1
|
Ruiz WG, Clayton DR, Parakala-Jain T, Dalghi MG, Franks J, Apodaca G. The rat bladder umbrella cell keratin network: Organization, dependence on the plectin cytolinker, and responses to bladder filling. Mol Biol Cell 2024; 35:ar139. [PMID: 39356795 DOI: 10.1091/mbc.e24-06-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
The keratin cytoskeleton and associated desmosomes contribute to the mechanical stability of epithelial tissues, but their organization in native bladder umbrella cells and their responses to bladder filling are poorly understood. Using whole rat bladders in conjunction with confocal microscopy, super-resolution image processing, three-dimensional image reconstruction, and platinum replica electron microscopy, we identified a cortical cytoskeleton network in umbrella cells that was organized as a dense tile-like mesh comprised of tesserae bordered by cortical actin filaments, filled with keratin filaments, and cross-linked by plectin. Below these tesserae, keratin formed a subapical meshwork and at the cell periphery a band of keratin was linked via plectin to the junction-associated actin ring. Disruption of plectin led to focal keratin network dissolution, loss of the junction-associated keratin, and defects in cell-cell adhesion. During bladder filling, a junction-localized necklace of desmosomes expanded, and a subjacent girded layer formed linking the keratin network to desmosomes, including those at the umbrella cell-intermediate cell interface. Our studies reveal a novel tile- and mesh-like organization of the umbrella cell keratin network that is dependent on plectin, that reorganizes in response to bladder filling, and that likely serves to maintain umbrella cell continuity in the face of mechanical distension.
Collapse
Affiliation(s)
- Wily G Ruiz
- Department of Medicine Renal-Electrolyte Division and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Dennis R Clayton
- Department of Medicine Renal-Electrolyte Division and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Tanmay Parakala-Jain
- Department of Medicine Renal-Electrolyte Division and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Marianela G Dalghi
- Department of Medicine Renal-Electrolyte Division and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jonathan Franks
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh 15213
| | - Gerard Apodaca
- Department of Medicine Renal-Electrolyte Division and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh 15213
| |
Collapse
|
2
|
Ruiz WG, Clayton DR, Parakala-Jain T, Dalghi MG, Franks J, Apodaca G. The umbrella cell keratin network: organization as a tile-like mesh, formation of a girded layer in response to bladder filling, and dependence on the plectin cytolinker. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598498. [PMID: 38915686 PMCID: PMC11195278 DOI: 10.1101/2024.06.11.598498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The keratin cytoskeleton and associated desmosomes contribute to the mechanical stability of epithelial tissues, but their organization in bladder umbrella cells and their responses to bladder filling are poorly understood. Using super-resolution confocal microscopy, along with 3D image reconstruction and platinum replica electron microscopy, we observed that the apical keratin network of umbrella cells was organized as a dense tile-like mesh comprised of tesserae bordered on their edges by cortical actin filaments, filled with woven keratin filaments, and crosslinked by plectin. A band of keratin was also observed at the cell periphery that was linked to the junction-associated actin ring by plectin. During bladder filling, the junction-localized desmosomal necklace expanded, and a subjacent girded layer was formed that linked the keratin network to desmosomes, including those at the umbrella cell-intermediate cell interface. Disruption of plectin led to focal keratin network dissolution, loss of the junction-associated band of keratin, perturbation of tight junction continuity, and loss of cell-cell cohesion. Our studies reveal a novel tile-like organization of the umbrella cell keratin cytoskeleton that is dependent on plectin, that reorganizes in response to bladder filling, and that likely serves to maintain umbrella cell continuity in the face of mechanical distension.
Collapse
Affiliation(s)
- Wily G. Ruiz
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dennis R. Clayton
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tanmay Parakala-Jain
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marianela G. Dalghi
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan Franks
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gerard Apodaca
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Wang Z, Grange M, Pospich S, Wagner T, Kho AL, Gautel M, Raunser S. Structures from intact myofibrils reveal mechanism of thin filament regulation through nebulin. Science 2022; 375:eabn1934. [PMID: 35175800 DOI: 10.1126/science.abn1934] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In skeletal muscle, nebulin stabilizes and regulates the length of thin filaments, but the underlying mechanism remains nebulous. In this work, we used cryo-electron tomography and subtomogram averaging to reveal structures of native nebulin bound to thin filaments within intact sarcomeres. This in situ reconstruction provided high-resolution details of the interaction between nebulin and actin, demonstrating the stabilizing role of nebulin. Myosin bound to the thin filaments exhibited different conformations of the neck domain, highlighting its inherent structural variability in muscle. Unexpectedly, nebulin did not interact with myosin or tropomyosin, but it did interact with a troponin T linker through two potential binding motifs on nebulin, explaining its regulatory role. Our structures support the role of nebulin as a thin filament "molecular ruler" and provide a molecular basis for studying nemaline myopathies.
Collapse
Affiliation(s)
- Zhexin Wang
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Michael Grange
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Sabrina Pospich
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Thorsten Wagner
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Ay Lin Kho
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Centre of Research Excellence, Guy's Campus, London SE1 1UL, UK
| | - Mathias Gautel
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Centre of Research Excellence, Guy's Campus, London SE1 1UL, UK
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| |
Collapse
|
4
|
Calpena E, López Del Amo V, Chakraborty M, Llamusí B, Artero R, Espinós C, Galindo MI. The Drosophila junctophilin gene is functionally equivalent to its four mammalian counterparts and is a modifier of a Huntingtin poly-Q expansion and the Notch pathway. Dis Model Mech 2018; 11:dmm.029082. [PMID: 29208631 PMCID: PMC5818072 DOI: 10.1242/dmm.029082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 11/08/2017] [Indexed: 12/13/2022] Open
Abstract
Members of the Junctophilin (JPH) protein family have emerged as key actors in all excitable cells, with crucial implications for human pathophysiology. In mammals, this family consists of four members (JPH1-JPH4) that are differentially expressed throughout excitable cells. The analysis of knockout mice lacking JPH subtypes has demonstrated their essential contribution to physiological functions in skeletal and cardiac muscles and in neurons. Moreover, mutations in the human JPH2 gene are associated with hypertrophic and dilated cardiomyopathies; mutations in JPH3 are responsible for the neurodegenerative Huntington's disease-like-2 (HDL2), whereas JPH1 acts as a genetic modifier in Charcot–Marie–Tooth 2K peripheral neuropathy. Drosophila melanogaster has a single junctophilin (jp) gene, as is the case in all invertebrates, which might retain equivalent functions of the four homologous JPH genes present in mammalian genomes. Therefore, owing to the lack of putatively redundant genes, a jpDrosophila model could provide an excellent platform to model the Junctophilin-related diseases, to discover the ancestral functions of the JPH proteins and to reveal new pathways. By up- and downregulation of Jp in a tissue-specific manner in Drosophila, we show that altering its levels of expression produces a phenotypic spectrum characterized by muscular deficits, dilated cardiomyopathy and neuronal alterations. Importantly, our study has demonstrated that Jp modifies the neuronal degeneration in a Drosophila model of Huntington's disease, and it has allowed us to uncover an unsuspected functional relationship with the Notch pathway. Therefore, this Drosophila model has revealed new aspects of Junctophilin function that can be relevant for the disease mechanisms of their human counterparts. Summary: This work reveals that the Drosophila Junctophilin protein has similar functions to its mammalian homologues and uncovers new interactions of potential biomedical interest with Huntingtin and Notch signalling.
