduction abnormalities soon after birth. To understand the role of Sox6 in skeletal muscle development, we identified muscle-specific genes differentially expressed between wild-type and p100H mutant skeletal muscles and investigated their temporal expression in the mutant muscle. We found that, in the mutant skeletal muscle, slow fiber and cardiac isoform genes are expressed at significantly higher levels, whereas fast fiber isoform genes are expressed at significantly lower levels than wild-type. Onset of this aberrant fiber type-specific gene expression in the mutant coincides with the beginning of the secondary myotube formation, at embryonic day 15-16 in mice. Together with our earlier report, demonstrating early postnatal muscle defects in the Sox6 null-p100H mutant, the present results suggest that Sox6 likely plays an important role in muscle development.
Collapse
Affiliation(s)
- Nobuko Hagiwara
- University of California, Davis, Division of Cardiovascular Medicine, Rowe Program in Genetics, Davis, CA 95616, USA
| | | | | |
Collapse
|
20
|
Rodgers BD. Insulin-like growth factor-I downregulates embryonic myosin heavy chain (eMyHC) in myoblast nuclei. Growth Horm IGF Res 2005; 15:377-383. [PMID: 16169763 DOI: 10.1016/j.ghir.2005.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 07/27/2005] [Accepted: 08/07/2005] [Indexed: 11/26/2022]
Abstract
The obscure ability of the insulin-like growth factors (IGF-I & -II) to stimulate both myoblast proliferation and differentiation suggests that the latter effect may be mediated locally, possibly by IGF binding proteins (IGFBPs). In some cells, the growth inhibitory actions of IGFBP-5 require plasma membrane translocation and nuclear localization. Immunoreactivity of presumably endogenous IGFBP-5 was identified within proliferating rat L6 myoblast nuclei using fluorescent and confocal microscopy in separate experiments and was reduced by 100 ng/ml IGF-I in a time-dependent manner. Western blotting of nuclear and cytosolic protein identified a single anti-IGFBP-5 immunoreactive protein of approximately 200 kDa, primarily in nuclear fractions, that was downregulated in cells treated with IGF-I for 12 h. The unknown protein was immunopurified from nuclear fractions and identified as the rat homologue for embryonic myosin heavy chain (eMyHC) using matrix-associated laser desorption ionization time of flight (MALDI-TOF) mass spectroscopy. Cross-reactivity of the IGFBP-5 antiserum with eMyHC was confirmed by blotting anti-IGFBP-5 nuclear immunoprecipitates with eMyHC monoclonal antibodies (F1.652). These data indicate that eMyHC is located predominantly within the nuclei of proliferating L6 myoblasts and suggest that IGF-stimulated differentiation is associated with the rapid downregulation of nuclear eMyHC as these cells stop expressing this myosin II isoform as they differentiate. Myosin Ibeta has been identified within the nuclei of non-muscle cells where it helps to regulate gene transcription. Thus, eMyHC may serve a similar role in myoblasts that is specific only to the undifferentiated state.
Collapse
Affiliation(s)
- Buel D Rodgers
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-6351, USA.
| |
Collapse
|
21
|
Pizza FX, Peterson JM, Baas JH, Koh TJ. Neutrophils contribute to muscle injury and impair its resolution after lengthening contractions in mice. J Physiol 2004; 562:899-913. [PMID: 15550464 PMCID: PMC1665528 DOI: 10.1113/jphysiol.2004.073965] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We tested the hypotheses that: (1) neutrophil accumulation after contraction-induced muscle injury is dependent on the beta(2) integrin CD18, (2) neutrophils contribute to muscle injury and oxidative damage after contraction-induced muscle injury, and (3) neutrophils aid the resolution of contraction-induced muscle injury. These hypotheses were tested by exposing extensor digitorum longus (EDL) muscles of mice deficient in CD18 (CD18(-/-); Itgb2(tm1Bay)) and of wild type mice (C57BL/6) to in situ lengthening contractions and by quantifying markers of muscle inflammation, injury, oxidative damage and regeneration/repair. Neutrophil concentrations were significantly elevated in wild type mice at 6 h and 3 days post-lengthening contractions; however, neutrophils remained at control levels at these time points in CD18-/- mice. These data indicate that CD18 is required for neutrophil accumulation after contraction-induced muscle injury. Histological and functional (isometric force deficit) signs of muscle injury and total carbonyl content, a marker of oxidative damage, were significantly higher in wild type relative to CD18-/- mice 3 days after lengthening contractions. These data show that neutrophils exacerbate contraction-induced muscle injury. After statistically controlling for differences in the force deficit at 3 days, wild type mice also demonstrated a higher force deficit at 7 days, a lower percentage of myofibres expressing embryonic myosin heavy chain at 3 and 7 days, and a smaller cross sectional area of central nucleated myofibres at 14 days relative to CD18-/- mice. These observations suggest that neutrophils impair the restoration of muscle structure and function after injury. In conclusion, neutrophil accumulation after contraction-induced muscle injury is dependent on CD18. Furthermore, neutrophils appear to contribute to muscle injury and impair some of the events associated with the resolution of contraction-induced muscle injury.
