1
|
Feng X, Li C, Zhang H, Zhang P, Shahzad M, Du W, Zhao X. Heat-Stress Impacts on Developing Bovine Oocytes: Unraveling Epigenetic Changes, Oxidative Stress, and Developmental Resilience. Int J Mol Sci 2024; 25:4808. [PMID: 38732033 PMCID: PMC11084174 DOI: 10.3390/ijms25094808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Extreme temperature during summer may lead to heat stress in cattle and compromise their productivity. It also poses detrimental impacts on the developmental capacity of bovine budding oocytes, which halt their fertility. To mitigate the adverse effects of heat stress, it is necessary to investigate the mechanisms through which it affects the developmental capacity of oocytes. The primary goal of this study was to investigate the impact of heat stress on the epigenetic modifications in bovine oocytes and embryos, as well as on oocyte developmental capacity, reactive oxygen species, mitochondrial membrane potential, apoptosis, transzonal projections, and gene expression levels. Our results showed that heat stress significantly reduced the expression levels of the epigenetic modifications from histone H1, histone H2A, histone H2B, histone H4, DNA methylation, and DNA hydroxymethylation at all stages of the oocyte and embryo. Similarly, heat stress significantly reduced cleavage rate, blastocyst rate, oocyte mitochondrial-membrane potential level, adenosine-triphosphate (ATP) level, mitochondrial DNA copy number, and transzonal projection level. It was also found that heat stress affected mitochondrial distribution in oocytes and significantly increased reactive oxygen species, apoptosis levels and mitochondrial autophagy levels. Our findings suggest that heat stress significantly impacts the expression levels of genes related to oocyte developmental ability, the cytoskeleton, mitochondrial function, and epigenetic modification, lowering their competence during the summer season.
Collapse
Affiliation(s)
- Xiaoyi Feng
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
- College of Animal Science and Technology, Qingdao Agricultural University (QAU), Qingdao 266000, China
| | - Chongyang Li
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
| | - Hang Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
| | - Peipei Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
| | - Muhammad Shahzad
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
| | - Weihua Du
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
| | - Xueming Zhao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
| |
Collapse
|
2
|
Fu B, Ma H, Liu D. 2-Cell-like Cells: An Avenue for Improving SCNT Efficiency. Biomolecules 2022; 12:1611. [PMID: 36358959 PMCID: PMC9687756 DOI: 10.3390/biom12111611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 03/25/2024] Open
Abstract
After fertilization, the zygote genome undergoes dramatic structural reorganization to ensure the establishment of totipotency, and then the totipotent potential of the zygote or 2-cell-stage embryo progressively declines. However, cellular potency is not always a one-way street. Specifically, a small number of embryonic stem cells (ESCs) occasionally overcome epigenetic barriers and transiently convert to a totipotent status. Despite the significant potential of the somatic cell nuclear transfer (SCNT) technique, the establishment of totipotency is often deficient in cloned embryos. Because of this phenomenon, the question arises as to whether strategies attempting to induce 2-cell-like cells (2CLCs) can provide practical applications, such as reprogramming of somatic cell nuclei. Inspired by strategies that convert ESCs into 2CLCs, we hypothesized that there will be a similar pathway by which cloned embryos can establish totipotent status after SCNT. In this review, we provide a snapshot of the practical strategies utilized to induce 2CLCs during investigations of the development of cloned embryos. The 2CLCs have similar transcriptome and chromatin features to that of 2-cell-stage embryos, and we propose that 2CLCs, already a valuable in vitro model for dissecting totipotency, will provide new opportunities to improve SCNT efficiency.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Hong Ma
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| |
Collapse
|
3
|
Sheban D, Shani T, Maor R, Aguilera-Castrejon A, Mor N, Oldak B, Shmueli MD, Eisenberg-Lerner A, Bayerl J, Hebert J, Viukov S, Chen G, Kacen A, Krupalnik V, Chugaeva V, Tarazi S, Rodríguez-delaRosa A, Zerbib M, Ulman A, Masarwi S, Kupervaser M, Levin Y, Shema E, David Y, Novershtern N, Hanna JH, Merbl Y. SUMOylation of linker histone H1 drives chromatin condensation and restriction of embryonic cell fate identity. Mol Cell 2021; 82:106-122.e9. [PMID: 34875212 DOI: 10.1016/j.molcel.2021.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022]
Abstract
