1
|
Xie M, Bai N, Yang X, Liu Y, Zhang KQ, Yang J. Fus3 regulates asexual development and trap morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora. iScience 2023; 26:107404. [PMID: 37609635 PMCID: PMC10440713 DOI: 10.1016/j.isci.2023.107404] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/07/2023] [Accepted: 07/12/2023] [Indexed: 08/24/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) Fus3 is an essential regulator of cell differentiation and virulence in fungal pathogens of plants and animals. However, the function and regulatory mechanism of MAPK signaling in nematode-trapping (NT) fungi remain largely unknown. NT fungi can specialize in the formation of "traps", an important indicator of transition from a saprophytic to a predatory lifestyle. Here, we characterized an orthologous Fus3 in a typical NT fungus Arthrobotrys oligospora using multi-phenotypic analysis and multi-omics approaches. Our results showed that Fus3 plays an important role in asexual growth and development, conidiation, stress response, DNA damage, autophagy, and secondary metabolism. Importantly, Fus3 plays an indispensable role in hyphal fusion, trap morphogenesis, and nematode predation. Moreover, we constructed the regulatory networks of Fus3 by means of transcriptomic and yeast two-hybrid techniques. This study provides insights into the mechanism of MAPK signaling in asexual development and pathogenicity of NT fungi.
Collapse
Affiliation(s)
- Meihua Xie
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
- School of Resource, Environment and Chemistry, Chuxiong Normal University, Chuxiong 675000, P.R. China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
| | - Xuewei Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
| | - Yankun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
| |
Collapse
|
2
|
Pérez-Díaz AJ, Vázquez-Marín B, Vicente-Soler J, Prieto-Ruiz F, Soto T, Franco A, Cansado J, Madrid M. cAMP-Protein kinase A and stress-activated MAP kinase signaling mediate transcriptional control of autophagy in fission yeast during glucose limitation or starvation. Autophagy 2023; 19:1311-1331. [PMID: 36107819 PMCID: PMC10012941 DOI: 10.1080/15548627.2022.2125204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/02/2022] Open
Abstract
Macroautophagy/autophagy is an essential adaptive physiological response in eukaryotes induced during nutrient starvation, including glucose, the primary immediate carbon and energy source for most cells. Although the molecular mechanisms that induce autophagy during glucose starvation have been extensively explored in the budding yeast Saccharomyces cerevisiae, little is known about how this coping response is regulated in the evolutionary distant fission yeast Schizosaccharomyces pombe. Here, we show that S. pombe autophagy in response to glucose limitation relies on mitochondrial respiration and the electron transport chain (ETC), but, in contrast to S. cerevisiae, the AMP-activated protein kinase (AMPK) and DNA damage response pathway components do not modulate fission yeast autophagic flux under these conditions. In the presence of glucose, the cAMP-protein kinase A (PKA) signaling pathway constitutively represses S. pombe autophagy by downregulating the transcription factor Rst2, which promotes the expression of respiratory genes required for autophagy induction under limited glucose availability. Furthermore, the stress-activated protein kinase (SAPK) signaling pathway, and its central mitogen-activated protein kinase (MAPK) Sty1, positively modulate autophagy upon glucose limitation at the transcriptional level through its downstream effector Atf1 and by direct in vivo phosphorylation of Rst2 at S292. Thus, our data indicate that the signaling pathways that govern autophagy during glucose shortage or starvation have evolved differently in S. pombe and uncover the existence of sophisticated and multifaceted mechanisms that control this self-preservation and survival response.
Collapse
Affiliation(s)
- Armando Jesús Pérez-Díaz
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Beatriz Vázquez-Marín
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Jero Vicente-Soler
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Francisco Prieto-Ruiz
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Teresa Soto
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Alejandro Franco
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - José Cansado
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Marisa Madrid
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
3
|
Carrasco-Navarro U, Aguirre J. H 2O 2 Induces Major Phosphorylation Changes in Critical Regulators of Signal Transduction, Gene Expression, Metabolism and Developmental Networks in Aspergillus nidulans. J Fungi (Basel) 2021; 7:624. [PMID: 34436163 PMCID: PMC8399174 DOI: 10.3390/jof7080624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) regulate several aspects of cell physiology in filamentous fungi including the antioxidant response and development. However, little is known about the signaling pathways involved in these processes. Here, we report Aspergillus nidulans global phosphoproteome during mycelial growth and show that under these conditions, H2O2 induces major changes in protein phosphorylation. Among the 1964 phosphoproteins we identified, H2O2 induced the phosphorylation of 131 proteins at one or more sites as well as the dephosphorylation of a larger set of proteins. A detailed analysis of these phosphoproteins shows that H2O2 affected the phosphorylation of critical regulatory nodes of phosphoinositide, MAPK, and TOR signaling as well as the phosphorylation of multiple proteins involved in the regulation of gene expression, primary and secondary metabolism, and development. Our results provide a novel and extensive protein phosphorylation landscape in A. nidulans, indicating that H2O2 induces a shift in general metabolism from anabolic to catabolic, and the activation of multiple stress survival pathways. Our results expand the significance of H2O2 in eukaryotic cell signaling.
Collapse
Affiliation(s)
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, Ciudad de México 04510, Mexico;
| |
Collapse
|
4
|
Ohtsuka H, Shimasaki T, Aiba H. Genes affecting the extension of chronological lifespan in Schizosaccharomyces pombe (fission yeast). Mol Microbiol 2020; 115:623-642. [PMID: 33064911 PMCID: PMC8246873 DOI: 10.1111/mmi.14627] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/17/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
So far, more than 70 genes involved in the chronological lifespan (CLS) of Schizosaccharomyces pombe (fission yeast) have been reported. In this mini‐review, we arrange and summarize these genes based on the reported genetic interactions between them and the physical interactions between their products. We describe the signal transduction pathways that affect CLS in S. pombe: target of rapamycin complex 1, cAMP‐dependent protein kinase, Sty1, and Pmk1 pathways have important functions in the regulation of CLS extension. Furthermore, the Php transcription complex, Ecl1 family proteins, cyclin Clg1, and the cyclin‐dependent kinase Pef1 are important for the regulation of CLS extension in S. pombe. Most of the known genes involved in CLS extension are related to these pathways and genes. In this review, we focus on the individual genes regulating CLS extension in S. pombe and discuss the interactions among them.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
5
|
Zhao X, Yang X, Lu Z, Wang H, He Z, Zhou G, Luo Z, Zhang Y. MADS-box transcription factor Mcm1 controls cell cycle, fungal development, cell integrity and virulence in the filamentous insect pathogenic fungus Beauveria bassiana. Environ Microbiol 2019; 21:3392-3416. [PMID: 30972885 DOI: 10.1111/1462-2920.14629] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/09/2019] [Indexed: 12/15/2022]
Abstract
MADS-box transcription factor Mcm1 plays crucial roles in regulating mating processes and pathogenesis in some fungi. However, its roles are varied in fungal species, and its function remains unclear in entomopathogenic fungi. Here, Mcm1 orthologue, Bbmcm1, was characterized in a filamentous entomopathogenic fungus, Beauveria bassiana. Disruption of Bbmcm1 resulted in a distinct reduction in growth with abnormal conidiogenesis, and a significant decrease in conidial viability with abnormal germination. ΔBbmcm1 displayed impaired cell integrity, with distorted cell wall structure and altered cell wall component. Abnormal cell cycle was detected in ΔBbmcm1 with longer G2 /M phase but shorter G1 /G0 and S phases in unicellular blastospores, and sparser septa in multicellular hyphae, which might be responsible for defects in development and differentiation due to the regulation of cell cycle-involved genes, as well as the corresponding cellular events-associated genes. Dramatically decreased virulence was examined in ΔBbmcm1, with impaired ability to escape haemocyte encapsulation, which was consistent with markedly reduced cuticle-degrading enzyme production by repressing their coding genes, and downregulated fungal effector protein-coding genes, suggesting a novel role of Mcm1 in interaction with host insect. These data indicate that Mcm1 is a crucial regulator of development, cell integrity, cell cycle and virulence in insect fungal pathogens.