Collapse
Affiliation(s)
- Francis X Pizza
- Dept of Kinesiology, The University of Toledo, 2801 W. Bancroft Street, Toledo, OH 43606, USA.
| | | | | | | |
Collapse
|
22
|
Miller G, Musa H, Gautel M, Peckham M. A targeted deletion of the C-terminal end of titin, including the titin kinase domain, impairs myofibrillogenesis. J Cell Sci 2003; 116:4811-9. [PMID: 14600266 DOI: 10.1242/jcs.00768] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Titin is the largest protein known, and is essential for organising muscle sarcomeres. It has many domains with a variety of functions, and stretches from the Z-line to the M-line in the muscle sarcomere. Close to the M-line, titin contains a kinase domain, which is known to phosphorylate the Z-line protein telethonin in developing muscle (Mayans, O., van der Ven, P. F., Wilm, M., Mues, A., Young, P., Furst, D. O., Wilmanns, M. and Gautel, M. (1998) Nature 395, 863-869). This phosphorylation is thought to be important for initiating or regulating myofibrillogenesis. We used a gene-targeting approach in cultured myoblasts to truncate the titin gene so that the kinase domain and other domains downstream of the kinase were not expressed. We recovered cells in which one allele was targeted. We found that these cells expressed both the full-length and a truncated titin that was approximately 0.2 MDa smaller than the corresponding band from wild-type cells. Myofibrillogenesis in these cells was impaired, in that the myotubes were shorter, and the organisation of the muscle sarcomeres, M- and Z-lines was poorer than in wild-type cells. There was also an overall reduction in levels of titin and skeletal myosin expression. These results suggest that the activity of the titin kinase domain and downstream sequence are important in organising myofibrils both at the M- and the Z-line early in myofibrillogenesis.
Collapse
Affiliation(s)
- Gaynor Miller
- School of Biomedical Sciences, University of Leeds, LS2 9JT, UK
| | | | | | | |
Collapse
|
23
|
da Costa N, McGillivray C, Chang KC. Postnatal myosin heavy chain isoforms in prenatal porcine skeletal muscles: insights into temporal regulation. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 273:731-40. [PMID: 12845709 DOI: 10.1002/ar.a.10083] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Our knowledge of the temporal expression of postnatal (adult) fast myosin heavy chain (MyHC) isoforms (2a, 2x, and 2b) in prenatal muscles is limited. Using the pig as a target species and large-animal model, we report on the qualitative and quantitative expression of the major post- and prenatal MyHC isoforms during gestation, as determined by TaqMan real-time PCR and immunohistochemistry. We found that postnatal fast MyHC mRNAs and proteins were expressed much earlier in the pig (gestation day 35) than was previously reported in small mammals. There was a high degree of coexpression and colocalisation of pre- and postnatal MyHC mRNAs and proteins in prenatal muscles. During a period of prenatal muscle growth (gestation days 35-77), relative expression of MyHC isoforms (embryonic > 2a > 2x > 2b) correlated with the gene order in the skeletal MyHC cluster, which suggests the possible presence of cis-acting elements on the same side as the MyHC embryonic gene associated with temporal regulation.
Collapse
Affiliation(s)
- Nuno da Costa
- Veterinary Molecular Medicine Laboratory, Institute of Comparative Medicine, University of Glasgow Veterinary School, Glasgow, Scotland
| | | | | |
Collapse
|
24
|
Shimizu-Nishikawa K, Shibota Y, Takei A, Kuroda M, Nishikawa A. Regulation of specific developmental fates of larval- and adult-type muscles during metamorphosis of the frog Xenopus. Dev Biol 2002; 251:91-104. [PMID: 12413900 DOI: 10.1006/dbio.2002.0800] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During anuran metamorphosis, larval-type myotubes in both trunk and tail are removed by apoptosis, and only trunk muscles are replaced by newly formed adult-type myotubes. In the present study, we clarified the regulatory mechanisms for specific developmental fates of adult and larval muscles. Two distinct (adult and larval) types of myoblasts were found to exist in the trunk, but no or very few adult myoblasts were found in the tail. Each type of myoblast responded differently to metamorphic trigger, 3,3',5-triiodo-L-thyronine (T(3)) in vitro. T(3)-induced cell death was observed in larval myoblasts but not in adult myoblasts. These results suggest that the fates (life or death) of trunk and tail muscles are determined primarily by the differential distribution of adult myoblasts within the muscles. However, a transplantation study clarified that each larval and adult myoblast was not committed to fuse into particular myotube types, and they could form heterokaryon myotubes in vivo. Cell culture experiments suggested that the following two mechanisms are involved in the specification of myotube fate: (1) Heterokaryon myotubes could escape T(3)-induced death only when the proportion of adult nuclei number was higher than 70% in the myotubes. Apoptosis was not observed in any larval nuclei within the surviving heterokaryon myotubes, suggesting the conversion of larval nuclei fate. (2) Differentiation of adult myoblasts was promoted by the factor(s) released from larval myoblasts in a cell type-specific manner. Taken together, the developmental fate of myotubes is determined by the ratio of nuclei types, and the formation of adult nuclei-rich myotubes was specifically enhanced by larval myoblast factor(s).