Collapse
Affiliation(s)
- Eduardo Calpena
- Program in Molecular Mechanisms of Disease, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 3, 46012 Valencia, Spain
| | - Víctor López Del Amo
- Program in Molecular Mechanisms of Disease, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 3, 46012 Valencia, Spain
| | - Mouli Chakraborty
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menendez Pelayo 4 acc 46010, Valencia, Spain.,Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, c/ Dr Moliner 50, 46100 Burjasot, Spain
| | - Beatriz Llamusí
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menendez Pelayo 4 acc 46010, Valencia, Spain.,Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, c/ Dr Moliner 50, 46100 Burjasot, Spain
| | - Rubén Artero
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menendez Pelayo 4 acc 46010, Valencia, Spain.,Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, c/ Dr Moliner 50, 46100 Burjasot, Spain
| | - Carmen Espinós
- Program in Molecular Mechanisms of Disease, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 3, 46012 Valencia, Spain.,UPV-CIPF Joint Unit Disease Mechanisms and Nanomedicine, 46012 Valencia, Spain
| | - Máximo I Galindo
- Program in Molecular Mechanisms of Disease, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 3, 46012 Valencia, Spain .,UPV-CIPF Joint Unit Disease Mechanisms and Nanomedicine, 46012 Valencia, Spain.,Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
| |
Collapse
|
5
|
Gokhin DS, Fowler VM. Software-based measurement of thin filament lengths: an open-source GUI for Distributed Deconvolution analysis of fluorescence images. J Microsc 2016; 265:11-20. [PMID: 27644080 DOI: 10.1111/jmi.12456] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/09/2016] [Accepted: 07/19/2016] [Indexed: 12/25/2022]
Abstract
The periodically arranged thin filaments within the striated myofibrils of skeletal and cardiac muscle have precisely regulated lengths, which can change in response to developmental adaptations, pathophysiological states, and genetic perturbations. We have developed a user-friendly, open-source ImageJ plugin that provides a graphical user interface (GUI) for super-resolution measurement of thin filament lengths by applying Distributed Deconvolution (DDecon) analysis to periodic line scans collected from fluorescence images. In the workflow presented here, we demonstrate thin filament length measurement using a phalloidin-stained cryosection of mouse skeletal muscle. The DDecon plugin is also capable of measuring distances of any periodically localized fluorescent signal from the Z- or M-line, as well as distances between successive Z- or M-lines, providing a broadly applicable tool for quantitative analysis of muscle cytoarchitecture. These functionalities can also be used to analyse periodic fluorescence signals in nonmuscle cells.
Collapse
Affiliation(s)
- David S Gokhin
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, U.S.A
| | - Velia M Fowler
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, U.S.A
| |
Collapse
|
6
|
Nagwekar J, Duggal D, Midde K, Rich R, Liang J, Kazmierczak K, Huang W, Fudala R, Gryczynski I, Gryczynski Z, Szczesna-Cordary D, Borejdo J. A Novel Method of Determining the Functional Effects of a Minor Genetic Modification of a Protein. Front Cardiovasc Med 2015; 2:35. [PMID: 26664906 PMCID: PMC4671333 DOI: 10.3389/fcvm.2015.00035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/30/2015] [Indexed: 11/17/2022] Open
Abstract
Contraction of muscles results from the ATP-coupled cyclic interactions of the myosin cross-bridges with actin filaments. Macroscopic parameters of contraction, such as maximum tension, speed of shortening, or ATPase activity, are unlikely to reveal differences between the wild-type and mutated (MUT) proteins when the level of transgenic protein expression is low. This is because macroscopic measurements are made on whole organs containing trillions of actin and myosin molecules. An average of the information collected from such a large assembly is bound to conceal any differences imposed by a small fraction of MUT molecules. To circumvent the averaging problem, the measurements were done on isolated ventricular myofibril (MF) in which thin filaments were sparsely labeled with a fluorescent dye. We isolated a single MF from a ventricle, oriented it vertically (to be able measure the orientation), and labeled 1 in 100,000 actin monomers with a fluorescent dye. We observed the fluorescence from a small confocal volume containing approximately three actin molecules. During the contraction of a ventricle actin constantly changes orientation (i.e., the transition moment of rigidly attached fluorophore fluctuates in time) because it is repetitively being "kicked" by myosin cross-bridges. An autocorrelation functions (ACFs) of these fluctuations are remarkably sensitive to the mutation of myosin. We examined the effects of Alanine to Threonine (A13T) mutation in the myosin regulatory light chain shown by population studies to cause hypertrophic cardiomyopathy. This is an appropriate example, because mutation is expressed at only 10% in the ventricles of transgenic mice. ACFs were either "Standard" (Std) (decaying monotonically in time) or "Non-standard" (NStd) (decaying irregularly). The sparse labeling of actin also allowed the measurement of the spatial distribution of actin molecules. Such distribution reflects the interaction of actin with myosin cross-bridges and is also remarkably sensitive to myosin mutation. The result showed that the A13T mutation caused 9% ACFs and 9% of spatial distributions of actin to be NStd, while the remaining 91% were Std, suggesting that the NStd performances were executed by the MUT myosin heads and that the Std performances were executed by non-MUT myosin heads. We conclude that the method explored in this study is a sensitive and valid test of the properties of low prevalence mutations in sarcomeric proteins.
Collapse
Affiliation(s)
- Janhavi Nagwekar
- Department of Cell Biology, Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Divya Duggal
- Department of Cell Biology, Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Krishna Midde
- Department of Cell Biology, Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ryan Rich
- Department of Mathematics, Computer Science, and Physics, Texas Wesleyan University, Fort Worth, TX, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Wenrui Huang
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Rafal Fudala
- Department of Cell Biology, Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ignacy Gryczynski
- Department of Cell Biology, Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Zygmunt Gryczynski
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Julian Borejdo
- Department of Cell Biology, Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
7
|
Chakraborty M, Selma-Soriano E, Magny E, Couso JP, Pérez-Alonso M, Charlet-Berguerand N, Artero R, Llamusi B. Pentamidine rescues contractility and rhythmicity in a Drosophila model of myotonic dystrophy heart dysfunction. Dis Model Mech 2015; 8:1569-78. [PMID: 26515653 PMCID: PMC4728315 DOI: 10.1242/dmm.021428] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/19/2015] [Indexed: 02/01/2023] Open
Abstract
Up to 80% of individuals with myotonic dystrophy type 1 (DM1) will develop cardiac abnormalities at some point during the progression of their disease, the most common of which is heart blockage of varying degrees. Such blockage is characterized by conduction defects and supraventricular and ventricular tachycardia, and carries a high risk of sudden cardiac death. Despite its importance, very few animal model studies have focused on the heart dysfunction in DM1. Here, we describe the characterization of the heart phenotype in a Drosophila model expressing pure expanded CUG repeats under the control of the cardiomyocyte-specific driver GMH5-Gal4. Morphologically, expression of 250 CUG repeats caused abnormalities in the parallel alignment of the spiral myofibrils in dissected fly hearts, as revealed by phalloidin staining. Moreover, combined immunofluorescence and in situ hybridization of Muscleblind and CUG repeats, respectively, confirmed detectable ribonuclear foci and Muscleblind sequestration, characteristic features of DM1, exclusively in flies expressing the expanded CTG repeats. Similarly to what has been reported in humans with DM1, heart-specific expression of toxic RNA resulted in reduced survival, increased arrhythmia, altered diastolic and systolic function, reduced heart tube diameters and reduced contractility in the model flies. As a proof of concept that the fly heart model can be used for in vivo testing of promising therapeutic compounds, we fed flies with pentamidine, a compound previously described to improve DM1 phenotypes. Pentamidine not only released Muscleblind from the CUG RNA repeats and reduced ribonuclear formation in the Drosophila heart, but also rescued heart arrhythmicity and contractility, and improved fly survival in animals expressing 250 CUG repeats.
Collapse
Affiliation(s)
- Mouli Chakraborty
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menendez Pelayo 4 acc 46010, Valencia, Spain Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, Burjasot 46100, Spain
| | - Estela Selma-Soriano
- Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, Burjasot 46100, Spain
| | - Emile Magny
- School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QG, UK
| | - Juan Pablo Couso
- School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QG, UK
| | - Manuel Pérez-Alonso
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menendez Pelayo 4 acc 46010, Valencia, Spain Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, Burjasot 46100, Spain
| | - Nicolas Charlet-Berguerand
- Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| | - Ruben Artero
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menendez Pelayo 4 acc 46010, Valencia, Spain Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, Burjasot 46100, Spain
| | - Beatriz Llamusi
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menendez Pelayo 4 acc 46010, Valencia, Spain Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, Burjasot 46100, Spain
| |
Collapse
|
8
|
Sips PY, Irie T, Zou L, Shinozaki S, Sakai M, Shimizu N, Nguyen R, Stamler JS, Chao W, Kaneki M, Ichinose F. Reduction of cardiomyocyte S-nitrosylation by S-nitrosoglutathione reductase protects against sepsis-induced myocardial depression. Am J Physiol Heart Circ Physiol 2013; 304:H1134-46. [PMID: 23417863 DOI: 10.1152/ajpheart.00887.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Myocardial depression is an important contributor to morbidity and mortality in septic patients. Nitric oxide (NO) plays an important role in the development of septic cardiomyopathy, but also has protective effects. Recent evidence has indicated that NO exerts many of its downstream effects on the cardiovascular system via protein S-nitrosylation, which is negatively regulated by S-nitrosoglutathione reductase (GSNOR), an enzyme promoting denitrosylation. We tested the hypothesis that reducing cardiomyocyte S-nitrosylation by increasing GSNOR activity can improve myocardial dysfunction during sepsis. Therefore, we generated mice with a cardiomyocyte-specific overexpression of GSNOR (GSNOR-CMTg mice) and subjected them to endotoxic shock. Measurements of cardiac function in vivo and ex vivo showed that GSNOR-CMTg mice had a significantly improved cardiac function after lipopolysaccharide challenge (LPS, 50 mg/kg) compared with wild-type (WT) mice. Cardiomyocytes isolated from septic GSNOR-CMTg mice showed a corresponding improvement in contractility compared with WT cells. However, systolic Ca(2+) release was similarly depressed in both genotypes after LPS, indicating that GSNOR-CMTg cardiomyocytes have increased Ca(2+) sensitivity during sepsis. Parameters of inflammation were equally increased in LPS-treated hearts of both genotypes, and no compensatory changes in NO synthase expression levels were found in GSNOR-overexpressing hearts before or after LPS challenge. GSNOR overexpression however significantly reduced total cardiac protein S-nitrosylation during sepsis. Taken together, our results indicate that increasing the denitrosylation capacity of cardiomyocytes protects against sepsis-induced myocardial depression. Our findings suggest that specifically reducing protein S-nitrosylation during sepsis improves cardiac function by increasing cardiac myofilament sensitivity to Ca(2+).