Collapse
Affiliation(s)
- Xin Zhao
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xingju Yang
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Zhuoyue Lu
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Huifang Wang
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Zhangjiang He
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Guangyan Zhou
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Zhibing Luo
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yongjun Zhang
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| |
Collapse
|
6
|
Fletcher J, Griffiths L, Caspari T. Nutrient Limitation Inactivates Mrc1-to-Cds1 Checkpoint Signalling in Schizosaccharomyces pombe. Cells 2018; 7:cells7020015. [PMID: 29473861 PMCID: PMC5850103 DOI: 10.3390/cells7020015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 01/27/2023] Open
Abstract
The S. pombe checkpoint kinase, Cds1, protects the integrity of stalled DNA replication forks after its phosphorylation at threonine-11 by Rad3 (ATR). Modified Cds1 associates through its N-terminal forkhead-associated domain (FHA)-domain with Mrc1 (Claspin) at stalled forks. We report here that nutrient starvation results in post-translational changes to Cds1 and the loss of Mrc1. A drop in glucose after a down-shift from 3% to 0.1–0.3%, or when cells enter the stationary phase, triggers a sharp decline in Mrc1 and the accumulation of insoluble Cds1. Before this transition, Cds1 is transiently activated and phosphorylated by Rad3 when glucose levels fall. Because this coincides with the phosphorylation of histone 2AX at S129 by Rad3, an event that occurs towards the end of every unperturbed S phase, we suggest that a glucose limitation promotes the exit from the S phase. Since nitrogen starvation also depletes Mrc1 while Cds1 is post-translationally modified, we suggest that nutrient limitation is the general signal that promotes exit from S phase before it inactivates the Mrc1–Cds1 signalling component. Why Cds1 accumulates in resting cells while its activator Mrc1 declines is, as yet, unclear but suggests a novel function of Cds1 in non-replicating cells.
Collapse
Affiliation(s)
- Jessica Fletcher
- School of Medical Sciences, Bangor University, Bangor LL57 2UW, UK.
- Medical School, Swansea University, Swansea SA2 8PP, UK.
| | - Liam Griffiths
- School of Medical Sciences, Bangor University, Bangor LL57 2UW, UK.
| | - Thomas Caspari
- School of Medical Sciences, Bangor University, Bangor LL57 2UW, UK.
- Postgraduate Doctoral Studies, Paracelsus Medical University, 5020 Salzburg, Austria.
| |
Collapse
|
7
|
Distinct and redundant roles of protein tyrosine phosphatases Ptp1 and Ptp2 in governing the differentiation and pathogenicity of Cryptococcus neoformans. EUKARYOTIC CELL 2014; 13:796-812. [PMID: 24728196 DOI: 10.1128/ec.00069-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein tyrosine phosphatases (PTPs) serve as key negative-feedback regulators of mitogen-activated protein kinase (MAPK) signaling cascades. However, their roles and regulatory mechanisms in human fungal pathogens remain elusive. In this study, we characterized the functions of two PTPs, Ptp1 and Ptp2, in Cryptococcus neoformans, which causes fatal meningoencephalitis. PTP1 and PTP2 were found to be stress-inducible genes, which were controlled by the MAPK Hog1 and the transcription factor Atf1. Ptp2 suppressed the hyperphosphorylation of Hog1 and was involved in mediating vegetative growth, sexual differentiation, stress responses, antifungal drug resistance, and virulence factor regulation through the negative-feedback loop of the HOG pathway. In contrast, Ptp1 was not essential for Hog1 regulation, despite its Hog1-dependent induction. However, in the absence of Ptp2, Ptp1 served as a complementary PTP to control some stress responses. In differentiation, Ptp1 acted as a negative regulator, but in a Hog1- and Cpk1-independent manner. Additionally, Ptp1 and Ptp2 localized to the cytosol but were enriched in the nucleus during the stress response, affecting the transient nuclear localization of Hog1. Finally, Ptp1 and Ptp2 played minor and major roles, respectively, in the virulence of C. neoformans. Taken together, our data suggested that PTPs could be exploited as novel antifungal targets.
Collapse
|
8
|
Sck1 negatively regulates Gpa2-mediated glucose signaling in Schizosaccharomyces pombe. EUKARYOTIC CELL 2013; 13:202-8. [PMID: 24297439 DOI: 10.1128/ec.00277-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Schizosaccharomyces pombe detects extracellular glucose via a G protein-mediated cyclic AMP (cAMP)-signaling pathway activating protein kinase A (PKA) and regulating transcription of genes involved in metabolism and sexual development. In this pathway, Gpa2 Gα binds to and activates adenylyl cyclase in response to glucose detection by the Git3 G protein-coupled receptor. Using a two-hybrid screen to identify extrinsic regulators of Gpa2, we isolated a clone that expresses codons 471 to 696 of the Sck1 kinase, which appears to display a higher affinity for Gpa2(K270E)-activated Gα relative to Gpa2(+) Gα. Deletion of sck1(+) or mutational inactivation of the Sck1 kinase produces phenotypes reflecting increased PKA activity in strains expressing Gpa2(+) or Gpa2(K270E), suggesting that Sck1 negatively regulates PKA activation through Gpa2. In contrast to the Gpa2(K270E) GDP-GTP exchange rate mutant, GTPase-defective Gpa2(R176H) weakly binds Sck1 in the two-hybrid screen and a deletion of sck1(+) in a Gpa2(R176H) strain confers phenotypes consistent with a slight reduction in PKA activity. Finally, deleting sck1(+) in a gpa2Δ strain results in phenotypes consistent with a second role for Sck1 acting in parallel with PKA. In addition to this parallel role with PKA, our data suggest that Sck1 negatively regulates Gpa2, possibly targeting the nucleotide-free form of the protein that may expose the one and only AKT/PKB consensus site in Gpa2 for Sck1 to bind. This dual role for Sck1 may allow S. pombe to produce distinct biological responses to glucose and nitrogen starvation signals that both activate the Wis1-Spc1/StyI stress-activated protein kinase (SAPK) pathway.