Collapse
Affiliation(s)
- Keiko Shimizu-Nishikawa
- Department of Biological Science, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, 690-8504, Japan
| | | | | | | | | |
Collapse
|
25
|
Clark P, Dunn GA, Knibbs A, Peckham M. Alignment of myoblasts on ultrafine gratings inhibits fusion in vitro. Int J Biochem Cell Biol 2002; 34:816-25. [PMID: 11950597 DOI: 10.1016/s1357-2725(01)00180-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During development, skeletal muscle precursor cells fuse to form multi-nucleated myotubes. However, it is unclear how this fusion is regulated such that linear myotubes are produced. In a previous study, we found that linear arrays of myoblasts cultured on micropatterns of laminin fused to form linear myotubes of a constant diameter, independent of the width of the laminin track. This suggested that a mechanism exists to prevent myoblasts from fusing laterally [Exp. Cell Res. 230 (1997) 275]. In this study, we have investigated this further by culturing myoblasts on ultrafine grooved surfaces previously shown to align fibroblasts and epithelial cells. We found that all the individual myoblasts were highly aligned along the groove axis, and time-lapse recordings showed that motility was mostly restricted to a direction parallel to the grooves. In contrast to the previous study, however, there was a strong tendency for early differentiating cells to form aggregates either at an angle of approximately 45 degrees or perpendicular to the groove axis. Nevertheless, we rarely saw myotubes formed at those angles, supporting our earlier idea that the ability of cells to fuse laterally is prohibited. Our data strongly suggest that myoblasts are most likely to fuse in an end-to-end configuration, and it is this that enables them to form linear, rather than irregular myotubes.
Collapse
Affiliation(s)
- P Clark
- Division of Biomedical Sciences, Sir Alexander Fleming Building, Imperial College, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
26
|
Yost JK, Kenney PB, Slider SD, Russell RW, Killefer J. Influence of selection for breast muscle mass on myosin isoform composition and metabolism of deep pectoralis muscles of male and female turkeys. Poult Sci 2002; 81:911-7. [PMID: 12079061 DOI: 10.1093/ps/81.6.911] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Advances in genetic selection and nutrition have resulted in rapid growth rates and increased muscle mass, predisposing turkeys to muscle disorders such as deep pectoral myopathies and increasing the incidence of pale, soft, and exudative muscle. The objective of this study was to determine if selection for breast muscle mass created an increase in anaerobic capacity of the deep pectoralis muscle. A total of 67, 18-wk-old, male and female turkeys from two male (tom) lines and one female (hen) line were used. Each bird was anesthetized and one deep pectoralis muscle was electrically stimulated via the pectoral nerve. Muscle pH was recorded every 30 s for 4 min of stimulation and every 1 min for a 10-min recovery period. Non-stimulated muscles, contralateral to the stimulated side, were assayed for lactate dehydrogenase (LDH) and glyceraldehyde phosphate dehydrogenase (GAPDH). Myosin isoforms were resolved with SDS-PAGE. Line or gender had no effect on rate of pH decline during or after stimulation. Declines in pH during stimulation were greater than during the recovery period (0.06 vs. 0.02 U/min). The lightweight male line (LM) had the greatest breast muscle mass as a percentage of body weight (P < 0.05) and the greatest LDH [293 mmol nicotinamide adenine dinucleotide (NADH) min(-1)microg(-1); P < 0.0001] and GAPDH (0.4452 mmol NADH min(-1)microg(-1); P < 0.05) activities. Hens had greater percentages breast weight than males (P < 0.05) and a tendency for increased enzyme activities. The LM line had the largest ratio (2.33:1) (P < 0.05) of adult-to-neonatal myosin. Genetic selection for breast muscle mass resulted in an increased ratio of adult-to-neonatal myosin and increased anaerobic capacity. This effect on myosin isoform composition and anaerobic capacity supports handling modifications that are line specific to minimize meat quality defects.