The fidelity of the early embryonic program is underlined by tight regulation of the chromatin. Yet, how the chromatin is organized to prohibit the reversal of the developmental program remains unclear. Specifically, the totipotency-to-pluripotency transition marks one of the most dramatic events to the chromatin, and yet, the nature of histone alterations underlying this process is incompletely characterized. Here, we show that linker histone H1 is post-translationally modulated by SUMO2/3, which facilitates its fixation onto ultra-condensed heterochromatin in embryonic stem cells (ESCs). Upon SUMOylation depletion, the chromatin becomes de-compacted and H1 is evicted, leading to totipotency reactivation. Furthermore, we show that H1 and SUMO2/3 jointly mediate the repression of totipotent elements. Lastly, we demonstrate that preventing SUMOylation on H1 abrogates its ability to repress the totipotency program in ESCs. Collectively, our findings unravel a critical role for SUMOylation of H1 in facilitating chromatin repression and desolation of the totipotent identity.
Collapse
Affiliation(s)
- Daoud Sheban
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tom Shani
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Roey Maor
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Nofar Mor
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Bernardo Oldak
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Merav D Shmueli
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Jonathan Bayerl
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jakob Hebert
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Sergey Viukov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Guoyun Chen
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Assaf Kacen
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Vladislav Krupalnik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Valeriya Chugaeva
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shadi Tarazi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Mirie Zerbib
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Adi Ulman
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Solaiman Masarwi
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Meital Kupervaser
- De Botton Institute for Protein Profiling, INCPM, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yishai Levin
- De Botton Institute for Protein Profiling, INCPM, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Efrat Shema
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Noa Novershtern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Yifat Merbl
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
4
|
Shmueli MD, Sheban D, Eisenberg-Lerner A, Merbl Y. Histone degradation by the proteasome regulates chromatin and cellular plasticity. FEBS J 2021; 289:3304-3316. [PMID: 33914417 PMCID: PMC9292675 DOI: 10.1111/febs.15903] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 11/27/2022]
Abstract
Histones constitute the primary protein building blocks of the chromatin and play key roles in the dynamic control of chromatin compaction and epigenetic regulation. Histones are regulated by intricate mechanisms that alter their functionality and stability, thereby expanding the regulation of chromatin‐transacting processes. As such, histone degradation is tightly regulated to provide spatiotemporal control of cellular histone abundance. While several mechanisms have been implicated in controlling histone stability, here, we discuss proteasome‐dependent degradation of histones and the protein modifications that are associated with it. We then highlight specific cellular and physiological states that are associated with altered histone degradation by cellular proteasomes.
Collapse
Affiliation(s)
- Merav D Shmueli
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Daoud Sheban
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Yifat Merbl
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Genet M, Torres-Padilla ME. The molecular and cellular features of 2-cell-like cells: a reference guide. Development 2020; 147:147/16/dev189688. [PMID: 32847823 DOI: 10.1242/dev.189688] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Currently, two main cell culture models predominate pluripotent stem cell research: embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Thanks to their ability to contribute to and form all tissues within the body, ESCs and iPSCs have proven invaluable in understanding pluripotent states, early embryonic development and cell differentiation, as well as in devising strategies for regenerative medicine. Comparatively little is known about totipotency - a cellular state with greater developmental potential. In mice, only the zygote and the blastomeres of the 2-cell-stage embryo are truly totipotent, as they alone can develop to form the embryo and all of its supportive extra-embryonic tissues. However, the discovery of a rare subpopulation of cells in murine ESC cultures, possessing features of 2-cell embryo blastomeres and expanded cell fate potential, has provided a biochemically tractable model to enable the in vitro study of totipotency. Here, we summarize current known features of these 2-cell-like cells (2CLCs) in an effort to provide a reference for the community, and to clarify what we know about their identity so far.