Collapse
|
9
|
Kowalczyk KM, Hartmuth S, Perera D, Stansfield P, Petersen J. Control of Sty1 MAPK activity through stabilisation of the Pyp2 MAPK phosphatase. J Cell Sci 2013; 126:3324-32. [PMID: 23690545 DOI: 10.1242/jcs.122531] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In all eukaryotes tight control of mitogen-activated protein kinase (MAPK) activity plays an important role in modulating intracellular signalling in response to changing environments. The fission yeast MAPK Sty1 (also known as Spc1 or Phh1) is highly activated in response to a variety of external stresses. To avoid segregation of damaged organelles or chromosomes, strong Sty1 activation transiently blocks mitosis and cell division until such stresses have been dealt with. MAPK phosphatases dephosphorylate Sty1 to reduce kinase activity. Therefore, tight control of MAPK phosphatases is central for stress adaptation and for cell division to resume. In contrast to Pyp1, the fission yeast Pyp2 MAPK phosphatase is under environmental control. Pyp2 has a unique sequence (the linker region) between the catalytic domain and the N-terminal MAPK-binding site. Here we show that the Pyp2 linker region is a destabilisation domain. Furthermore, the linker region is highly phosphorylated to increase Pyp2 protein stability and this phosphorylation is Sty1 dependent. Our data suggests that Sty1 activation promotes Pyp2 phosphorylation to increase the stability of the phosphatase. This MAPK-dependent Pyp2 stabilisation allows cells to attenuate MAPK signalling and resume cell division, once stresses have been dealt with.
Collapse
Affiliation(s)
- Katarzyna M Kowalczyk
- University of Manchester, Faculty of Life Sciences, C.4255 Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|
10
|
Demirbas D, Ceyhan O, Wyman AR, Ivey FD, Allain C, Wang L, Sharuk MN, Francis SH, Hoffman CS. Use of a Schizosaccharomyces pombe PKA-repressible reporter to study cGMP metabolising phosphodiesterases. Cell Signal 2010; 23:594-601. [PMID: 21118717 DOI: 10.1016/j.cellsig.2010.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/13/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
The Schizosaccharomyces pombe fbp1 gene is transcriptionally repressed by protein kinase A (PKA) that is activated by extracellular glucose via a cAMP-signaling pathway. We previously used an fbp1-ura4 reporter that places uracil biosynthesis under the control of the glucose-sensing pathway to identify mutations in genes of the cAMP pathway. More recently, this reporter has been used in high throughput screens for small molecule inhibitors of heterologously-expressed cyclic nucleotide phosphodiesterases (PDEs) that hydrolyse cAMP to 5' AMP. Here we show that strains lacking the adenylyl cyclase gene respond to either exogenous cAMP or cGMP to activate PKA, thus regulating fbp1-ura4 expression and other PKA-regulated processes such as conjugation and the nuclear export of an Rst2-GFP fusion protein. Expression of cGMP-specific PDEs or ones that hydrolyse both cAMP and cGMP increases the amount of exogenous cGMP required to activate PKA in order to repress fbp1-ura4 expression, creating conditions that allow detection of inhibitors of these PDEs. As proof of this concept, we screened a collection of compounds previously identified as inhibitors of cAMP-specific PDE4 or PDE7 enzymes for their ability to inhibit the mammalian cGMP-specific PDE5A enzyme. We identified compound BC76, which inhibits PDE5A in an in vitro enzyme assay with an IC(50) of 232nM. Further yeast-based assays show that BC76 inhibits PDE1, PDE4, PDE5, PDE8, PDE10 and PDE11, thus demonstrating the utility of this system for detecting and characterising inhibitors of either cAMP- or cGMP-metabolising PDEs.
Collapse
Affiliation(s)
- Didem Demirbas
- Biology Department, Boston College, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yalcin A, Clem BF, Simmons A, Lane A, Nelson K, Clem AL, Brock E, Siow D, Wattenberg B, Telang S, Chesney J. Nuclear targeting of 6-phosphofructo-2-kinase (PFKFB3) increases proliferation via cyclin-dependent kinases. J Biol Chem 2009; 284:24223-32. [PMID: 19473963 DOI: 10.1074/jbc.m109.016816] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The regulation of metabolism and growth must be tightly coupled to guarantee the efficient use of energy and anabolic substrates throughout the cell cycle. Fructose 2,6-bisphosphate (Fru-2,6-BP) is an allosteric activator of 6-phosphofructo-1-kinase (PFK-1), a rate-limiting enzyme and essential control point in glycolysis. The concentration of Fru-2,6-BP in mammalian cells is set by four 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB1-4), which interconvert fructose 6-phosphate and Fru-2,6-BP. The relative functions of the PFKFB3 and PFKFB4 enzymes are of particular interest because they are activated in human cancers and increased by mitogens and low oxygen. We examined the cellular localization of PFKFB3 and PFKFB4 and unexpectedly found that whereas PFKFB4 localized to the cytoplasm (i.e. the site of glycolysis), PFKFB3 localized to the nucleus. We then overexpressed PFKFB3 and observed no change in glucose metabolism but rather a marked increase in cell proliferation. These effects on proliferation were completely abrogated by mutating either the active site or nuclear localization residues of PFKFB3, demonstrating a requirement for nuclear delivery of Fru-2,6-BP. Using protein array analyses, we then found that ectopic expression of PFKFB3 increased the expression of several key cell cycle proteins, including cyclin-dependent kinase (Cdk)-1, Cdc25C, and cyclin D3 and decreased the expression of the cell cycle inhibitor p27, a universal inhibitor of Cdk-1 and the cell cycle. We also observed that the addition of Fru-2,6-BP to HeLa cell lysates increased the phosphorylation of the Cdk-specific Thr-187 site of p27. Taken together, these observations demonstrate an unexpected role for PFKFB3 in nuclear signaling and indicate that Fru-2,6-BP may couple the activation of glucose metabolism with cell proliferation.