Collapse
Affiliation(s)
- Patrick Y Sips
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
D166V point mutation in the ventricular myosin regulatory light chain (RLC) is one of the causes of familial hypertrophic cardiomyopathy (FHC). We show here that the rates of cross-bridge attachment and dissociation are significantly different in isometrically contracting cardiac myofibrils from right ventricle of WT and Tg-D166V mice. To avoid averaging over ensembles of molecules composing muscle fibers, the data was collected from a single molecule. Kinetics were derived by tracking the orientation of a single actin molecule by fluorescence anisotropy. Orientation oscillated between two states, corresponding to the actin-bound and actin-free states of the myosin cross-bridge. The cross-bridge in a wild-type (healthy) heart stayed attached and detached from thin filament on average for 0.7 and 2.7 s, respectively. In FHC heart, these numbers increased to 2.5 and 5.8 s, respectively. These findings suggest that alterations in myosin cross-bridge kinetics associated with D166V mutation of RLC ultimately affect the ability of a heart to efficiently pump the blood.
Collapse
|
10
|
Mettikolla P, Calander N, Luchowski R, Gryczynski I, Gryczynski Z, Zhao J, Szczesna-Cordary D, Borejdo J. Cross-bridge kinetics in myofibrils containing familial hypertrophic cardiomyopathy R58Q mutation in the regulatory light chain of myosin. J Theor Biol 2011; 284:71-81. [PMID: 21723297 PMCID: PMC3152379 DOI: 10.1016/j.jtbi.2011.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/09/2011] [Accepted: 06/14/2011] [Indexed: 12/16/2022]
Abstract
Familial hypertrophic cardiomyopathy (FHC) is a heritable form of cardiac hypertrophy caused by single-point mutations in genes encoding sarcomeric proteins including ventricular myosin regulatory light chain (RLC). FHC often leads to malignant outcomes and sudden cardiac death. The FHC mutations are believed to alter the kinetics of the interaction between actin and myosin resulting in inefficient energy utilization and compromised function of the heart. We studied the effect of the FHC-linked R58Q-RLC mutation on the kinetics of transgenic (Tg)-R58Q cardiac myofibrils. Kinetics was determined from the rate of change of orientation of actin monomers during muscle contraction. Actin monomers change orientation because myosin cross-bridges deliver periodic force impulses to it. An individual impulse (but not time average of impulses) carries the information about the kinetics of actomyosin interaction. To observe individual impulses it was necessary to scale down the experiments to the level of a few molecules. A small population (∼4 molecules) was selected by using (deliberately) inefficient fluorescence labeling and observing fluorescent molecules by a confocal microscope. We show that the kinetic rates are significantly smaller in the contracting cardiac myofibrils from Tg-R58Q mice then in control Tg-wild type (WT). We also demonstrate a lower force per cross-section of muscle fiber in Tg-R58Q versus Tg-WT mice. We conclude that the R58Q mutation-induced decrease in cross-bridge kinetics underlines the mechanism by which Tg-R58Q fibers develop low force and thus compromise the ability of the mutated heart to efficiently pump blood.
Collapse
Affiliation(s)
- P. Mettikolla
- Dept of Molecular Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107
| | - N. Calander
- Dept of Molecular Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107
- Dept of Physics, Macquarie University, Balaclava Rd, NSW 2109, Australia
| | - R. Luchowski
- Dept of Molecular Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107
| | - I. Gryczynski
- Dept of Cell Biology & Genetics and Center for Commercialization of FluorescenceTechnologies, University of North Texas, Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107
| | - Z. Gryczynski
- Dept of Molecular Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107
| | - J. Zhao
- Dept of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10Ave., Miami, FL 33136
| | - D. Szczesna-Cordary
- Dept of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10Ave., Miami, FL 33136
| | - J. Borejdo
- Dept of Molecular Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107
| |
Collapse
|
11
|
Myosin cross-bridges do not form precise rigor bonds in hypertrophic heart muscle carrying troponin T mutations. J Mol Cell Cardiol 2011; 51:409-18. [PMID: 21683708 DOI: 10.1016/j.yjmcc.2011.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/19/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
Abstract
Distribution of orientations of myosin was examined in ex-vivo myofibrils from hearts of transgenic (Tg) mice expressing Familial Hypertrophic Cardiomyopathy (FHC) troponin T (TnT) mutations I79N, F110I and R278C. Humans are heterozygous for sarcomeric FHC mutations and so hypertrophic myocardium contains a mixture of the wild-type (WT) and mutated (MUT) TnT. If mutations are expressed at a low level there may not be a significant change in the global properties of heart muscle. In contrast, measurements from a few molecules avoid averaging inherent in the global measurements. It is thus important to examine the properties of only a few molecules of muscle. To this end, the lever arm of one out of every 60,000 myosin molecules was labeled with a fluorescent dye and a small volume within the A-band (~1 fL) was observed by confocal microscopy. This volume contained on average 5 fluorescent myosin molecules. The lever arm assumes different orientations reflecting different stages of acto-myosin enzymatic cycle. We measured the distribution of these orientations by recording polarization of fluorescent light emitted by myosin-bound fluorophore during rigor and contraction. The distribution of orientations of rigor WT and MUT myofibrils was significantly different. There was a large difference in the width and of skewness and kurtosis of rigor distributions. These findings suggest that the hypertrophic phenotype associated with the TnT mutations can be characterized by a significant increase in disorder of rigor cross-bridges.
Collapse
|
12
|
Hanel ML, Sun CYJ, Jones TI, Long SW, Zanotti S, Milner D, Jones PL. Facioscapulohumeral muscular dystrophy (FSHD) region gene 1 (FRG1) is a dynamic nuclear and sarcomeric protein. Differentiation 2011; 81:107-18. [PMID: 20970242 DOI: 10.1016/j.diff.2010.09.185] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 08/20/2010] [Accepted: 09/30/2010] [Indexed: 01/01/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) region gene 1 (FRG1) is a candidate gene for mediating FSHD pathophysiology, however, very little is known about the endogenous FRG1 protein. This study uses immunocytochemistry (ICC) and histology to provide insight into FRG1's role in vertebrate muscle development and address its potential involvement in FSHD pathophysiology. In cell culture, primary myoblast/myotube cultures, and mouse and human muscle sections, FRG1 showed distinct nuclear and cytoplasmic localizations and nuclear shuttling assays indicated the subcellular pools of FRG1 are linked. During myoblast differentiation, FRG1's subcellular distribution changed dramatically with FRG1 eventually associating with the matured Z-discs. This Z-disc localization was confirmed using isolated mouse myofibers and found to be maintained in adult human skeletal muscle biopsies. Thus, FRG1 is not likely involved in the initial assembly and alignment of the Z-disc but may be involved in sarcomere maintenance or signaling. Further analysis of human tissue showed FRG1 is strongly expressed in arteries, veins, and capillaries, the other prominently affected tissue in FSHD. Overall, we show that in mammalian cells, FRG1 is a dynamic nuclear and cytoplasmic protein, however in muscle, FRG1 is also a developmentally regulated sarcomeric protein suggesting FRG1 may perform a muscle-specific function. Thus, FRG1 is the only FSHD candidate protein linked to the muscle contractile machinery and may address why the musculature and vasculature are specifically susceptible in FSHD.