Collapse
Affiliation(s)
- Marion Genet
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377, Germany .,Faculty of Biology, Ludwig-Maximilians Universität, 82152 Martinsried, Germany
| |
Collapse
|
6
|
Geng T, Zhang D, Jiang W. Epigenetic Regulation of Transition Among Different Pluripotent States: Concise Review. Stem Cells 2019; 37:1372-1380. [PMID: 31339608 DOI: 10.1002/stem.3064] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/12/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022]
Abstract
The extraordinary progress of pluripotent stem cell research provides a revolutionary avenue to understand mammalian early embryonic development. Besides well-established conventional mouse and human embryonic stem cells, the discoveries of naive state human stem cell, two-cell-like cell, and the newly defined "extended pluripotent" stem cell and "expanded potential" stem cell with bidirectional chimeric ability have greatly broadened the horizons of more pluripotent states recaptured and maintained in dish, infinitely approaching the totipotent blastomere state. Although all these pluripotent cell types can self-renew and have the ability to differentiate into all the three germ layers, accumulating evidence suggests that these pluripotent states display distinct epigenetic characters. More strikingly, epigenetic reprogramming, including DNA methylation, histone modification, and chromatin remodeling, is required to reset the cell fate commitment, suggesting that epigenetic mechanisms may play an active and important role in the maintenance and transition among these pluripotent states. Here, we have reviewed studies on various pluripotent states, with a highlight on the epigenetic regulation during the interconversion. Stem Cells 2019;37:1372-1380.
Collapse
Affiliation(s)
- Ting Geng
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University; Medical Research Institute, Wuhan University; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Hubei Province, People's Republic of China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, Hubei Province, People's Republic of China
| | - Wei Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University; Medical Research Institute, Wuhan University; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Hubei Province, People's Republic of China
| |
Collapse
|
7
|
Miao YL, Gambini A, Zhang Y, Padilla-Banks E, Jefferson WN, Bernhardt ML, Huang W, Li L, Williams CJ. Mediator complex component MED13 regulates zygotic genome activation and is required for postimplantation development in the mouse. Biol Reprod 2019; 98:449-464. [PMID: 29325037 DOI: 10.1093/biolre/ioy004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022] Open
Abstract
Understanding factors that regulate zygotic genome activation (ZGA) is critical for determining how cells are reprogrammed to become totipotent or pluripotent. There is limited information regarding how this process occurs physiologically in early mammalian embryos. Here, we identify a mediator complex subunit, MED13, as translated during mouse oocyte maturation and transcribed early from the zygotic genome. Knockdown and conditional knockout approaches demonstrate that MED13 is essential for ZGA in the mouse, in part by regulating expression of the embryo-specific chromatin remodeling complex, esBAF. The role of MED13 in ZGA is mediated in part by interactions with E2F transcription factors. In addition to MED13, its paralog, MED13L, is required for successful preimplantation embryo development. MED13L partially compensates for loss of MED13 function in preimplantation knockout embryos, but postimplantation development is not rescued by MED13L. Our data demonstrate an essential role for MED13 in supporting chromatin reprogramming and directed transcription of essential genes during ZGA.
Collapse
Affiliation(s)
- Yi-Liang Miao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.,Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education College of Animal Science and Technology, Huazhong Agricultural University, China
| | - Andrés Gambini
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Yingpei Zhang
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Elizabeth Padilla-Banks
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Wendy N Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Miranda L Bernhardt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Weichun Huang
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Leping Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
8
|
Battle SL, Doni Jayavelu N, Azad RN, Hesson J, Ahmed FN, Overbey EG, Zoller JA, Mathieu J, Ruohola-Baker H, Ware CB, Hawkins RD. Enhancer Chromatin and 3D Genome Architecture Changes from Naive to Primed Human Embryonic Stem Cell States. Stem Cell Reports 2019; 12:1129-1144. [PMID: 31056477 PMCID: PMC6524944 DOI: 10.1016/j.stemcr.2019.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/01/2022] Open
Abstract
During mammalian embryogenesis, changes in morphology and gene expression are concurrent with epigenomic reprogramming. Using human embryonic stem cells representing the preimplantation blastocyst (naive) and postimplantation epiblast (primed), our data in 2iL/I/F naive cells demonstrate that a substantial portion of known human enhancers are premarked by H3K4me1, providing an enhanced open chromatin state in naive pluripotency. The 2iL/I/F enhancer repertoire occupies 9% of the genome, three times that of primed cells, and can exist in broad chromatin domains over 50 kb. Enhancer chromatin states are largely poised. Seventy-seven percent of 2iL/I/F enhancers are decommissioned in a stepwise manner as cells become primed. While primed topologically associating domains are largely unaltered upon differentiation, naive 2iL/I/F domains expand across primed boundaries, affecting three-dimensional genome architecture. Differential topologically associating domain edges coincide with 2iL/I/F H3K4me1 enrichment. Our results suggest that naive-derived 2iL/I/F cells have a unique chromatin landscape, which may reflect early embryogenesis.