Collapse
Affiliation(s)
- Abdullah Yalcin
- Division of Medical Oncology (Molecular Targets Group), James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The fission yeast Schizosaccharomyces pombe senses environmental glucose through a cAMP-signaling pathway. Elevated cAMP levels activate protein kinase A (PKA) to inhibit transcription of genes involved in sexual development and gluconeogenesis, including the fbp1(+) gene, which encodes fructose-1,6-bisphosphatase. Glucose-mediated activation of PKA requires the function of nine glucose-insensitive transcription (git) genes, encoding adenylate cyclase, the PKA catalytic subunit, and seven "upstream" proteins required for glucose-triggered adenylate cyclase activation. We describe the cloning and characterization of the git10(+) gene, which is identical to swo1(+) and encodes the S. pombe Hsp90 chaperone protein. Glucose repression of fbp1(+) transcription is impaired by both git10(-) and swo1(-) mutant alleles of the hsp90(+) gene, as well as by chemical inhibition of Hsp90 activity and temperature stress to wild-type cells. Unlike the swo1(-) mutant alleles, the git10-201 allele supports cell growth at 37 degrees , while severely reducing glucose repression of an fbp1-lacZ reporter, suggesting a separation-of-function defect. Sequence analyses of three swo1(-) alleles and the one git10(-) allele indicate that swo1(-) mutations alter core functional domains of Hsp90, while the git10(-) mutation affects the Hsp90 central domain involved in client protein binding. These results suggest that Hsp90 plays a specific role in the S. pombe glucose/cAMP pathway.
Collapse
|
13
|
Kao RS, Morreale E, Wang L, Ivey FD, Hoffman CS. Schizosaccharomyces pombe Git1 is a C2-domain protein required for glucose activation of adenylate cyclase. Genetics 2006; 173:49-61. [PMID: 16489217 PMCID: PMC1461440 DOI: 10.1534/genetics.106.055699] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Schizosaccharomyces pombe senses environmental glucose through a cAMP-signaling pathway, activating cAMP-dependent protein kinase A (PKA). This requires nine git (glucose insensitive transcription) genes that encode adenylate cyclase, the PKA catalytic subunit, and seven "upstream" proteins required for glucose-triggered adenylate cyclase activation, including three heterotrimeric G-protein subunits and its associated receptor. We describe here the cloning and characterization of the git1+ gene. Git1 is distantly related to a small group of uncharacterized fungal proteins, including a second S. pombe protein that is not functionally redundant with Git1, as well as to members of the UNC-13/Munc13 protein family. Mutations in git1+ demonstrate functional roles for the two most highly conserved regions of the protein, the C2 domain and the MHD2 Munc homology domain. Cells lacking Git1 are viable, but display phenotypes associated with cAMP-signaling defects, even in strains expressing a mutationally activated G alpha-subunit, which activates adenylate cyclase. These cells possess reduced basal cAMP levels and fail to mount a cAMP response to glucose. In addition, Git1 and adenylate cyclase physically interact and partially colocalize in the cell. Thus, Git1 is a critical component of the S. pombe glucose/cAMP pathway.
Collapse
Affiliation(s)
- Richard S Kao
- Biology Department, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | |
Collapse
|
14
|
Stiefel J, Wang L, Kelly DA, Janoo RTK, Seitz J, Whitehall SK, Hoffman CS. Suppressors of an adenylate cyclase deletion in the fission yeast Schizosaccharomyces pombe. EUKARYOTIC CELL 2005; 3:610-9. [PMID: 15189983 PMCID: PMC420129 DOI: 10.1128/ec.3.3.610-619.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Schizosaccharomyces pombe utilizes two opposing signaling pathways to sense and respond to its nutritional environment. Glucose detection triggers a cyclic AMP signal to activate protein kinase A (PKA), while glucose or nitrogen starvation activates the Spc1/Sty1 stress-activated protein kinase (SAPK). One process controlled by these pathways is fbp1+ transcription, which is glucose repressed. In this study, we isolated strains carrying mutations that reduce high-level fbp1+ transcription conferred by the loss of adenylate cyclase (git2delta), including both wis1- (SAPK kinase) and spc1- (SAPK) mutants. While characterizing the git2delta suppressor strains, we found that the git2delta parental strains are KCl sensitive, though not osmotically sensitive. Of 102 git2delta suppressor strains, 17 strains display KCl-resistant growth and comprise a single linkage group, carrying mutations in the cgs1+ PKA regulatory subunit gene. Surprisingly, some of these mutants are mostly wild type for mating and stationary-phase viability, unlike the previously characterized cgs1-1 mutant, while showing a significant defect in fbp1-lacZ expression. Thus, certain cgs1- mutant alleles dramatically affect some PKA-regulated processes while having little effect on others. We demonstrate that the PKA and SAPK pathways regulate both cgs1+ and pka1+ transcription, providing a mechanism for cross talk between these two antagonistically acting pathways and feedback regulation of the PKA pathway. Finally, strains defective in both the PKA and SAPK pathways display transcriptional regulation of cgs1+ and pka1+, suggesting the presence of a third glucose-responsive signaling pathway.
Collapse
Affiliation(s)
- Jeffrey Stiefel
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Wang L, Griffiths K, Zhang YH, Ivey FD, Hoffman CS. Schizosaccharomyces pombe adenylate cyclase suppressor mutations suggest a role for cAMP phosphodiesterase regulation in feedback control of glucose/cAMP signaling. Genetics 2005; 171:1523-33. [PMID: 16143612 PMCID: PMC1456081 DOI: 10.1534/genetics.105.047233] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations affecting the Schizosaccharomyces pombe cAMP phosphodiesterase (PDE) gene cgs2+ were identified in a screen for suppressors of mutant alleles of the adenylate cyclase gene (git2+/cyr1+), which encode catalytically active forms of the enzyme that cannot be stimulated by extracellular glucose signaling. These mutations suppress both the git2(-) mutant alleles used in the suppressor selection and mutations in git1+, git3+, git5+, git7+, git10+, and git11+, which are all required for adenylate cyclase activation. Notably, these cgs2 mutant alleles fail to suppress mutations in gpa2+, which encodes the Galpha subunit of a heterotrimeric G protein required for adenylate cyclase activation, although the previously identified cgs2-2 allele does suppress loss of gpa2+. Further analysis of the cgs2-s1 allele reveals a synthetic interaction with the gpa2(R176H)-activated allele, with respect to derepression of fbp1-lacZ transcription in glucose-starved cells. In addition, direct measurements of cAMP levels show that cgs2-s1 cells maintain normal basal cAMP levels, but are severely defective in feedback regulation upon glucose detection. These results suggest that PDE activity in S. pombe may be coordinately regulated with adenylate cyclase activity as part of the feedback regulation mechanism to limit the cAMP response to glucose detection.