Collapse
Affiliation(s)
- Meredith L Hanel
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, B107 Chemical and Life Sciences Laboratory, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Mettikolla P, Calander N, Luchowski R, Gryczynski I, Gryczynski Z, Borejdo J. Observing cycling of a few cross-bridges during isometric contraction of skeletal muscle. Cytoskeleton (Hoboken) 2010; 67:400-11. [PMID: 20517927 DOI: 10.1002/cm.20453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During muscle contraction a myosin cross-bridge imparts periodic force impulses to actin. It is possible to visualize those impulses by observing a few molecules of actin or myosin. We have followed the time course of orientation change of a few actin molecules during isometric contraction by measuring parallel polarized intensity of its fluorescence. The orientation of actin reflects local bending of a thin filament and is different when a cross-bridge binds to, or is detached from, F-actin. The changes in orientation were characterized by periods of activity during which myosin cross-bridges interacted normally with actin, interspersed with periods of inactivity during which actin and myosin were unable to interact. The periods of activity lasted on average 1.2 +/- 0.4 s and were separated on average by 2.3 +/- 1.0 s. During active period, actin orientation oscillated between the two extreme values with the ON and OFF times of 0.4 +/- 0.2 and 0.7 +/- 0.4 s, respectively. When the contraction was induced by a low concentration of ATP both active and inactive times were longer and approximately equal. These results imply that cross-bridges interact with actin in bursts and suggest that during active period, on average 36% of cross-bridges are involved in force generation.
Collapse
Affiliation(s)
- P Mettikolla
- Department of Molecular Biology & Immunology, Center for Commercialization of Fluorescence Technology, University of North Texas HSC, Fort Worth, Texas 76107, USA
| | | | | | | | | | | |
Collapse
|
14
|
Borejdo J, Szczesna-Cordary D, Muthu P, Calander N. Familial hypertrophic cardiomyopathy can be characterized by a specific pattern of orientation fluctuations of actin molecules . Biochemistry 2010; 49:5269-77. [PMID: 20509708 DOI: 10.1021/bi1006749] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A single-point mutation in the gene encoding the ventricular myosin regulatory light chain (RLC) is sufficient to cause familial hypertrophic cardiomyopathy (FHC). Most likely, the underlying cause of this disease is an inefficient energy utilization by the mutated cardiac muscle. We set out to devise a simple method to characterize two FHC phenotypes caused by the R58Q and D166V mutations in RLC. The method is based on the ability to observe a few molecules of actin in working ex vivo heart myofibril. Actin is labeled with extremely diluted fluorescent dye, and a small volume within the I-band ( approximately 10(-16) L), containing on average three actin molecules, is observed by confocal microscopy. During muscle contraction, myosin cross-bridges deliver cyclic impulses to actin. As a result, actin molecules undergo periodic fluctuations of orientation. We measured these fluctuations by recording the parallel and perpendicular components of fluorescent light emitted by an actin-bound fluorophore. The histograms of fluctuations of fluorescent actin molecules in wild-type (WT) hearts in rigor were represented by perfect Gaussian curves. In contrast, histograms of contracting heart muscle were peaked and asymmetric, suggesting that contraction occurred in at least two steps. Furthermore, the differences between histograms of contracting FHC R58Q and D166V hearts versus corresponding contracting WT hearts were statistically significant. On the basis of our results, we suggest a simple new method of distinguishing between healthy and FHC R58Q and D166V hearts by analyzing the probability distribution of polarized fluorescence intensity fluctuations of sparsely labeled actin molecules.
Collapse
Affiliation(s)
- J Borejdo
- Department of Molecular Biology and Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, USA.
| | | | | | | |
Collapse
|
15
|
Pappas CT, Krieg PA, Gregorio CC. Nebulin regulates actin filament lengths by a stabilization mechanism. ACTA ACUST UNITED AC 2010; 189:859-70. [PMID: 20498015 PMCID: PMC2878950 DOI: 10.1083/jcb.201001043] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The nebulin molecular ruler hypothesis is challenged as a truncated form of nebulin can stabilize actin filaments that are longer than the mini-nebulin itself. Efficient muscle contraction requires regulation of actin filament lengths. In one highly cited model, the giant protein nebulin has been proposed to function as a molecular ruler specifying filament lengths. We directly challenged this hypothesis by constructing a unique, small version of nebulin (mini-nebulin). When endogenous nebulin was replaced with mini-nebulin in skeletal myocytes, thin filaments extended beyond the end of mini-nebulin, an observation which is inconsistent with a strict ruler function. However, under conditions that promote actin filament depolymerization, filaments associated with mini-nebulin were remarkably maintained at lengths either matching or longer than mini-nebulin. This indicates that mini-nebulin is able to stabilize portions of the filament it has no contact with. Knockdown of nebulin also resulted in more dynamic populations of thin filament components, whereas expression of mini-nebulin decreased the dynamics at both filament ends (i.e., recovered loss of endogenous nebulin). Thus, nebulin regulates thin filament architecture by a mechanism that includes stabilizing the filaments and preventing actin depolymerization.
Collapse
Affiliation(s)
- Christopher T Pappas
- Department of Cell Biology and Anatomy and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85724, USA
| | | | | |
Collapse
|
16
|
Muthu P, Mettikolla P, Calander N, Luchowski R, Gryczynski I, Gryczynski Z, Szczesna-Cordary D, Borejdo J. Single molecule kinetics in the familial hypertrophic cardiomyopathy D166V mutant mouse heart. J Mol Cell Cardiol 2009; 48:989-98. [PMID: 19914255 DOI: 10.1016/j.yjmcc.2009.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 10/21/2009] [Accepted: 11/06/2009] [Indexed: 11/26/2022]
Abstract
One of the sarcomeric mutations associated with a malignant phenotype of familial hypertrophic cardiomyopathy (FHC) is the D166V point mutation in the ventricular myosin regulatory light chain (RLC) encoded by the MYL2 gene. In this report we show that the rates of myosin cross-bridge attachment and dissociation are significantly different in isometrically contracting cardiac myofibrils from right ventricles of transgenic (Tg)-D166V and Tg-WT mice. We have derived the myosin cross-bridge kinetic rates by tracking the orientation of a fluorescently labeled single actin molecule. Orientation (measured by polarized fluorescence) oscillated between two states, corresponding to the actin-bound and actin-free states of the myosin cross-bridge. The rate of cross-bridge attachment during isometric contraction decreased from 3 s(-1) in myofibrils from Tg-WT to 1.4 s(-1) in myofibrils from Tg-D166V. The rate of detachment decreased from 1.3 s(-1) (Tg-WT) to 1.2 s(-1) (Tg-D166V). We also showed that the level of RLC phosphorylation was largely decreased in Tg-D166V myofibrils compared to Tg-WT. Our findings suggest that alterations in the myosin cross-bridge kinetics brought about by the D166V mutation in RLC might be responsible for the compromised function of the mutated hearts and lead to their inability to efficiently pump blood.
Collapse
Affiliation(s)
- Priya Muthu
- Department of Molecular Biology and Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kontrogianni-Konstantopoulos A, Ackermann MA, Bowman AL, Yap SV, Bloch RJ. Muscle giants: molecular scaffolds in sarcomerogenesis. Physiol Rev 2009; 89:1217-67. [PMID: 19789381 PMCID: PMC3076733 DOI: 10.1152/physrev.00017.2009] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Myofibrillogenesis in striated muscles is a highly complex process that depends on the coordinated assembly and integration of a large number of contractile, cytoskeletal, and signaling proteins into regular arrays, the sarcomeres. It is also associated with the stereotypical assembly of the sarcoplasmic reticulum and the transverse tubules around each sarcomere. Three giant, muscle-specific proteins, titin (3-4 MDa), nebulin (600-800 kDa), and obscurin (approximately 720-900 kDa), have been proposed to play important roles in the assembly and stabilization of sarcomeres. There is a large amount of data showing that each of these molecules interacts with several to many different protein ligands, regulating their activity and localizing them to particular sites within or surrounding sarcomeres. Consistent with this, mutations in each of these proteins have been linked to skeletal and cardiac myopathies or to muscular dystrophies. The evidence that any of them plays a role as a "molecular template," "molecular blueprint," or "molecular ruler" is less definitive, however. Here we review the structure and function of titin, nebulin, and obscurin, with the literature supporting a role for them as scaffolding molecules and the contradictory evidence regarding their roles as molecular guides in sarcomerogenesis.