Collapse
Affiliation(s)
- J K Yost
- Ohio State Extension, The Ohio State University, Columbus 43210, USA
| | | | | | | | | |
Collapse
|
27
|
Blanco-Bose WE, Blau HM. Laminin-induced change in conformation of preexisting alpha7beta1 integrin signals secondary myofiber formation. Dev Biol 2001; 233:148-60. [PMID: 11319864 DOI: 10.1006/dbio.2001.0177] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two distinct populations of myoblasts, distinguishable by alpha7 integrin expression have been hypothesized to give rise to two phases of myofiber formation in embryonic limb development. We show here that alpha7 integrin is detectable far earlier than previously reported on both "primary" and "secondary" lineage myoblasts and myofibers. An antibody (1211) that recognizes an intracellular epitope allowed detection of alpha7 integrin previously missed using an antibody (H36) that recognizes an extracellular epitope. We found that when myoblasts were isolated and cultured from different developmental stages, H36 only detected alpha7 integrin that was in direct contact with its ligand, laminin. Moreover, alpha7 integrin detection by H36 was reversible and highly localized to subcellular points of contact between myoblasts and laminin-coated 2.8-microm microspheres. Prior to secondary myofiber formation in limb embryogenesis, laminin was present but not in close proximity to clusters of primary myofibers that expressed alpha7 integrin detected by antibody 1211 using deconvolution microscopy. These results suggest that the timing of the interaction of preexisting alpha7 integrin with its ligand, laminin, is a major determinant of allosteric changes that result in an activated form of alpha7 integrin capable of transducing signals from the extracellular matrix commensurate with secondary myofiber formation.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antibody Specificity
- Antigens, CD/genetics
- Antigens, CD/immunology
- Cell Compartmentation
- Cell Differentiation
- Cells, Cultured
- Collagen/metabolism
- Culture Techniques
- Hindlimb/cytology
- Integrin alpha Chains
- Integrins/chemistry
- Integrins/metabolism
- Laminin/metabolism
- Muscle Fibers, Skeletal/cytology
- Muscle, Skeletal/cytology
- Protein Conformation
- RNA, Messenger
- Rats
- Rats, Sprague-Dawley
- Receptors, Laminin/chemistry
- Receptors, Laminin/metabolism
- Signal Transduction
- Stem Cells/cytology
Collapse
Affiliation(s)
- W E Blanco-Bose
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305-5175, USA
| | | |
Collapse
|
28
|
Allen DL, Leinwand LA. Postnatal myosin heavy chain isoform expression in normal mice and mice null for IIb or IId myosin heavy chains. Dev Biol 2001; 229:383-95. [PMID: 11150240 DOI: 10.1006/dbio.2000.9974] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The patterns of myosin heavy chain (MyHC) isoform expression in the embryo and in the adult mouse are reasonably well characterized and quite distinct. However, little is known about the transition between these two states, which involves major decreases and increases in the expression of several MyHC genes. In the present study, the expression of seven sarcomeric MyHCs was analyzed in the hindlimb muscles of wild-type mice and in mice null for the MyHC IIb or IId/x genes at several time points from 1 day of postnatal life (dpn) to 20 dpn. In early postnatal life, the developmental isoforms (embryonic and perinatal) comprise >90% of the total MyHC expression, while three adult fast isoforms (IIa, IIb, and IId) comprise <1% of the total MyHC protein. However, between 5 and 20 dpn their expression increases to comprise >90% of the total MyHC. Expression of each of the three adult fast isoforms occurs in a spatially and temporally distinct manner. We also show that alpha MyHC, which is almost exclusively expressed in the heart, is expressed in scattered fibers in all hindlimb muscles during postnatal development. Surprisingly, the timing and localization of expression of the MyHC isoforms is unchanged in IIb and IId/x null mice, although the magnitude of expression is altered for some isoforms. Together these data provide a comprehensive overview of the postnatal expression pattern of the sarcomeric MyHC isoforms in the mouse hindlimb.
Collapse
Affiliation(s)
- D L Allen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | | |
Collapse
|
29
|
Miller KJ, Thaloor D, Matteson S, Pavlath GK. Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle. Am J Physiol Cell Physiol 2000; 278:C174-81. [PMID: 10644525 DOI: 10.1152/ajpcell.2000.278.1.c174] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatocyte growth factor (HGF) is the only known growth factor that activates quiescent satellite cells in skeletal muscle. We hypothesized that local delivery of HGF may enhance regeneration after trauma by increasing the number of myoblasts available for restoring normal tissue architecture. Injection of HGF into muscle at the time of injury increases myoblast number but does not enhance tissue repair as determined using quantitative histological analyses. Rather, depending on the dose and the timing of HGF administration relative to the injury, regeneration can be inhibited. The greatest inhibitory effect is observed when HGF is administered on the day of injury and continued for 3 days, corresponding to the time when satellite cell activation, proliferation, and early differentiation normally occur. To establish a mechanism for this inhibition, we show that HGF can act directly on primary muscle cells to block differentiation. These results demonstrate that 1) exogenous HGF synergizes with factors in damaged muscle to increase myoblast number, 2) regeneration is not regulated solely by myoblast number, and 3) HGF inhibits muscle differentiation both in vitro and in vivo.