Collapse
Affiliation(s)
- Stephanie L Battle
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Naresh Doni Jayavelu
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Robert N Azad
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Jennifer Hesson
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA; Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Faria N Ahmed
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Eliah G Overbey
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Joseph A Zoller
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA
| | - Hannele Ruohola-Baker
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA
| | - Carol B Ware
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA
| | - R David Hawkins
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
9
|
Chen F, Fu Q, Pu L, Zhang P, Huang Y, Hou Z, Xu Z, Chen D, Huang F, Deng T, Liang X, Lu Y, Zhang M. Integrated Analysis of Quantitative Proteome and Transcriptional Profiles Reveals the Dynamic Function of Maternally Expressed Proteins After Parthenogenetic Activation of Buffalo Oocyte. Mol Cell Proteomics 2018; 17:1875-1891. [PMID: 30002204 PMCID: PMC6166679 DOI: 10.1074/mcp.ra118.000556] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/16/2018] [Indexed: 01/09/2023] Open
Abstract
Maternal-effect genes are especially critical for early embryonic development after fertilization and until massive activation of the embryonic genome occurs. By applying a tandem mass tag (TMT)-labeled quantitative proteomics combined with RNA sequencing approach, the proteome of the buffalo was quantitatively analyzed during parthenogenesis of mature oocytes and the two-cell stage embryo. Of 1908 quantified proteins, 123 differed significantly. The transcriptome was analyzed eight stages (GV, MII, 2-cell, 4-cell, 8-cell, 16-cell, morula, blastocyst) of Buffalo using the RNA sequencing approach, and a total of 3567 unique genes were identified to be differently expressed between all consecutive stages of pre-implantation development. Validation of proteomics results (TUBB3, CTNNA1, CDH3, MAP2K1), which are involved in tight junction and gap junction, revealing that the maternal expression of the proteins possibly plays a role in the formation of cellular junctions firstly after parthenogenetic activation. Correlation and hierarchical analyses of transcriptional profiles and the expression of NPM2 and NLRP5 mRNA of buffalo in vitro developed oocytes and parthenogenetic embryos indicated that the "maternal-to-zygotic transition" (MZT) process might exist in the model of parthenogenesis, which is similar to a normally fertilized embryo, and may occur between the 8-cell to 16-cell stage. These data provide a rich resource for further studies on maternal proteins and genes and are conducive to improving nuclear transfer technology.