Collapse
|
18
|
Mettikolla P, Luchowski R, Gryczynski I, Gryczynski Z, Szczesna-Cordary D, Borejdo J. Fluorescence lifetime of actin in the familial hypertrophic cardiomyopathy transgenic heart. Biochemistry 2009; 48:1264-71. [PMID: 19159226 DOI: 10.1021/bi801629d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Clinical studies have revealed that the D166V mutation in the ventricular myosin regulatory light chain (RLC) can cause a malignant phenotype of familial hypertrophic cardiomyopathy (FHC). It has been proposed that RLC induced FHC in the heart originates at the level of the myosin cross-bridge due to alterations in the rates of cross-bridge cycling. In this report, we examine whether the environment of an active cross-bridge in cardiac myofibrils from transgenic (Tg) mice is altered by the D166V mutation in RLC. The cross-bridge environment was monitored by tracking the fluorescence lifetime (tau) of Alexa488-phalloidin-labeled actin. The fluorescence lifetime is the average rate of decay of a fluorescent species from the excited state, which strongly depends on various environmental factors. We observed that the lifetime was high when cross-bridges were bound to actin and low when they were dissociated from it. The lifetime was measured every 50 ms from the center half of the I-band during 60 s of rigor, relaxation and contraction of muscle. We found no differences between lifetimes of Tg-WT and Tg-D166V muscle during rigor, relaxation and contraction. The duty ratio expressed as a fraction of time that cross-bridges spend attached to the thin filaments during isometric contraction was similar in Tg-WT and Tg-D166V muscles. Since independent measurements showed a large decrease in the cross-bridge turnover rate in Tg-D166V muscle compared to Tg-WT, the fact that the duty cycle remains constant suggests that the D166V mutation of RLC causes a decrease in the rate of cross-bridge attachment to actin.
Collapse
Affiliation(s)
- P Mettikolla
- Department of Molecular Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, 3500 Camp Bowie Blvd., Fort Worth, Texas 76107, USA
| | | | | | | | | | | |
Collapse
|
19
|
A nebulin ruler does not dictate thin filament lengths. Biophys J 2009; 96:1856-65. [PMID: 19254544 DOI: 10.1016/j.bpj.2008.10.053] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Accepted: 10/28/2008] [Indexed: 11/21/2022] Open
Abstract
To generate force, striated muscle requires overlap between uniform-length actin and myosin filaments. The hypothesis that a nebulin ruler mechanism specifies thin filament lengths by targeting where tropomodulin (Tmod) caps the slow-growing, pointed end has not been rigorously tested. Using fluorescent microscopy and quantitative image analysis, we found that nebulin extended 1.01-1.03 mum from the Z-line, but Tmod localized 1.13-1.31 mum from the Z-line, in seven different rabbit skeletal muscles. Because nebulin does not extend to the thin filament pointed ends, it can neither target Tmod capping nor specify thin filament lengths. We found instead a strong correspondence between thin filament lengths and titin isoform sizes for each muscle. Our results suggest the existence of a mechanism whereby nebulin specifies the minimum thin filament length and sarcomere length regulates and coordinates pointed-end dynamics to maintain the relative overlap of the thin and thick filaments during myofibril assembly.
Collapse
|
20
|
Borejdo J, Muthu P, Talent J, Gryczynski Z, Calander N, Akopova I, Shtoyko T, Gryczynski I. Reduction of photobleaching and photodamage in single molecule detection: observing single actin monomer in skeletal myofibrils. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:034021. [PMID: 18601566 DOI: 10.1117/1.2938689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Recent advances in detector technology make it possible to achieve single molecule detection (SMD) in a cell. SMD avoids complications associated with averaging signals from large assemblies and with diluting and disorganizing proteins. However, it requires that cells be illuminated with an intense laser beam, which causes photobleaching and cell damage. To reduce these effects, we study cells on coverslips coated with silver nanoparticle monolayers (NML). Muscle is used as an example. Actin is labeled with a low concentration of fluorescent phalloidin to assure that less than a single molecule in a sarcomere is fluorescent. On a glass substrate, the fluorescence of actin decays in a step-wise fashion, establishing a single molecule detection regime. Single molecules of actin in living muscle are visualized for the first time. NML coating decreases the fluorescence lifetime 17 times and enhances intensity ten times. As a result, fluorescence of muscle bleaches four to five times slower than on glass. Monolayers decrease photobleaching because they shorten the fluorescence lifetime, thus decreasing the time that a fluorophore spends in the excited state when it is vulnerable to oxygen attack. They decrease damage to cells because they enhance the electric field near the fluorophore, making it possible to illuminate samples with weaker light.
Collapse
Affiliation(s)
- Julian Borejdo
- University of North Texas Health Science Center, Department of Molecular Biology and Immunology, Fort Worth, Texas 76107, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Pappas CT, Bhattacharya N, Cooper JA, Gregorio CC. Nebulin interacts with CapZ and regulates thin filament architecture within the Z-disc. Mol Biol Cell 2008; 19:1837-47. [PMID: 18272787 DOI: 10.1091/mbc.e07-07-0690] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The barbed ends of actin filaments in striated muscle are anchored within the Z-disc and capped by CapZ; this protein blocks actin polymerization and depolymerization in vitro. The mature lengths of the thin filaments are likely specified by the giant "molecular ruler" nebulin, which spans the length of the thin filament. Here, we report that CapZ specifically interacts with the C terminus of nebulin (modules 160-164) in blot overlay, solid-phase binding, tryptophan fluorescence, and SPOTs membrane assays. Binding of nebulin modules 160-164 to CapZ does not affect the ability of CapZ to cap actin filaments in vitro, consistent with our observation that neither of the two C-terminal actin binding regions of CapZ is necessary for its interaction with nebulin. Knockdown of nebulin in chick skeletal myotubes using small interfering RNA results in a reduction of assembled CapZ, and, strikingly, a loss of the uniform alignment of the barbed ends of the actin filaments. These data suggest that nebulin restricts the position of thin filament barbed ends to the Z-disc via a direct interaction with CapZ. We propose a novel molecular model of Z-disc architecture in which nebulin interacts with CapZ from a thin filament of an adjacent sarcomere, thus providing a structural link between sarcomeres.
Collapse
Affiliation(s)
- Christopher T Pappas
- Departments of Cell Biology and Anatomy and *Molecular and Cellular Biology, The University of Arizona, Tucson, AZ 85721-0106, USA
| | | | | | | |
Collapse
|
22
|
Muthu P, Gryczynski I, Gryczynski Z, Talent J, Akopova I, Jain K, Borejdo J. Decreasing photobleaching by silver island films: application to muscle. Anal Biochem 2007; 366:228-36. [PMID: 17531183 PMCID: PMC2096706 DOI: 10.1016/j.ab.2007.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/06/2007] [Accepted: 04/07/2007] [Indexed: 11/24/2022]
Abstract
Recently it has become possible to study interactions between proteins at the level of single molecules. This requires collecting data from an extremely small volume, small enough to contain one molecule-typically of the order of attoliters (10(-18) L). Collection of data from such a small volume with sufficiently high signal-to-noise ratio requires that the rate of photon detection per molecule be high. This calls for a large illuminating light flux, which in turn leads to rapid photobleaching of the fluorophores that are labeling the proteins. To decrease photobleaching, we measured fluorescence from a sample placed on coverslips coated with silver island films (SIF). SIF reduce photobleaching because they enhance fluorescence brightness and significantly decrease fluorescence lifetime. Increase in the brightness effectively decreases photobleaching because illumination can be attenuated to obtain the same fluorescence intensity. Decrease of lifetime decreases photobleaching because short lifetime minimizes the probability of oxygen attack while the fluorophore is in the excited state. The decrease of photobleaching was demonstrated in skeletal muscle. Myofibrils were labeled lightly with rhodamine-phalloidin, placed on coverslips coated with SIF, illuminated by total internal reflection, and observed through a confocal aperture. We show that SIF causes the intensity of phalloidin fluorescence to increase 4-5 fold and its fluorescence lifetime to decrease on average 23-fold. As a consequence, the rate of photobleaching of four or five molecules of actin of a myofibril on Olympus coverslips coated with SIF decreased at least 30-fold in comparison with photobleaching on an uncoated coverslip. Significant decrease of photobleaching makes the measurement of signal from a single cross-bridge of contracting muscle feasible.