Collapse
Affiliation(s)
- K J Miller
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
30
|
Dunglison GF, Scotting PJ, Wigmore PM. Rat embryonic myoblasts are restricted to forming primary fibres while later myogenic populations are pluripotent. Mech Dev 1999; 87:11-9. [PMID: 10495267 DOI: 10.1016/s0925-4773(99)00134-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Three populations of myoblasts, embryonic, foetal and adult, appear sequentially during myogenesis. The present study uses retroviruses to mark myoblasts clones in vivo from these populations. Myoblasts labelled at E15 (embryonic) contributed to primary fibres only. The majority of marked primary fibres were slow but a small number of clones contained marked primaries which were no longer slow at E19. Myoblasts labelled at E17 (foetal) fused with both primary and secondary fibres and most clones contained both fast and slow fibres. Similarly, adult myoblasts marked at P0 fused with all fibre types. These results indicate that embryonic myoblasts are restricted to producing only primary fibres which are initially slow but which can convert to being fast. Clones of foetal and adult myoblasts fuse with both primary and secondary fibres which may be either fast or slow.
Collapse
Affiliation(s)
- G F Dunglison
- School of Biomedical Sciences, University of Nottingham, The Medical School, Queens Medical Centre, Nottingham, UK
| | | | | |
Collapse
|
31
|
Abstract
OBJECTIVES Myosin heavy chain (MHC) composition of human thyroarytenoid (TA), lateral cricoarytenoid (LCA), interarytenoid (IA), vocalis, posterior cricoarytenoid (PCA), and cricothyroid muscles were examined using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western bolt techniques. The presence of superfast MHC was also assessed using antibodies directed against the extraocular MHC. STUDY DESIGN MHC protein was analyzed using fresh human laryngeal muscles. METHODS Laryngeal muscles excised from cadavers were processed for SDS-PAGE. The composition of MHC isoforms was determined by densitometry. Western blot was carried out to identify specific bands. RESULTS MHC types IIA and IIB are the predominant MHC components in human laryngeal muscles. The adductor muscles--TA, LCA, and IA--have a higher percentage of type IIB MHC and a lower percentage of type I when compared with the abductor--PCA. The rank file order for type IIB MHC composition (TA > LCA > or = IA > PCA) is the same in all specimens. A band migrating between type IIA and type I was observed in several specimens. Although similar to type IIL in rats, this atypical band did not react with anti-extraocular MHC antibody on Western blot. CONCLUSION Characterization of laryngeal muscles determined by the composition of MHC is correlated with function and neural input. Human laryngeal muscle is characterized by a predominance of fast-type MHCs in laryngeal closing muscle and mixed fast-slow type MHCs in respiratory and phonatory muscle groups. Although an atypical myosin band similar to type IIL (superfast) MHC in rat was identified, it did not react with anti-extraocular MHC antibody.
Collapse
Affiliation(s)
- A Shiotani
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21203-6402, USA
| | | | | |
Collapse
|
32
|
Thaloor D, Miller KJ, Gephart J, Mitchell PO, Pavlath GK. Systemic administration of the NF-kappaB inhibitor curcumin stimulates muscle regeneration after traumatic injury. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C320-9. [PMID: 10444409 DOI: 10.1152/ajpcell.1999.277.2.c320] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle is often the site of tissue injury due to trauma, disease, developmental defects or surgery. Yet, to date, no effective treatment is available to stimulate the repair of skeletal muscle. We show that the kinetics and extent of muscle regeneration in vivo after trauma are greatly enhanced following systemic administration of curcumin, a pharmacological inhibitor of the transcription factor NF-kappaB. Biochemical and histological analyses indicate an effect of curcumin after only 4 days of daily intraperitoneal injection compared with controls that require >2 wk to restore normal tissue architecture. Curcumin can act directly on cultured muscle precursor cells to stimulate both cell proliferation and differentiation under appropriate conditions. Other pharmacological and genetic inhibitors of NF-kappaB also stimulate muscle differentiation in vitro. Inhibition of NF-kappaB-mediated transcription was confirmed using reporter gene assays. We conclude that NF-kappaB exerts a role in regulating myogenesis and that modulation of NF-kappaB activity within muscle tissue is beneficial for muscle repair. The striking effects of curcumin on myogenesis suggest therapeutic applications for treating muscle injuries.
Collapse
Affiliation(s)
- D Thaloor
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
33
|
Hughes SM, Chi MM, Lowry OH, Gundersen K. Myogenin induces a shift of enzyme activity from glycolytic to oxidative metabolism in muscles of transgenic mice. J Cell Biol 1999; 145:633-42. [PMID: 10225962 PMCID: PMC2185087 DOI: 10.1083/jcb.145.3.633] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Physical training regulates muscle metabolic and contractile properties by altering gene expression. Electrical activity evoked in muscle fiber membrane during physical activity is crucial for such regulation, but the subsequent intracellular pathway is virtually unmapped. Here we investigate the ability of myogenin, a muscle-specific transcription factor strongly regulated by electrical activity, to alter muscle phenotype. Myogenin was overexpressed in transgenic mice using regulatory elements that confer strong expression confined to differentiated post-mitotic fast muscle fibers. In fast muscles from such mice, the activity levels of oxidative mitochondrial enzymes were elevated two- to threefold, whereas levels of glycolytic enzymes were reduced to levels 0.3-0.6 times those found in wild-type mice. Histochemical analysis shows widespread increases in mitochondrial components and glycogen accumulation. The changes in enzyme content were accompanied by a reduction in fiber size, such that many fibers acquired a size typical of oxidative fibers. No change in fiber type-specific myosin heavy chain isoform expression was observed. Changes in metabolic properties without changes in myosins are observed after moderate endurance training in mammals, including humans. Our data suggest that myogenin regulated by electrical activity may mediate effects of physical training on metabolic capacity in muscle.