Collapse
Affiliation(s)
- Lili Wang
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | | | | | | | | |
Collapse
|
16
|
Davidson MK, Shandilya HK, Hirota K, Ohta K, Wahls WP. Atf1-Pcr1-M26 complex links stress-activated MAPK and cAMP-dependent protein kinase pathways via chromatin remodeling of cgs2+. J Biol Chem 2004; 279:50857-63. [PMID: 15448137 PMCID: PMC3141327 DOI: 10.1074/jbc.m409079200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although co-ordinate interaction between different signal transduction pathways is essential for developmental decisions, interpathway connections are often obscured and difficult to identify due to cross-talk. Here signals from the fission yeast stress-activated MAPK Spc1 are shown to regulate Cgs2, a negative regulator of the cAMP-dependent protein kinase (protein kinase A) pathway. Pathway integration is achieved via Spc1-dependent binding of Atf1-Pcr1 heterodimer to an M26 DNA site in the cgs2+ promoter, which remodels chromatin to regulate expression of cgs2+ and targets downstream of protein kinase A. This direct interpathway connection co-ordinates signals of nitrogen and carbon source depletion to affect a G0 cell-cycle checkpoint and sexual differentiation. The Atf1-Pcr1-M26 complex-dependent chromatin remodeling provides a molecular mechanism whereby Atf1-Pcr1 heterodimer can function differentially as either a transcriptional activator, or as a transcriptional repressor, or as an inducer of meiotic recombination. We also show that the Atf1-Pcr1-M26 complex functions as both an inducer and repressor of chromatin remodeling, which provides a way for various chromatin remodeling-dependent effector functions to be regulated.
Collapse
Affiliation(s)
- Mari K. Davidson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Harish K. Shandilya
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Kouji Hirota
- Genetic Dynamics Research Unit Laboratory, The Institute of Physical and Chemical Research, Wako, Saitama 351-0198, Japan
| | - Kunihiro Ohta
- Genetic Dynamics Research Unit Laboratory, The Institute of Physical and Chemical Research, Wako, Saitama 351-0198, Japan
| | - Wayne P. Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
- To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W. Markham Street (slot 516), Little Rock, AR 72205-7199. Tel.: 501-686-5787; Fax: 501-526-7008;
| |
Collapse
|
17
|
Schadick K, Fourcade HM, Boumenot P, Seitz JJ, Morrell JL, Chang L, Gould KL, Partridge JF, Allshire RC, Kitagawa K, Hieter P, Hoffman CS. Schizosaccharomyces pombe Git7p, a member of the Saccharomyces cerevisiae Sgtlp family, is required for glucose and cyclic AMP signaling, cell wall integrity, and septation. EUKARYOTIC CELL 2002; 1:558-67. [PMID: 12456004 PMCID: PMC118005 DOI: 10.1128/ec.1.4.558-567.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Schizosaccharomyces pombe fbp1 gene, encoding fructose-1,6-bisphosphatase, is transcriptionally repressed by glucose. Mutations that confer constitutive fbp1 transcription identify git (glucose-insensitive transcription) genes that encode components of a cyclic AMP (cAMP) signaling pathway required for adenylate cyclase activation. Four of these genes encode the three subunits of a heterotrimeric G protein (gpa2, git5, and git11) and a G protein-coupled receptor (git3). Three additional genes, git1, git7, and git10, act in parallel to or downstream from the G protein genes. Here, we describe the cloning and characterization of the git7 gene. The Git7p protein is a member of the Saccharomyces cerevisiae Sgtlp protein family. In budding yeast, Sgtlp associates with Skplp and plays an essential role in kinetochore assembly, while in Arabidopsis, a pair of SGT1 proteins have been found to be involved in plant disease resistance through an interaction with RAR1. Like S. cerevisiae Sgtlp, Git7p is essential, but this requirement appears to be due to roles in septation and cell wall integrity, which are unrelated to cAMP signaling, as S. pombe cells lacking either adenylate cyclase or protein kinase A are viable. In addition, git7 mutants are sensitive to the microtubule-destabilizing drug benomyl, although they do not display a chromosome stability defect. Two alleles of git7 that are functional for cell growth and septation but defective for glucose-triggered cAMP signaling encode proteins that are altered in the highly conserved carboxy terminus. The S. cerevisiae and human SGT1 genes both suppress git7-93 but not git7-235 for glucose repression of fbp1 transcription and benomyl sensitivity. This allele-specific suppression indicates that the Git7p/Sgtlp proteins may act as multimers, such that Git7-93p but not Git7-235p can deliver the orthologous proteins to species-specific targets. Our studies suggest that members of the Git7p/Sgt1p protein family may play a conserved role in the regulation of adenylate cyclase activation in S. pombe, S. cerevisiae, and humans.
Collapse
Affiliation(s)
- Kevin Schadick
- Biology Department, Boston College, Chestnut Hill Massachusetts 02467, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zaragoza O, Gancedo JM. Elements from the cAMP signaling pathway are involved in the control of expression of the yeast gluconeogenic gene FBP1. FEBS Lett 2001; 506:262-6. [PMID: 11602258 DOI: 10.1016/s0014-5793(01)02922-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
cAMP represses the transcription of some Saccharomyces cerevisiae genes sensitive to catabolite repression. The effect of cAMP on the expression of FBP1, encoding fructose-1,6-bisphosphatase (FbPase), has been further investigated. In yeast cells shifted to a derepressing medium, synthesis of FbPase was delayed if the strong decrease in intracellular cAMP, which occurs during the shift, was prevented. A similar delay occurred in a RAS2val19 strain, while in a tpk1w strain, with weak protein kinase A activity, induction of FbPase occurred earlier than in a TPK1 strain. In the tpk1w strain, proteins which bind the UAS1 element of FBP1 were present during growth on glucose but they were only weakly operative. Expression of CAT8 and SIP4, encoding proteins which bind the UAS2 element, was blocked by a high concentration of cAMP, but catabolite repression of these genes was not much relieved in a tpk1w strain. We conclude that in S. cerevisiae, as reported for Schizosaccharomyces pombe, control of FBP1 requires both cAMP-dependent and independent pathways; however, the mechanisms operating in the two yeasts are different.