Collapse
Affiliation(s)
- P. Muthu
- Department of Molecular Biology & Immunology, The University of North Texas HSC, Fort Worth, TX 76107, USA
| | - I. Gryczynski
- Department of Molecular Biology & Immunology, The University of North Texas HSC, Fort Worth, TX 76107, USA
| | - Z. Gryczynski
- Department of Molecular Biology & Immunology, The University of North Texas HSC, Fort Worth, TX 76107, USA
| | - J. Talent
- Department of Molecular Biology & Immunology, The University of North Texas HSC, Fort Worth, TX 76107, USA
| | - I. Akopova
- Department of Molecular Biology & Immunology, The University of North Texas HSC, Fort Worth, TX 76107, USA
| | - K. Jain
- Department of Molecular Biology & Immunology, The University of North Texas HSC, Fort Worth, TX 76107, USA
| | - J. Borejdo
- Department of Molecular Biology & Immunology, The University of North Texas HSC, Fort Worth, TX 76107, USA
| |
Collapse
|
23
|
Rondanino C, Rojas R, Ruiz WG, Wang E, Hughey RP, Dunn KW, Apodaca G. RhoB-dependent modulation of postendocytic traffic in polarized Madin-Darby canine kidney cells. Traffic 2007; 8:932-49. [PMID: 17547697 DOI: 10.1111/j.1600-0854.2007.00575.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Rho family of GTPases is implicated in the control of endocytic and biosynthetic traffic of many cell types; however, the cellular distribution of RhoB remains controversial and its function is not well understood. Using confocal microscopy, we found that endogenous RhoB and green fluorescent protein-tagged wild-type RhoB were localized to early endosomes, and to a much lesser extent to recycling endosomes, late endosomes or Golgi complex of fixed or live polarized Madin-Darby canine kidney cells. Consistent with RhoB localization to early endosomes, we observed that expression of dominant-negative RhoBN19 or dominant-active RhoBV14 altered postendocytic traffic of ligand-receptor complexes that undergo recycling, degradation or transcytosis. In vitro assays established that RhoB modulated the basolateral-to-apical transcytotic pathway by regulating cargo exit from basolateral early endosomes. Our results indicate that RhoB is localized, in part, to early endosomes where it regulates receptor egress through the early endocytic system.
Collapse
Affiliation(s)
- Christine Rondanino
- Laboratory of Epithelial Biology, Renal-Electrolyte Division of the Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Borejdo J, Muthu P, Talent J, Akopova I, Burghardt TP. Rotation of actin monomers during isometric contraction of skeletal muscle. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:014013. [PMID: 17343488 DOI: 10.1117/1.2697286] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Cyclic interactions of myosin and actin are responsible for contraction of muscle. It is not self-evident, however, that the mechanical cycle occurs during steady-state isometric contraction where no work is produced. Studying cross-bridge dynamics during isometric steady-state contraction requires an equilibrium time-resolved method (not involving application of a transient). This work introduces such a method, which analyzes fluctuations of anisotropy of a few actin molecules in muscle. Fluorescence anisotropy, indicating orientation of an actin protomer, is collected from a volume of a few attoliters (10(-18) L) by confocal total internal reflection (CTIR) microscopy. In this method, the detection volume is made shallow by TIR illumination, and narrow by confocal aperture inserted in the conjugate image plane. The signal is contributed by approximately 12 labeled actin molecules. Shortening of a myofibril during contraction is prevented by light cross-linking with 1-ethyl-3-[3-dimethylamino)-propyl]-carbodiimide. The root mean-squared anisotropy fluctuations are greater in isometrically contracting than in rigor myofibrils. The results support the view that during isometric contraction, cross-bridges undergo a mechanical cycle.
Collapse
Affiliation(s)
- Julian Borejdo
- University of North Texas Health Science Center, Department of Molecular Biology and Immunology, Fort Worth, Texas 76107, USA.
| | | | | | | | | |
Collapse
|
25
|
Bukatina AE, Korinek J, Sieck GC, Belohlavek M. Phalloidin suppresses force in nebulin-rich lamprey cardiac muscle. Biophysics (Nagoya-shi) 2006. [DOI: 10.1134/s0006350906050204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Borejdo J, Gryczynski Z, Calander N, Muthu P, Gryczynski I. Application of surface plasmon coupled emission to study of muscle. Biophys J 2006; 91:2626-35. [PMID: 16844757 PMCID: PMC1562373 DOI: 10.1529/biophysj.106.088369] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 06/09/2006] [Indexed: 11/18/2022] Open
Abstract
Muscle contraction results from interactions between actin and myosin cross-bridges. Dynamics of this interaction may be quite different in contracting muscle than in vitro because of the molecular crowding. In addition, each cross-bridge of contracting muscle is in a different stage of its mechanochemical cycle, and so temporal measurements are time averages. To avoid complications related to crowding and averaging, it is necessary to follow time behavior of a single cross-bridge in muscle. To be able to do so, it is necessary to collect data from an extremely small volume (an attoliter, 10(-18) liter). We report here on a novel microscopic application of surface plasmon-coupled emission (SPCE), which provides such a volume in a live sample. Muscle is fluorescently labeled and placed on a coverslip coated with a thin layer of noble metal. The laser beam is incident at a surface plasmon resonance (SPR) angle, at which it penetrates the metal layer and illuminates muscle by evanescent wave. The volume from which fluorescence emanates is a product of two near-field factors: the depth of evanescent wave excitation and a distance-dependent coupling of excited fluorophores to the surface plasmons. The fluorescence is quenched at the metal interface (up to approximately 10 nm), which further limits the thickness of the fluorescent volume to approximately 50 nm. The fluorescence is detected through a confocal aperture, which limits the lateral dimensions of the detection volume to approximately 200 nm. The resulting volume is approximately 2 x 10(-18) liter. The method is particularly sensitive to rotational motions because of the strong dependence of the plasmon coupling on the orientation of excited transition dipole. We show that by using a high-numerical-aperture objective (1.65) and high-refractive-index coverslips coated with gold, it is possible to follow rotational motion of 12 actin molecules in muscle with millisecond time resolution.
Collapse
Affiliation(s)
- J Borejdo
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA.
| | | | | | | | | |
Collapse
|
27
|
Shepard AA, Dumka D, Akopova I, Talent J, Borejdo J. Simultaneous measurement of rotations of myosin, actin and ADP in a contracting skeletal muscle fiber. J Muscle Res Cell Motil 2005; 25:549-57. [PMID: 15711885 DOI: 10.1007/s10974-004-5073-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 10/06/2004] [Indexed: 10/25/2022]
Abstract
The rotation of myosin heads and actin were measured simultaneously with an indicator of the enzymatic activity of myosin. To minimize complications due to averaging of signals from many molecules, the signal was measured in a small population residing in a femtoliter volume of a muscle fiber. The onset of rotation was synchronized by a sudden release of caged ATP. The orientation of cross-bridges was measured by anisotropy of recombinant fluorescent regulatory light chains exchanged with native regulatory light chains. The orientation of actin was measured by anisotropy of phalloidin added to actin filaments. The enzymatic activity of myosin was measured by dissociation of fluorescent ADP from the active site. The onset of all three events occurred at the same time. This suggests that in contracting muscle, actin does not move independently of myosin and that ATP hydrolysis is strongly coupled to the rotation of cross-bridges.
Collapse
Affiliation(s)
- A A Shepard
- Department of Molecular Biology and Immunology, University of North Texas, 3500 Camp Bowie Building, Fort Worth, TX 76107, USA
| | | | | | | | | |
Collapse
|
28
|
Bassaglia Y, Cebrian J, Covan S, Garcia M, Foucrier J. Proteasomes are tightly associated to myofibrils in mature skeletal muscle. Exp Cell Res 2005; 302:221-32. [PMID: 15561103 DOI: 10.1016/j.yexcr.2004.08.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 08/07/2004] [Indexed: 10/26/2022]
Abstract
Proteasomes are the major actors of nonlysosomal cytoplasmic protein degradation. In particular, these large protein complexes (about 2500 kDa) are considered to be responsible for muscular degradation during skeletal muscle atrophy. Despite their unusual and important size, they are widely described as soluble and mobile in the cytoplasm. In mature skeletal muscle, we have previously observed a sarcomeric distribution of proteasomes, as revealed by the distribution of alpha1/p27K, a subunit of the 20S core-particle (prosome) of proteasome. Here, we extend these observations at the electron microscopic level in vivo. We also show that this sarcomeric pattern is dependent of the extension of the sarcomere. Using isolated myofibrils, we demonstrate that proteasomes are still attached to the myofibrils after the isolation procedure, and reproduce the observations made in vivo. In addition, the extraction of actin by gelsolin largely removes proteasomes from isolated myofibrils, but some of them are held in place after this extraction, showing a sarcomeric disposition in the absence of any detectable actin, and suggesting the existence of another molecular partner for these interactions. From these results, we conclude that most of detectable 20S proteasomes in skeletal muscle cells is tightly attached to the myofibrils.