Collapse
MESH Headings
- Animals
- Cell Respiration/physiology
- Cell Size/physiology
- Gene Expression Regulation, Enzymologic
- Glycolysis/physiology
- Mice
- Mice, Transgenic
- Mitochondria/enzymology
- Muscle Fibers, Fast-Twitch/chemistry
- Muscle Fibers, Fast-Twitch/cytology
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/chemistry
- Muscle Fibers, Slow-Twitch/cytology
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Myogenin/genetics
- Myogenin/metabolism
- Rats
- Transgenes/physiology
Collapse
Affiliation(s)
- S M Hughes
- The Randall Institute, King's College London, London WC2B 5RL, United Kingdom
| | | | | | | |
Collapse
|
34
|
Shiotani A, Jones RM, Flint PW. Postnatal development of myosin heavy chain isoforms in rat laryngeal muscles. Ann Otol Rhinol Laryngol 1999; 108:509-15. [PMID: 10335716 DOI: 10.1177/000348949910800517] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The developmental transitions of myosin heavy chain (MHC) isoforms of rat posterior cricoarytenoid (PCA), thyroarytenoid (TA), cricothyroid (CT), and lateral cricoarytenoid (LCA) muscles were examined by means of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot techniques. The muscles were microscopically dissected from animals on postnatal days 0, 3, 7, 10, 14, 21, 28, 35, 45, and 55 and from adult animals. Silver-stained SDS-PAGE gels of each muscle were analyzed densitometrically to measure the composition of MHC isoforms, and Western blot was carried out to identify specific bands. Characterizations of the internal laryngeal muscles determined by the composition of MHCs were correlated with their function in the adult. Temporally, differentiation reflects onset of function. Differentiation of isoforms and transition to adult forms occur first in the TA muscle, followed by the PCA, LCA, and CT muscles. Expression of type IIL was observed only in muscles innervated by the recurrent laryngeal nerve. Postnatally observed developmental differences of myosin phenotypes suggest that regulation of MHC expression is influenced by neural activity or other environmental factors.
Collapse
Affiliation(s)
- A Shiotani
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
35
|
Abbott KL, Friday BB, Thaloor D, Murphy TJ, Pavlath GK. Activation and cellular localization of the cyclosporine A-sensitive transcription factor NF-AT in skeletal muscle cells. Mol Biol Cell 1998; 9:2905-16. [PMID: 9763451 PMCID: PMC25565 DOI: 10.1091/mbc.9.10.2905] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The widely used immunosuppressant cyclosporine A (CSA) blocks nuclear translocation of the transcription factor, NF-AT (nuclear factor of activated T cells), preventing its activity. mRNA for several NF-AT isoforms has been shown to exist in cells outside of the immune system, suggesting a possible mechanism for side effects associated with CSA treatment. In this study, we demonstrate that CSA inhibits biochemical and morphological differentiation of skeletal muscle cells while having a minimal effect on proliferation. Furthermore, in vivo treatment with CSA inhibits muscle regeneration after induced trauma in mice. These results suggest a role for NF-AT-mediated transcription outside of the immune system. In subsequent experiments, we examined the activation and cellular localization of NF-AT in skeletal muscle cells in vitro. Known pharmacological inducers of NF-AT in lymphoid cells also stimulate transcription from an NF-AT-responsive reporter gene in muscle cells. Three isoforms of NF-AT (NF-ATp, c, and 4/x/c3) are present in the cytoplasm of muscle cells at all stages of myogenesis tested. However, each isoform undergoes calcium-induced nuclear translocation from the cytoplasm at specific stages of muscle differentiation, suggesting specificity among NF-AT isoforms in gene regulation. Strikingly, one isoform (NF-ATc) can preferentially translocate to a subset of nuclei within a single multinucleated myotube. These results demonstrate that skeletal muscle cells express functionally active NF-AT proteins and that the nuclear translocation of individual NF-AT isoforms, which is essential for the ability to coordinate gene expression, is influenced markedly by the differentiation state of the muscle cell.