Collapse
Affiliation(s)
- O Zaragoza
- Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, Arturo Duperier 4, E-28029, Madrid, Spain
| | | |
Collapse
|
19
|
Jolivet P, Bergeron E, Benyair H, Meunier JC. Characterization of major protein phosphatases from selected species of Kluyveromyces. Comparison with protein phosphatases from Yarrowia lipolytica. Can J Microbiol 2001; 47:861-70. [PMID: 11683468 DOI: 10.1139/w01-081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Casein phosphatase activities have been identified in five yeast strains grown on Pi-deficient medium. Maximal endocellular activities appeared in the exponential phase. Exocellular phosphatases were significantly produced from Yarrowia lipolytica W-29 and Kluyveromyces marxianus, in the early stationary phase. Major phosphatases from K. marxianus were one heavy acid phosphatase composed of 64-67 kDa subunits, which could be secreted in the medium, and one type 2A protein phosphatase with an apparent molecular mass of 147 kDa and a 52 kDa catalytic subunit dissociated by 80% ethanol treatment. The characteristics of phosphatases purified from K. marxianus were compared with those previously purified from Y. lipolytica.
Collapse
Affiliation(s)
- P Jolivet
- Institut national de la recherche agronomique, Institut national agronomique Paris-Grignon, Centre de Biotechnologie Agro-Industrielle, Thiverval-Grignon, France.
| | | | | | | |
Collapse
|
20
|
Janoo RT, Neely LA, Braun BR, Whitehall SK, Hoffman CS. Transcriptional regulators of the Schizosaccharomyces pombe fbp1 gene include two redundant Tup1p-like corepressors and the CCAAT binding factor activation complex. Genetics 2001; 157:1205-15. [PMID: 11238405 PMCID: PMC1461578 DOI: 10.1093/genetics/157.3.1205] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Schizosaccharomyces pombe fbp1 gene, which encodes fructose-1,6-bis-phosphatase, is transcriptionally repressed by glucose through the activation of the cAMP-dependent protein kinase A (PKA) and transcriptionally activated by glucose starvation through the activation of a mitogen-activated protein kinase (MAPK). To identify transcriptional regulators acting downstream from or in parallel to PKA, we screened an adh-driven cDNA plasmid library for genes that increase fbp1 transcription in a strain with elevated PKA activity. Two such clones express amino-terminally truncated forms of the S. pombe tup12 protein that resembles the Saccharomyces cerevisiae Tup1p global corepressor. These clones appear to act as dominant negative alleles. Deletion of both tup12 and the closely related tup11 gene causes a 100-fold increase in fbp1-lacZ expression, indicating that tup11 and tup12 are redundant negative regulators of fbp1 transcription. In strains lacking tup11 and tup12, the atf1-pcr1 transcriptional activator continues to play a central role in fbp1-lacZ expression; however, spc1 MAPK phosphorylation of atf1 is no longer essential for its activation. We discuss possible models for the role of tup11- and tup12-mediated repression with respect to signaling from the MAPK and PKA pathways. A third clone identified in our screen expresses the php5 protein subunit of the CCAAT-binding factor (CBF). Deletion of php5 reduces fbp1 expression under both repressed and derepressed conditions. The CBF appears to act in parallel to atf1-pcr1, although it is unclear whether or not CBF activity is regulated by PKA.
Collapse
Affiliation(s)
- R T Janoo
- Biology Department, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | |
Collapse
|
21
|
Landry S, Hoffman CS. The git5 Gbeta and git11 Ggamma form an atypical Gbetagamma dimer acting in the fission yeast glucose/cAMP pathway. Genetics 2001; 157:1159-68. [PMID: 11238401 PMCID: PMC1461563 DOI: 10.1093/genetics/157.3.1159] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fission yeast adenylate cyclase, like mammalian adenylate cyclases, is regulated by a heterotrimeric G protein. The gpa2 Galpha and git5 Gbeta are both required for glucose-triggered cAMP signaling. The git5 Gbeta is a unique member of the Gbeta family in that it lacks an amino-terminal coiled-coil domain shown to be essential for mammalian Gbeta folding and interaction with Ggamma subunits. Using a git5 bait in a two-hybrid screen, we identified the git11 Ggamma gene. Co-immunoprecipitation studies confirm the composition of this Gbetagamma dimer. Cells deleted for git11 are defective in glucose repression of both fbp1 transcription and sexual development, resembling cells lacking either the gpa2 Galpha or the git5 Gbeta. Overexpression of the gpa2 Galpha partially suppresses loss of either the git5 Gbeta or the git11 Ggamma, while mutational activation of the Galpha fully suppresses loss of either Gbeta or Ggamma. Deletion of gpa2 (Galpha), git5 (Gbeta), or git11 (Ggamma) confer quantitatively distinct effects on fbp1 repression, indicating that the gpa2 Galpha subunit remains partially active in the absence of the Gbetagamma dimer and that the git5 Gbeta subunit remains partially active in the absence of the git11 Ggamma subunit. The addition of the CAAX box from the git11 Ggamma to the carboxy-terminus of the git5 Gbeta partially suppresses the loss of the Ggamma. Thus the Ggamma in this system is presumably required for localization of the Gbetagamma dimer but not for folding of the Gbeta subunit. In mammalian cells, the essential roles of the Gbeta amino-terminal coiled-coil domains and Ggamma partners in Gbeta folding may therefore reflect a mechanism used by cells that express multiple forms of both Gbeta and Ggamma subunits to regulate the composition and activity of its G proteins.
Collapse
Affiliation(s)
- S Landry
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | |
Collapse
|
22
|
Welton RM, Hoffman CS. Glucose monitoring in fission yeast via the Gpa2 galpha, the git5 Gbeta and the git3 putative glucose receptor. Genetics 2000; 156:513-21. [PMID: 11014802 PMCID: PMC1461262 DOI: 10.1093/genetics/156.2.513] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe responds to environmental glucose by activating adenylate cyclase. The resulting cAMP signal activates protein kinase A (PKA). PKA inhibits glucose starvation-induced processes, such as conjugation and meiosis, and the transcription of the fbp1 gene that encodes the gluconeogenic enzyme fructose-1,6-bisphosphatase. We previously identified a collection of git genes required for glucose repression of fbp1 transcription, including pka1/git6, encoding the PKA catalytic subunit, git2/cyr1, encoding adenylate cyclase, and six "upstream" genes required for adenylate cyclase activation. The git8 gene, identical to gpa2, encodes the alpha subunit of a heterotrimeric guanine-nucleotide binding protein (Galpha) while git5 encodes a Gbeta subunit. Multicopy suppression studies with gpa2(+) previously indicated that S. pombe adenylate cyclase activation may resemble that of the mammalian type II enzyme with sequential activation by Galpha followed by Gbetagamma. We show here that an activated allele of gpa2 (gpa2(R176H), carrying a mutation in the coding region for the GTPase domain) fully suppresses mutations in git3 and git5, leading to a refinement in our model. We describe the cloning of git3 and show that it encodes a putative seven-transmembrane G protein-coupled receptor. A git3 deletion confers the same phenotypes as deletions of other components of the PKA pathway, including a germination delay, constitutive fbp1 transcription, and starvation-independent conjugation. Since the git3 deletion is fully suppressed by the gpa2(R176H) allele with respect to fbp1 transcription, git3 appears to encode a G protein-coupled glucose receptor responsible for adenylate cyclase activation in S. pombe.