Collapse
Affiliation(s)
- Yann Bassaglia
- Laboratoire CRRET, CNRS FRE 2412, Faculté des Sciences, Université Paris 12-Val de Marne, Créteil, France.
| | | | | | | | | |
Collapse
|
29
|
Borejdo J, Shepard A, Dumka D, Akopova I, Talent J, Malka A, Burghardt TP. Changes in orientation of actin during contraction of muscle. Biophys J 2004; 86:2308-17. [PMID: 15041669 PMCID: PMC1304080 DOI: 10.1016/s0006-3495(04)74288-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
It is well documented that muscle contraction results from cyclic rotations of actin-bound myosin cross-bridges. The role of actin is hypothesized to be limited to accelerating phosphate release from myosin and to serving as a rigid substrate for cross-bridge rotations. To test this hypothesis, we have measured actin rotations during contraction of a skeletal muscle. Actin filaments of rabbit psoas fiber were labeled with rhodamine-phalloidin. Muscle contraction was induced by a pulse of ATP photogenerated from caged precursor. ATP induced a single turnover of cross-bridges. The rotations were measured by anisotropy of fluorescence originating from a small volume defined by a narrow aperture of a confocal microscope. The anisotropy of phalloidin-actin changed rapidly at first and was followed by a slow relaxation to a steady-state value. The kinetics of orientation changes of actin and myosin were the same. Extracting myosin abolished anisotropy changes. To test whether the rotation of actin was imposed by cross-bridges or whether it reflected hydrolytic activity of actin itself, we labeled actin with fluorescent ADP. The time-course of anisotropy change of fluorescent nucleotide was similar to that of phalloidin-actin. These results suggest that orientation changes of actin are caused by dissociation and rebinding of myosin cross-bridges, and that during contraction, nucleotide does not dissociate from actin.
Collapse
Affiliation(s)
- J Borejdo
- Department of Molecular Biology and Immunology, University of North Texas, Fort Worth, Texas, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Littlefield R, Fowler VM. Measurement of thin filament lengths by distributed deconvolution analysis of fluorescence images. Biophys J 2002; 82:2548-64. [PMID: 11964243 PMCID: PMC1302045 DOI: 10.1016/s0006-3495(02)75598-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lengths of the actin (thin) filaments in sarcomeres directly influence the physiological properties of striated muscle. Although electron microscopy techniques provide the highest precision and accuracy for measuring thin filament lengths, significant obstacles limit their widespread use. Here, we describe distributed deconvolution, a fluorescence-based method that determines the location of specific thin filament components such as tropomodulin (Tmod) or probes such as phallacidin (a phalloidin derivative). Using Tmod and phallacidin fluorescence, we were able to determine the thin filament lengths of isolated chicken pectoralis major myofibrils with an accuracy and precision comparable to electron microscopy. Additionally, phallacidin fluorescence intensity at the Z line provided information about the width of Z lines. Furthermore, we detected significant variations in thin filaments lengths among individual myofibrils from chicken posterior latissimus dorsai and embryonic chick cardiac myocytes, suggesting that a ruler molecule (e.g., nebulin) does not strictly determine thin filament lengths in these muscles. This versatile method is applicable to myofibrils in living cells that exhibit significant variation in sarcomere lengths, and only requires a fluorescence microscope and a CCD camera.
Collapse
Affiliation(s)
- Ryan Littlefield
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
31
|
McElhinny AS, Kolmerer B, Fowler VM, Labeit S, Gregorio CC. The N-terminal end of nebulin interacts with tropomodulin at the pointed ends of the thin filaments. J Biol Chem 2001; 276:583-92. [PMID: 11016930 DOI: 10.1074/jbc.m005693200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Strict regulation of actin thin filament length is critical for the proper functioning of sarcomeres, the basic contractile units of myofibrils. It has been hypothesized that a molecular template works with actin filament capping proteins to regulate thin filament lengths. Nebulin is a giant protein ( approximately 800 kDa) in skeletal muscle that has been proposed to act as a molecular ruler to specify the thin filament lengths characteristic of different muscles. Tropomodulin (Tmod), a pointed end thin filament capping protein, has been shown to maintain the final length of the thin filaments. Immunofluorescence microscopy revealed that the N-terminal end of nebulin colocalizes with Tmod at the pointed ends of thin filaments. The three extreme N-terminal modules (M1-M2-M3) of nebulin bind specifically to Tmod as demonstrated by blot overlay, bead binding, and solid phase binding assays. These data demonstrate that the N terminus of the nebulin molecule extends to the extreme end of the thin filament and also establish a novel biochemical function for this end. Two Tmod isoforms, erythrocyte Tmod (E-Tmod), expressed in embryonic and slow skeletal muscle, and skeletal Tmod (Sk-Tmod), expressed late in fast skeletal muscle differentiation, bind on overlapping sites to recombinant N-terminal nebulin fragments. Sk-Tmod binds nebulin with higher affinity than E-Tmod does, suggesting that the Tmod/nebulin interaction exhibits isoform specificity. These data provide evidence that Tmod and nebulin may work together as a linked mechanism to control thin filament lengths in skeletal muscle.
Collapse
Affiliation(s)
- A S McElhinny
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | |
Collapse
|
32
|
Ojima K, Lin Z, Bang ML, Holtzer S, Matsuda R, Labeit S, Sweeney H, Holtzer H. Distinct families of Z-line targeting modules in the COOH-terminal region of nebulin. J Cell Biol 2000; 150:553-66. [PMID: 10931867 PMCID: PMC2175182 DOI: 10.1083/jcb.150.3.553] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To learn how nebulin functions in the assembly and maintenance of I-Z-I bands, MYC- and GFP- tagged nebulin fragments were expressed in primary cultured skeletal myotubes. Their sites of incorporation were visualized by double staining with anti-MYC, antibodies to myofibrillar proteins, and FITC- or rhodamine phalloidin. Contrary to expectations based on in vitro binding studies, none of the nebulin fragments expressed in maturing myotubes were incorporated selectively into I-band approximately 1.0-micrometer F-alpha-actin-containing thin filaments. Four of the MYC/COOH-terminal nebulin fragments were incorporated exclusively into periodic approximately 0.1-micrometer Z-bands. Whereas both anti-MYC and Rho-phalloidin stained intra-Z-band F-alpha-actin oligomers, only the latter stained the pointed ends of the polarized approximately 1.0-micrometer thin filaments. Z-band incorporation was independent of the nebulin COOH-terminal Ser or SH3 domains. In vitro cosedimentation studies also demonstrated that nebulin SH3 fragments did not bind to F-alpha-actin or alpha-actinin. The remaining six fragments were not incorporated into Z-bands, but were incorporated (a) diffusely throughout the sarcoplasm and into (b) fibrils/patches of varying lengths and widths nested among normal striated myofibrils. Over time, presumably in response to the mediation of muscle-specific homeostatic controls, many of the ectopic MYC-positive structures were resorbed. None of the tagged nebulin fragments behaved as dominant negatives; they neither blocked the assembly nor induced the disassembly of mature striated myofibrils. Moreover, they were not cytotoxic in myotubes, as they were in the fibroblasts and presumptive myoblasts in the same cultures.
Collapse
Affiliation(s)
- K. Ojima
- Department of Cell and Developmental Biology, The School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Z.X. Lin
- Department of Cell Biology, Beijing Institute for Cancer Research, Beijing Medical University, Beijing 100034, China
| | | | - S. Holtzer
- Department of Cell and Developmental Biology, The School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - R. Matsuda
- Department of Life Science, University of Tokyo, Tokyo, Japan 153-8092
| | - S. Labeit
- Department of Anesthesiology and Intensive Operative Care, Klinikum, Mannheim, Germany
| | - H.L. Sweeney
- Department of Physiology, The School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - H. Holtzer
- Department of Cell and Developmental Biology, The School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
33
|
Zhukarev V, Sanger JM, Sanger JW, Goldman YE, Shuman H. Distribution and orientation of rhodamine-phalloidin bound to thin filaments in skeletal and cardiac myofibrils. CELL MOTILITY AND THE CYTOSKELETON 2000; 37:363-77. [PMID: 9258508 DOI: 10.1002/(sici)1097-0169(1997)37:4<363::aid-cm7>3.0.co;2-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phalloidin staining of muscle does not reflect the known disposition of sarcomeric thin filaments. Quantitative image analysis and steady-state fluorescence polarization microscopy are used to measure the local intensity and orientation of tetramethyl rhodamine-labeled phalloidin (TR-phalloidin) in skinned myofibrils. TR-phalloidin staining of isolated skeletal myofibrils labeled while in rigor reveals fluorescence that is brighter at the pointed ends of the thin filaments and Z lines than it is in the middle of the filaments. In cardiac myofibrils, phalloidin staining is uniform along the lengths of the thin filaments in both relaxed and rigor myofibrils, except in 0.2-micron dark areas on either side of the Z line. Extraction of myosin or tropomyosin-troponin molecules does not change the nonuniform staining. To test whether long-term storage in glycerol changes the binding of phalloidin to thin filaments in myofibrils, minimally permeabilized (briefly skinned) myofibrils, or myofibrils stored in glycerol for at least 7 days (glycerol extraction) were compared. TR-phalloidin was well ordered throughout the sarcomere in briefly skinned skeletal and cardiac myofibrils, but TR-phalloidin bound to the Z line and pointed ends of thin filaments was randomly oriented in glycerol-extracted myofibrils, suggesting that the ends of the thin filaments become disordered after glycerol extraction. In relaxed skeletal myofibrils with sarcomere lengths greater than 3.0 microns, staining was nearly uniform all along the actin filaments. Exogeneous bare actin filaments polymerized from the Z line (Sanger et al., 1984: J. Cell Biol. 98:825-833) in and along the myofibril bind rhodamine phalloidin uniformly. Our results support the hypothesis that nebulin can block the binding of phalloidin to actin in skeletal myofibrils and nebulette can block phalloidin binding to cardiac thin filaments.