Collapse
Affiliation(s)
- Fumei Chen
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Qiang Fu
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Liping Pu
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Pengfei Zhang
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Yulin Huang
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhen Hou
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhuangzhuang Xu
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Dongrong Chen
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Fengling Huang
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Tingxian Deng
- §Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, Guangxi 530001, China
| | - Xianwei Liang
- §Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, Guangxi 530001, China
| | - Yangqing Lu
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China;
| | - Ming Zhang
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China;
| |
Collapse
|
10
|
Ancelin K, Syx L, Borensztein M, Ranisavljevic N, Vassilev I, Briseño-Roa L, Liu T, Metzger E, Servant N, Barillot E, Chen CJ, Schüle R, Heard E. Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation. eLife 2016; 5. [PMID: 26836306 PMCID: PMC4829419 DOI: 10.7554/elife.08851] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 01/25/2016] [Indexed: 12/29/2022] Open
Abstract
Upon fertilization, the highly specialised sperm and oocyte genomes are remodelled to confer totipotency. The mechanisms of the dramatic reprogramming events that occur have remained unknown, and presumed roles of histone modifying enzymes are just starting to be elucidated. Here, we explore the function of the oocyte-inherited pool of a histone H3K4 and K9 demethylase, LSD1/KDM1A during early mouse development. KDM1A deficiency results in developmental arrest by the two-cell stage, accompanied by dramatic and stepwise alterations in H3K9 and H3K4 methylation patterns. At the transcriptional level, the switch of the maternal-to-zygotic transition fails to be induced properly and LINE-1 retrotransposons are not properly silenced. We propose that KDM1A plays critical roles in establishing the correct epigenetic landscape of the zygote upon fertilization, in preserving genome integrity and in initiating new patterns of genome expression that drive early mouse development. DOI:http://dx.doi.org/10.7554/eLife.08851.001 During fertilization, an egg cell and a sperm cell combine to make a cell called a zygote that then divides many times to form an embryo. Many of the characteristics of the embryo are determined by the genes it inherits from its parents. However, not all of these genes should be “expressed” to produce their products all of the time. One way of controlling gene expression is to add a chemical group called a methyl tag to the DNA near the gene, or to one of the histone proteins that DNA wraps around. Soon after fertilization, a process called reprogramming occurs that begins with the rearrangement of most of the methyl tags a zygote inherited from the egg and sperm cells. This dynamic process is thought to help to activate a new pattern of gene expression. Reprogramming is assisted by “maternal factors” that are inherited from the egg cell. KDM1A is a histone demethylase enzyme that can remove specific methyl tags from certain histone proteins, but how this affects the zygote is not well understood. Now, Ancelin et al. (and independently Wasson et al.) have investigated the role that KDM1A plays in mouse development. Ancelin et al. genetically engineered mouse eggs to lack KDM1A and used them to create zygotes, which die before or shortly after they have divided for the first time. The zygotes display severe reprogramming faults (because methyl tags accumulate at particular histones) and improper gene expression patterns, preventing a correct maternal-to-zygotic transition. Further experiments then showed that KDM1A also regulates the expression level of specific mobile elements, which indicates its importance in maintaining the integrity of the genome. These findings provide important insights on the crucial role of KDM1A in establishing the proper expression patterns in zygotes that are required for early mouse development. These findings might help us to understand how KDM1A enzymes, and histone demethylases more generally, perform similar roles in human development and diseases such as cancer. DOI:http://dx.doi.org/10.7554/eLife.08851.002
Collapse
Affiliation(s)
- Katia Ancelin
- Institut Curie, Paris, France.,Genetics and Developmental Biology Unit, INSERM, Paris, France
| | - Laurène Syx
- Institut Curie, Paris, France.,Bioinformatics and Computational Systems Biology of Cancer, INSERM, Paris, France.,Mines ParisTech, Fontainebleau, France
| | - Maud Borensztein
- Institut Curie, Paris, France.,Genetics and Developmental Biology Unit, INSERM, Paris, France
| | - Noémie Ranisavljevic
- Institut Curie, Paris, France.,Genetics and Developmental Biology Unit, INSERM, Paris, France
| | - Ivaylo Vassilev
- Institut Curie, Paris, France.,Bioinformatics and Computational Systems Biology of Cancer, INSERM, Paris, France.,Mines ParisTech, Fontainebleau, France
| | | | - Tao Liu
- Annoroad Gene Technology Co., Ltd, Beijing, China
| | - Eric Metzger
- Urologische Klinik und Zentrale Klinische Forschung, Freiburg, Germany
| | - Nicolas Servant
- Institut Curie, Paris, France.,Bioinformatics and Computational Systems Biology of Cancer, INSERM, Paris, France.,Mines ParisTech, Fontainebleau, France
| | - Emmanuel Barillot
- Institut Curie, Paris, France.,Bioinformatics and Computational Systems Biology of Cancer, INSERM, Paris, France.,Mines ParisTech, Fontainebleau, France
| | | | - Roland Schüle
- Urologische Klinik und Zentrale Klinische Forschung, Freiburg, Germany
| | - Edith Heard
- Institut Curie, Paris, France.,Genetics and Developmental Biology Unit, INSERM, Paris, France
| |
Collapse
|
11
|
Abstract
The mechanism that duplicates the nuclear genome during the trillions of cell divisions required to develop from zygote to adult is the same throughout the eukarya, but the mechanisms that determine where, when and how much nuclear genome duplication occur regulate development and differ among the eukarya. They allow organisms to change the rate of cell proliferation during development, to activate zygotic gene expression independently of DNA replication, and to restrict nuclear DNA replication to once per cell division. They allow specialized cells to exit their mitotic cell cycle and differentiate into polyploid cells, and in some cases, to amplify the number of copies of specific genes. It is genome duplication that drives evolution, by virtue of the errors that inevitably occur when the same process is repeated trillions of times. It is, unfortunately, the same errors that produce age-related genetic disorders such as cancer.