Collapse
Affiliation(s)
- K L Abbott
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
36
|
Pavlath GK, Thaloor D, Rando TA, Cheong M, English AW, Zheng B. Heterogeneity among muscle precursor cells in adult skeletal muscles with differing regenerative capacities. Dev Dyn 1998; 212:495-508. [PMID: 9707323 DOI: 10.1002/(sici)1097-0177(199808)212:4<495::aid-aja3>3.0.co;2-c] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Skeletal muscle has a remarkable capacity to regenerate after injury, although studies of muscle regeneration have heretofore been limited almost exclusively to limb musculature. Muscle precursor cells in skeletal muscle are responsible for the repair of damaged muscle. Heterogeneity exists in the growth and differentiation properties of muscle precursor cell (myoblast) populations throughout limb development but whether the muscle precursor cells differ among adult skeletal muscles is unknown. Such heterogeneity among myoblasts in the adult may give rise to skeletal muscles with different regenerative capacities. Here we compare the regenerative response of a masticatory muscle, the masseter, to that of limb muscles. After exogenous trauma (freeze or crush injuries), masseter muscle regenerated much less effectively than limb muscle. In limb muscle, normal architecture was restored 12 days after injury, whereas in masseter muscle, minimal regeneration occurred during the same time period. Indeed, at late time points, masseter muscles exhibited increased fibrous connective tissue in the region of damage, evidence of ineffective muscle regeneration. Similarly, in response to endogenous muscle injury due to a muscular dystrophy, widespread evidence of impaired regeneration was present in masseter muscle but not in limb muscle. To explore the cellular basis of these different regenerative capacities, we analyzed the myoblast populations of limb and masseter muscles both in vivo and in vitro. From in vivo analyses, the number of myoblasts in regenerating muscle was less in masseter compared with limb muscle. Assessment of population growth in vitro indicated that masseter myoblasts grow more slowly than limb myoblasts under identical conditions. We conclude that the impaired regeneration in masseter muscles is due to differences in the intrinsic myoblast populations compared to limb muscles.
Collapse
Affiliation(s)
- G K Pavlath
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
OBJECTIVES The effects of denervation on myosin heavy chain (MHC) expression in specific laryngeal muscles are characterized using gel electrophoresis. Observed temporal changes in MHC composition will then be used as a biologic marker in studies designed to develop strategies for laryngeal reinnervation and gene therapy. STUDY DESIGN Animal study using an adult rat model for laryngeal paralysis. METHODS In anesthetized rats the left recurrent and superior laryngeal nerve were divided. Animals were survived for 7, 14, 28, 90, and 180 days. Animals were euthanized and the thyroarytenoid (TA), vocalis (VOC), posterior cricoarytenoid (PCA), lateral cricoarytenoid (LCA), and cricothyroid (CT) muscle excised. Each muscle was processed for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and densitometric measurements were obtained to determine composition of MHC fiber types. RESULTS The changes in relative MHC composition are described for each specific laryngeal muscle. In general, a decrease in type IIB and an increase in IIA and IIX are seen after denervation. Expression of IIL in the denervated condition is variable and the relative change in type I is minimal. CONCLUSION This study supports previous work using rat soleus muscle in which IIA/IIX expression is favored in conditions with decreased neuromuscular activity, and conversely, IIB expression is activity dependent. Expression of type I appears to be independent of neural activity. Further study will be undertaken to quantify expression of MHC components and to study factors modulating expression.
Collapse
Affiliation(s)
- A Shiotani
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
38
|
Currie PD, Ingham PW. The generation and interpretation of positional information within the vertebrate myotome. Mech Dev 1998; 73:3-21. [PMID: 9545513 DOI: 10.1016/s0925-4773(98)00036-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
How somitic cells become restricted to the muscle fate has been investigated on a number of levels. Classical embryological manipulations have attempted to define the source of inductive signals that control the formation of the myotome. Recently, these studies have converged with others dissecting the role of secreted proteins in embryonic patterning to demonstrate a role for specific peptides in inducing individual cell types of the myotome. Collectively, these investigations have implicated the products of the Wnt, Hedgehog (Hh) and Bone morphogenetic protein (Bmp) gene families as key myogenic regulators; simultaneously controlling both the initiation of myogenesis and the fate of individual myoblasts.
Collapse
Affiliation(s)
- P D Currie
- Developmental Genetics Section, MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | |
Collapse
|
39
|
Blagden CS, Currie PD, Ingham PW, Hughes SM. Notochord induction of zebrafish slow muscle mediated by Sonic hedgehog. Genes Dev 1997; 11:2163-75. [PMID: 9303533 PMCID: PMC275397 DOI: 10.1101/gad.11.17.2163] [Citation(s) in RCA: 275] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The patterning of vertebrate somitic muscle is regulated by signals from neighboring tissues. We examined the generation of slow and fast muscle in zebrafish embryos and show that Sonic hedgehog (Shh) secreted from the notochord can induce slow muscle from medial cells of the somite. Slow muscle derives from medial adaxial myoblasts that differentiate early, whereas fast muscle arises later from a separate myoblast pool. Mutant fish lacking shh expression fail to form slow muscle but do form fast muscle. Ectopic expression of shh, either in wild-type or mutant embryos, leads to ectopic slow muscle at the expense of fast. We suggest that Shh acts to induce myoblasts committed to slow muscle differentiation from uncommitted presomitic mesoderm.