Collapse
Affiliation(s)
- R M Welton
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | |
Collapse
|
23
|
Neely LA, Hoffman CS. Protein kinase A and mitogen-activated protein kinase pathways antagonistically regulate fission yeast fbp1 transcription by employing different modes of action at two upstream activation sites. Mol Cell Biol 2000; 20:6426-34. [PMID: 10938120 PMCID: PMC86118 DOI: 10.1128/mcb.20.17.6426-6434.2000] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A significant challenge to our understanding of eukaryotic transcriptional regulation is to determine how multiple signal transduction pathways converge on a single promoter to regulate transcription in divergent fashions. To study this, we have investigated the transcriptional regulation of the Schizosaccharomyces pombe fbp1 gene that is repressed by a cyclic AMP (cAMP)-dependent protein kinase A (PKA) pathway and is activated by a stress-activated mitogen-activated protein kinase (MAPK) pathway. In this study, we identified and characterized two cis-acting elements in the fbp1 promoter required for activation of fbp1 transcription. Upstream activation site 1 (UAS1), located approximately 900 bp from the transcriptional start site, resembles a cAMP response element (CRE) that is the binding site for the atf1-pcr1 heterodimeric transcriptional activator. Binding of this activator to UAS1 is positively regulated by the MAPK pathway and negatively regulated by PKA. UAS2, located approximately 250 bp from the transcriptional start site, resembles a Saccharomyces cerevisiae stress response element. UAS2 is bound by transcriptional activators and repressors regulated by both the PKA and MAPK pathways, although atf1 itself is not present in these complexes. Transcriptional regulation of fbp1 promoter constructs containing only UAS1 or UAS2 confirms that the PKA and MAPK regulation is targeted to both sites. We conclude that the PKA and MAPK signal transduction pathways regulate fbp1 transcription at UAS1 and UAS2, but that the antagonistic interactions between these pathways involve different mechanisms at each site.
Collapse
Affiliation(s)
- L A Neely
- Department of Biology, Boston College, Massachusetts 02467, USA
| | | |
Collapse
|
24
|
Landry S, Pettit MT, Apolinario E, Hoffman CS. The fission yeast git5 gene encodes a Gbeta subunit required for glucose-triggered adenylate cyclase activation. Genetics 2000; 154:1463-71. [PMID: 10747045 PMCID: PMC1461029 DOI: 10.1093/genetics/154.4.1463] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fission yeast adenylate cyclase is activated by the gpa2 Galpha subunit of a heterotrimeric guanine-nucleotide binding protein (G protein). We show that the git5 gene, also required for this activation, encodes a Gbeta subunit. In contrast to another study, we show that git5 is not a negative regulator of the gpa1 Galpha involved in the pheromone response pathway. While 43% identical to mammalian Gbeta's, the git5 protein lacks the amino-terminal coiled-coil found in other Gbeta subunits, yet the gene possesses some of the coding capacity for this structure 5' to its ORF. Although both gpa2 (Galpha) and git5 (Gbeta) are required for adenylate cyclase activation, only gpa2 is needed to maintain basal cAMP levels. Strains bearing a git5 disruption are derepressed for fbp1 transcription and sexual development even while growing in a glucose-rich environment, although fbp1 derepression is half that observed in gpa2 deletion strains. Multicopy gpa2 partially suppresses the loss of git5, while the converse is not true. These data suggest that Gbeta is required for activation of adenylate cyclase either by promoting the activation of Galpha or by independently activating adenylate cyclase subsequent to Galpha stimulation as seen in type II mammalian adenylate cyclase activation.
Collapse
Affiliation(s)
- S Landry
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | |
Collapse
|
25
|
Bonnet C, Perret E, Dumont X, Picard A, Caput D, Lenaers G. Identification and transcription control of fission yeast genes repressed by an ammonium starvation growth arrest. Yeast 2000; 16:23-33. [PMID: 10620772 DOI: 10.1002/(sici)1097-0061(20000115)16:1<23::aid-yea503>3.0.co;2-a] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In fission yeast Schizosaccharomyces pombe, ammonium starvation induces a growth arrest, a cell cycle exit in G(1) and a further switch to meiosis. This process is regulated by the cAMP-dependent protein kinase and the Wis1-dependent MAP kinase cascade, and downstream transcription factors. In order to understand how cells adapt their genetic programme to the switch from mitotic cycling to starvation, a differential transcript analysis comparing mRNA from exponentially growing and ammonium-starved cells was performed. Genes repressed by this stimulus mainly concern cell growth, i.e. protein synthesis and global metabolism. Comparison of the expression of two of them, the ribosomal proteins Rps6 and TCTP, in many different growing conditions, evidenced a strong correlation, suggesting that their transcriptions are coordinately regulated. Nevertheless, by repeating the ammonium starvation on strains constitutively activated for the PKA pathway (Deltacgs1), or unable to activate the Wis1-dependent MAP kinase pathway (Deltawis1), or with both characteristics (Deltacgs1+Deltawis1), the transcriptional inhibition was found to be governed either by the PKA pathway, or by the Wis1 pathway, or by both. These results suggest that during the switch from exponential growth to ammonium starvation, cell homeostasis is maintained by downregulating the transcription of the most expressed genes by a PKA and a Wis1-dependent process. Accession Nos for the S30 and L14 ribosomal protein cDNA sequences are AJ2731 and AJ2732, respectively.
Collapse
Affiliation(s)
- C Bonnet
- Laboratoire Arago, UMR 7628 du CNRS, Université Pierre et Marie Curie, B.P. 44, F-66651 Banyuls sur Mer, France
| | | | | | | | | | | |
Collapse
|
26
|
Gustin MC, Albertyn J, Alexander M, Davenport K. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1998; 62:1264-300. [PMID: 9841672 PMCID: PMC98946 DOI: 10.1128/mmbr.62.4.1264-1300.1998] [Citation(s) in RCA: 703] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.