Collapse
Affiliation(s)
- Melvin L DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
12
|
|
13
|
Pan C, Fan Y. Role of H1 linker histones in mammalian development and stem cell differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:496-509. [PMID: 26689747 DOI: 10.1016/j.bbagrm.2015.12.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022]
Abstract
H1 linker histones are key chromatin architectural proteins facilitating the formation of higher order chromatin structures. The H1 family constitutes the most heterogeneous group of histone proteins, with eleven non-allelic H1 variants in mammals. H1 variants differ in their biochemical properties and exhibit significant sequence divergence from one another, yet most of them are highly conserved during evolution from mouse to human. H1 variants are differentially regulated during development and their cellular compositions undergo dramatic changes in embryogenesis, gametogenesis, tissue maturation and cellular differentiation. As a group, H1 histones are essential for mouse development and proper stem cell differentiation. Here we summarize our current knowledge on the expression and functions of H1 variants in mammalian development and stem cell differentiation. Their diversity, sequence conservation, complex expression and distinct functions suggest that H1s mediate chromatin reprogramming and contribute to the large variations and complexity of chromatin structure and gene expression in the mammalian genome.
Collapse
Affiliation(s)
- Chenyi Pan
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA; The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yuhong Fan
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA; The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
14
|
Hogg K, Western PS. Refurbishing the germline epigenome: Out with the old, in with the new. Semin Cell Dev Biol 2015; 45:104-13. [PMID: 26597001 DOI: 10.1016/j.semcdb.2015.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 09/21/2015] [Indexed: 12/25/2022]
Abstract
Mammalian germline reprogramming involves the erasure and re-establishment of epigenetic information critical for germ cell function and inheritance in offspring. The bi-faceted nature of such reprogramming ensures germline repression of somatic programmes and the establishment of a carefully constructed epigenome essential for fertilisation and embryonic development in the next generation. While the majority of the germline epigenome is erased in preparation for embryonic development, certain genomic sequences remain resistant to this and may represent routes for transmission of epigenetic changes through the germline. Epigenetic reprogramming is regulated by highly conserved epigenetic modifiers, which function to establish, maintain and remove DNA methylation and chromatin modifications. In this review, we discuss recent findings from a considerable body of work illustrating the critical requirement of epigenetic modifiers that influence the epigenetic signature present in mature gametes, and have the potential to affect developmental outcomes in the offspring. We also briefly discuss the similarities of these mechanisms in the human germline and consider the potential for inheritance of epigenetically induced germline genetic errors that could impact on offspring phenotypes.