Collapse
Affiliation(s)
- C S Blagden
- Developmental Biology Research Centre, The Randall Institute, King's College London, UK
| | | | | | | |
Collapse
|
40
|
Pin CL, Merrifield PA. Developmental potential of rat L6 myoblasts in vivo following injection into regenerating muscles. Dev Biol 1997; 188:147-66. [PMID: 9245519 DOI: 10.1006/dbio.1997.8624] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To examine the relative importance of myoblast lineage and environmental influences on the development of muscle fiber types in vivo, the phenotype of muscle fibers formed from rat L6 myoblasts was examined following their injection into different regenerating adult muscles. Myoblasts were infected with a retroviral vector carrying a LacZ reporter gene and their fate in vivo was examined using a panel of antibodies against various myosin heavy chain (MyHC) isoforms. Since L6 myoblasts express IIX MyHC following differentiation in vitro, we wanted to determine if they would form IIX muscle fibers in vivo and whether innervation would alter this fate. Following injection, L6 cells either fused with each other to form homotypic fibers or fused with host muscle cells to form heterotypic fibers. Initially, homotypic fibers expressed embryonic MyHC-similar to L6 myotubes in vitro. However, by 4 weeks postinjection IIX MyHC had replaced embryonic MyHC as the predominant isoform. Single fiber analysis using an antibody specific for NCAM indicated that this transition was independent of innervation. Analysis of heterotypic fibers resulting from the incorporation of donor L6 myoblasts into host fast IIA and IIB fibers revealed that L6-derived nuclei express embryonic and IIX MyHCs for up to 8 weeks postinjection, often as nuclear domains surrounding L6 nuclei. These results suggest that MyHC expression in muscle fibers derived from L6 myoblasts is regulated, in part, by intrinsic factors that limit the fiber type potential of these cells in vivo.
Collapse
Affiliation(s)
- C L Pin
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | |
Collapse
|
41
|
Pette D, Staron RS. Mammalian skeletal muscle fiber type transitions. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 170:143-223. [PMID: 9002237 DOI: 10.1016/s0074-7696(08)61622-8] [Citation(s) in RCA: 432] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mammalian skeletal muscle is an extremely heterogeneous tissue, composed of a large variety of fiber types. These fibers, however, are not fixed units but represent highly versatile entities capable of responding to altered functional demands and a variety of signals by changing their phenotypic profiles. This adaptive responsiveness is the basis of fiber type transitions. The fiber population of a given muscle is in a dynamic state, constantly adjusting to the current conditions. The full range of adaptive ability spans fast to slow characteristics. However, it is now clear that fiber type transitions do not proceed in immediate jumps from one extreme to the other, but occur in a graded and orderly sequential manner. At the molecular level, the best examples of these stepwise transitions are myofibrillar protein isoform exchanges. For the myosin heavy chain, this entails a sequence going from the fastest (MHCIIb) to the slowest (MHCI) isoform, and vice-versa. Depending on the basal protein isoform profile and hence the position within the fast-slow spectrum, the adaptive ranges of different fibers vary. A simple transition scheme has emerged from the multitude of data collected on fiber type conversions under a variety of conditions.
Collapse
Affiliation(s)
- D Pette
- Faculty of Biology, University of Konstanz, Germany
| | | |
Collapse
|
42
|
Robson LG, Hughes SM. The distal limb environment regulates MyoD accumulation and muscle differentiation in mouse-chick chimaeric limbs. Development 1996; 122:3899-910. [PMID: 9012510 DOI: 10.1242/dev.122.12.3899] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Differentiation of muscle and cartilage within developing vertebrate limbs occurs in a proximodistal progression. To investigate the cues responsible for regulating muscle pattern, mouse myoblasts were implanted into early chick wings prior to endogenous chick muscle differentiation. Fetal myogenic cells originating from transgenic mice carrying a lacZ reporter were readily detected in vivo after implantation and their state of differentiation determined with species-specific antibodies to MyoD and myosin heavy chain. When mouse myogenic cells are implanted at the growing tip of early stage 21 limbs MyoD expression is suppressed and little differentiation of the mouse cells is detected initially. At later stages ectopically implanted mouse cells come to lie within muscle masses, re-express MyoD and differentiate in parallel with differentiating chick myoblasts. However, if mouse cells are implanted either proximally at stage 21 or into the limb tip at stage 24, situations in which mouse cells encounter endogenous differentiating chick myoblasts earlier, MyoD suppression is not detected and a higher proportion of mouse cells differentiate. Mouse cells that remain distal to endogenous differentiating myogenic cells are more likely to remain undifferentiated than myoblasts that lie within differentiated chick muscle. Undifferentiated distal mouse cells are still capable of differentiating if explanted in vitro, suggesting that myoblast differentiation is inhibited in vivo. In vitro, MyoD is suppressed in primary mouse myoblasts by the addition of FGF2 and FGF4 to the culture media. Taken together, our data suggest that the inhibition of myogenic differentiation in the distal limb involves MyoD suppression in myoblasts, possibly through an FGF-like activity.
Collapse
Affiliation(s)
- L G Robson
- MRC Muscle and Cell Motility Unit and Developmental Biology Research Centre, The Randall Institute, King's College London, UK
| | | |
Collapse
|