Collapse
Affiliation(s)
- M C Gustin
- Department of Biochemistry and Cell Biology Rice University, Houston, Texas 77251-1892, USA.
| | | | | | | |
Collapse
|
27
|
Jolivet P, Queiroz-Claret C, Bergeron E, Meunier JC. Characterization of an exocellular protein phosphatase with dual substrate specificity from the yeast Yarrowia lipolytica. Int J Biochem Cell Biol 1998; 30:783-96. [PMID: 9722983 DOI: 10.1016/s1357-2725(98)00036-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In previous work, the major endocellular protein phosphatase activity has been identified in the secretory yeast Yarrowia lipolytica as a PP2A. The aim of the present work was to seek the presence of one protein phosphatase excreted in the exocellular medium and to study its activity during yeast growth in media supplemented or not supplemented with inorganic phosphate. Protein phosphatase was purified and activity was assayed by following the dephosphorylation of three substrates, [32P]casein, phosphotyrosine and a synthetic tyrosine-phosphorylated peptide. Phosphatase activity recovered in the medium after 25 h culture was greatly enhanced by Pi-deficiency. After several purification steps, the enzyme preparation presents an apparent electrophoretic homogeneity on SDS-PAGE with associated phosphoseryl/threonyl and phosphotyrosyl activities. The kinetic properties exclude contamination by a copurified protein and it is concluded that the two activities are carried by the same single proteic species. It was characterized by gel filtration as a 33 kDa protein with one single subunit demonstrated by SDS-PAGE. An absolute requirement for reducing-agents is observed suggesting that the enzyme contains at least one essential reactive cysteinyl residue. Optimum pH value is 6.1, apparent K(m) for phosphotyrosine was calculated to be 760 microM and Hill coefficient 3.2 indicating a rather high cooperativity. These results showed that the involvement of alkaline and/or acid phosphatase was unlikely. In conclusion, a protein phosphatase distinct from endocellular PP2A is secreted by Yarrowia lipolytica and characterized as a phosphotyrosine protein phosphatase with associated phosphoseryl/threonyl activity.
Collapse
Affiliation(s)
- P Jolivet
- Laboratoire de Chimie Biologique, INRA, INA PG, Centre de Biotechnologies Agro-Industrielles, Thiverval-Grignon, France.
| | | | | | | |
Collapse
|
28
|
Abstract
Glucose and related sugars repress the transcription of genes encoding enzymes required for the utilization of alternative carbon sources; some of these genes are also repressed by other sugars such as galactose, and the process is known as catabolite repression. The different sugars produce signals which modify the conformation of certain proteins that, in turn, directly or through a regulatory cascade affect the expression of the genes subject to catabolite repression. These genes are not all controlled by a single set of regulatory proteins, but there are different circuits of repression for different groups of genes. However, the protein kinase Snf1/Cat1 is shared by the various circuits and is therefore a central element in the regulatory process. Snf1 is not operative in the presence of glucose, and preliminary evidence suggests that Snf1 is in a dephosphorylated state under these conditions. However, the enzymes that phosphorylate and dephosphorylate Snf1 have not been identified, and it is not known how the presence of glucose may affect their activity. What has been established is that Snf1 remains active in mutants lacking either the proteins Grr1/Cat80 or Hxk2 or the Glc7 complex, which functions as a protein phosphatase. One of the main roles of Snf1 is to relieve repression by the Mig1 complex, but it is also required for the operation of transcription factors such as Adr1 and possibly other factors that are still unidentified. Although our knowledge of catabolite repression is still very incomplete, it is possible in certain cases to propose a partial model of the way in which the different elements involved in catabolite repression may be integrated.
Collapse
Affiliation(s)
- J M Gancedo
- Instituto de Investigaciones Biomédicas, Unidad de Bioquímica y Genética de Levaduras, CSIC, 28029 Madrid, Spain.
| |
Collapse
|
29
|
Cottarel G. Mcs4, a two-component system response regulator homologue, regulates the Schizosaccharomyces pombe cell cycle control. Genetics 1997; 147:1043-51. [PMID: 9383051 PMCID: PMC1208232 DOI: 10.1093/genetics/147.3.1043] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Schizosaccharomyces pombe cdc2-3w wee1-50 double mutant displays a temperature-sensitive lethal phenotype termed mitotic catastrophe. Six mitotic catastrophe suppressor (mcs1-6) genes were identified in a genetic screen designed to identify regulators of cdc2. Mutations in mcs1-6 suppress the cdc2-3w wee1-50 temperature-sensitive growth defect. Here, the cloning of mcs4 is described. The mcs4 gene product displays significant sequence homology to members of the two-component system response regulator protein family. Strains carrying the mcs4 and cdc25 mutations display a synthetic osmotic lethal phenotype along with an inability to grow on minimal synthetic medium. These phenotypes are suppressed by a mutation in wee1. In addition, the wis1 gene, encoding a stress-activated mitogen-activated protein kinase kinase, was identified as a dosage suppressor in this screen. These findings link the two-component signal transduction system to stress response and cell cycle control in S. pombe.
Collapse
Affiliation(s)
- G Cottarel
- Mitotix, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
30
|
Stettler S, Warbrick E, Prochnik S, Mackie S, Fantes P. The wis1 signal transduction pathway is required for expression of cAMP-repressed genes in fission yeast. J Cell Sci 1996; 109 ( Pt 7):1927-35. [PMID: 8832415 DOI: 10.1242/jcs.109.7.1927] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The wis1 protein kinase of Schizosaccharomyces pombe is a member of the MAP kinase kinase family. Loss of wis1 function has previously been reported to lead to a delay in the G2-mitosis transition, loss of viability in stationary phase, and hypersensitivity to osmotic shock. It acts at least in part by activating the MAP kinase homologue sty1; loss-of-function sty1 mutants share many phenotypes with wis1 deletion mutants. We show here that, in addition, loss of wis1 function leads to defective conjugation, and to suppression of the hyperconjugation phenotype of the pat1-114 mutation. Consistent with this, the induction of the mei2 gene, which is normally induced by nitrogen starvation, is defective in wis1 mutants. In wild-type cells, nitrogen starvation leads to mei2 induction through a fall in intracellular cyclic AMP (cAMP) level and activity of the cAMP-dependent protein kinase. We show here that wis1 function is required for mei2 induction following nitrogen starvation. Expression of the fbp1 gene is negatively regulated by cAMP in response to glucose limitation: induction of fbp1 also requires wis1 and sty1 function. Loss of wis1 is epistatic over increased fbp1 expression brought about by loss of adenylate cyclase (git2/cyr1) or cAMP-dependent protein kinase (pka1) function. These observations can be explained by a model in which the pka1 pathway negatively regulates the wis1 pathway, or the two pathways might act independently on downstream targets. The latter explanation is supported, at least as regards regulation of cell division, by the observation that loss of function of the regulatory subunit of the cAMP-dependent protein kinase (cgs1) brings about a modest increase in cell length at division in both wis1+ and wis1 delta genetic backgrounds.
Collapse
Affiliation(s)
- S Stettler
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| | | | | | | | | |
Collapse
|