Collapse
Affiliation(s)
- V Zhukarev
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
34
|
Almenar-Queralt A, Gregorio CC, Fowler VM. Tropomodulin assembles early in myofibrillogenesis in chick skeletal muscle: evidence that thin filaments rearrange to form striated myofibrils. J Cell Sci 1999; 112 ( Pt 8):1111-23. [PMID: 10085247 DOI: 10.1242/jcs.112.8.1111] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actin filament lengths in muscle and nonmuscle cells are believed to depend on the regulated activity of capping proteins at both the fast growing (barbed) and slow growing (pointed) filament ends. In striated muscle, the pointed end capping protein, tropomodulin, has been shown to maintain the lengths of thin filaments in mature myofibrils. To determine whether tropomodulin might also be involved in thin filament assembly, we investigated the assembly of tropomodulin into myofibrils during differentiation of primary cultures of chick skeletal muscle cells. Our results show that tropomodulin is expressed early in differentiation and is associated with the earliest premyofibrils which contain overlapping and misaligned actin filaments. In addition, tropomodulin can be found in actin filament bundles at the distal tips of growing myotubes, where sarcomeric alpha-actinin is not always detected, suggesting that tropomodulin caps actin filament pointed ends even before the filaments are cross-linked into Z bodies by alpha-actinin. Tropomodulin staining exhibits an irregular punctate pattern along the length of premyofibrils that demonstrate a smooth phalloidin staining pattern for F-actin. Strikingly, the tropomodulin dots often appear to be located between the closely spaced, dot-like Z bodies that are stained for (α)-actinin. Thus, in the earliest premyofibrils, the pointed ends of the thin filaments are clustered and partially aligned with respect to the Z bodies (the location of the barbed filament ends). At later stages of differentiation, the tropomodulin dots become aligned into regular periodic striations concurrently with the appearance of striated phalloidin staining for F-actin and alignment of Z bodies into Z lines. Tropomodulin, together with the barbed end capping protein, CapZ, may function from the earliest stages of myofibrillogenesis to restrict the lengths of newly assembled thin filaments by capping their ends; thus, transitions from nonstriated to striated myofibrils in skeletal muscle are likely due principally to filament rearrangements rather than to filament polymerization or depolymerization. Rearrangements of actin filaments capped at their pointed and barbed ends may be a general mechanism by which cells restructure their actin cytoskeletal networks during cell growth and differentiation.
Collapse
Affiliation(s)
- A Almenar-Queralt
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
35
|
Littlefield R, Fowler VM. Defining actin filament length in striated muscle: rulers and caps or dynamic stability? Annu Rev Cell Dev Biol 1999; 14:487-525. [PMID: 9891791 DOI: 10.1146/annurev.cellbio.14.1.487] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Actin filaments (thin filaments) are polymerized to strikingly uniform lengths in striated muscle sarcomeres. Yet, actin monomers can exchange dynamically into thin filaments in vivo, indicating that actin monomer association and dissociation at filament ends must be highly regulated to maintain the uniformity of filament lengths. We propose several hypothetical mechanisms that could generate uniform actin filament length distributions and discuss their application to the determination of thin filament length in vivo. At the Z line, titin may determine the minimum extent and tropomyosin the maximum extent of thin filament overlap by regulating alpha-actinin binding to actin, while a unique Z filament may bind to capZ and regulate barbed end capping. For the free portion of the thin filament, we evaluate possibilities that thin filament components (e.g. nebulin or the tropomyosin/troponin polymer) determine thin filament lengths by binding directly to tropomodulin and regulating pointed end capping, or alternatively, that myosin thick filaments, together with titin, determine filament length by indirectly regulating tropomodulin's capping activity.
Collapse
Affiliation(s)
- R Littlefield
- Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
36
|
Zhang JQ, Weisberg A, Horowits R. Expression and purification of large nebulin fragments and their interaction with actin. Biophys J 1998; 74:349-59. [PMID: 9449335 PMCID: PMC1299387 DOI: 10.1016/s0006-3495(98)77792-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
cDNA clones encoding mouse skeletal muscle nebulin were expressed in Escherichia coli as thioredoxin fusion proteins and purified in the presence of 6 M urea. These fragments, called 7a and 8c, contain 28 and 19 of the weakly repeating approximately 35-residue nebulin modules, respectively. The nebulin fragments are soluble at extremely high pH, but aggregate when dialyzed to neutral pH, as assayed by centrifugation at 16,000 x g. However, when mixed with varying amounts of G-actin at pH 12 and then dialyzed to neutral pH, the nebulin fragments are solubilized in a concentration-dependent manner, remaining in the supernatant along with the monomeric actin. These results show that interaction with G-actin allows the separation of insoluble nebulin aggregates from soluble actin-nebulin complexes by centrifugation. We used this property to assay the incorporation of nebulin fragments into preformed actin filaments. Varying amounts of aggregated nebulin were mixed with a constant amount of F-actin at pH 7.0. The nebulin aggregates were pelleted by centrifugation at 5200 x g, whereas the actin filaments, including incorporated nebulin fragments, remained in the supernatant. Using this assay, we found that nebulin fragments 7a and 8c bound to actin filaments with high affinity. Immunofluorescence and electron microscopy of the actin-nebulin complexes verified that the nebulin fragments were reorganized from punctate aggregates to a filamentous form upon interaction with F-actin. In addition, we found that fragment 7a binds to F-actin with a stoichiometry of one nebulin module per actin monomer, the same stoichiometry we found in vivo. In contrast, 8c binds to F-actin with a stoichiometry of one module per two actin monomers. These data indicate that 7a can be incorporated into actin filaments to the same extent found in vivo, and suggest that shorter fragments may not bind actin filaments in the same way as the native nebulin molecule.
Collapse
Affiliation(s)
- J Q Zhang
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892-2751, USA
| | | | | |
Collapse
|
37
|
Balnave CD, Davey DF, Allen DG. Distribution of sarcomere length and intracellular calcium in mouse skeletal muscle following stretch-induced injury. J Physiol 1997; 502 ( Pt 3):649-59. [PMID: 9279815 PMCID: PMC1159535 DOI: 10.1111/j.1469-7793.1997.649bj.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. The effect on sarcomere organization of stretching intact single skeletal muscle fibres by 50% of their optimum length (Lo) during ten consecutive short tetani was investigated. Stretch reduced tetanic force to 36 +/- 4% of the pre-stretch condition. Sarcomere organization was analysed using both electron and confocal microscopy. For confocal microscopy the striation pattern was examined by fluorescently staining F-actin with rhodamine-phalloidin. 2. Electron microscopy revealed that fibres which had been stretched during contraction contained areas of severe sarcomere disorganization, as well as adjacent sarcomeres of normal appearance. 3. Confocal images of stretched fibres, which had been fixed and stained with rhodamine-phalloidin, showed focal regions of overstretched sarcomeres and regions where sarcomeres of adjacent myofibrils were out of alignment with each other. Analysis of all sarcomeres along the length of fibres showed regions of sarcomere inhomogeneity were distributed throughout the fibre length and cross-section. 4. Fibres were microinjected with the fluorescent [Ca2+]i indicator fura-2 before being stretched. Conventional wide-field fluorescence imaging microscopy showed that the tetanic [Ca2+]i was reduced after stretching but remained uniformly distributed. 5. This study confirms the finding that stretch-induced muscle injury has components caused by disorganization of the myofibrillar array and by failure of tetanic Ca2+ release. The structural damage is spatially heterogeneous whereas the changes in Ca2+ release appear to be spatially homogeneous.
Collapse
Affiliation(s)
- C D Balnave
- Department of Physiology, University of Sydney, NSW, Australia
| | | | | |
Collapse
|
38
|
Abstract
Thin filaments were prepared from rabbit and beef skeletal muscle with three different procedures, both at high and low ionic strength. Nebulin was always found to be associated with the myosin fraction and was always absent from the thin filament fraction.
Collapse
Affiliation(s)
- P Cuneo
- Dipartimento di Biochimica e Biologia Molecolare, Università di Ferrara, Italy
| | | | | | | |
Collapse
|