Collapse
Affiliation(s)
- Kirsten Hogg
- Centre for Genetic Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Melbourne, VIC 3168, Australia; Department of Molecular and Translational Science, Monash University, Melbourne, VIC 3168, Australia
| | - Patrick S Western
- Centre for Genetic Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Melbourne, VIC 3168, Australia; Department of Molecular and Translational Science, Monash University, Melbourne, VIC 3168, Australia.
| |
Collapse
|
15
|
Dan J, Yang J, Liu Y, Xiao A, Liu L. Roles for Histone Acetylation in Regulation of Telomere Elongation and Two-cell State in Mouse ES Cells. J Cell Physiol 2015; 230:2337-44. [PMID: 25752831 DOI: 10.1002/jcp.24980] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 03/02/2015] [Indexed: 01/18/2023]
Abstract
Mammalian telomeres and subtelomeres are marked by heterochromatic epigenetic modifications, including repressive DNA methylation and histone methylation (e.g., H3K9me3 and H4K20me3). Loss of these epigenetic marks results in increased rates of telomere recombination and elongation. Other than these repressive epigenetic marks, telomeric and subtelomeric H3 and H4 are underacetylated. Yet, whether histone acetylation also regulates telomere length has not been directly addressed. We thought to test the effects of histone acetylation levels on telomere length using histone deacetylase (HDAC) inhibitor (sodium butyrate, NaB) that mediates histone hyperacetylation and histone acetyltransferase (HAT) inhibitor (C646) that mediates histone hypoacetylation. We show that histone hyperacetylation dramatically elongates telomeres in wild-type ES cells, and only slightly elongates telomeres in Terc(-/-) ES cells, suggesting that Terc is involved in histone acetylation-induced telomere elongation. In contrast, histone hypoacetylation shortens telomeres in both wild-type and Terc(-/-) ES cells. Additionally, histone hyperacetylation activates 2-cell (2C) specific genes including Zscan4, which is involved in telomere recombination and elongation, whereas histone hypoacetylation represses Zscan4 and 2C genes. These data suggest that histone acetylation levels affect the heterochromatic state at telomeres and subtelomeres, and regulate gene expression at subtelomeres, linking histone acetylation to telomere length maintenance.
Collapse
Affiliation(s)
- Jiameng Dan
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiao Yang
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Yifei Liu
- Yale Stem Cell Center and Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Andrew Xiao
- Yale Stem Cell Center and Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
16
|
Ting AY, Xu J, Stouffer RL. Differential effects of estrogen and progesterone on development of primate secondary follicles in a steroid-depleted milieu in vitro. Hum Reprod 2015; 30:1907-17. [PMID: 26040480 PMCID: PMC4507328 DOI: 10.1093/humrep/dev119] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/19/2015] [Accepted: 05/01/2015] [Indexed: 12/22/2022] Open
Abstract
STUDY QUESTION What are the direct effects of progesterone (P4) and estradiol (E2) on the development and function of primate follicles in vitro from the pre-antral to early antral stage? SUMMARY ANSWER In a steroid-depleted milieu, E2 improved follicle survival, growth, antrum formation and oocyte health, whereas P4 exerted minimal beneficial effects on follicle survival and reduced oocyte health. WHAT IS KNOWN ALREADY Effects of P4 and E2 on follicle development have been studied primarily in large antral and pre-ovulatory follicles. Chronic P4 exposure suppresses antral follicle growth, but acute P4 exposure promotes oocyte maturation in pre-ovulatory follicles. Effects of E2 can be stimulatory or inhibitory depending upon species, dose and duration of exposure. STUDY DESIGN, SIZE, DURATION Non-human primate model, randomized, control versus treatment. Macaque (n = 6) secondary follicles (n = 24 per animal per treatment group) were cultured for 5 weeks. PARTICIPANTS/MATERIALS, SETTING, METHODS Adult rhesus macaque secondary follicles were encapsulated in 0.25% alginate and cultured individually in media containing follicle stimulating hormone plus (i) vehicle, (ii) a steroid-synthesis inhibitor, trilostane (TRL, 250 ng/ml), (iii) TRL + low E2 (100 pg/ml) or progestin (P, 10 ng/ml R5020) and (iv) TRL + high E2 (1 ng/ml E2) or P (100 ng/ml R5020). Follicles reaching the antral stage (≥750 µm) were treated with human chorionic gonadotrophin for 34 h. End-points included follicle survival, antrum formation, growth pattern, plus oocyte health and maturation status, as well as media concentrations of P4, E2 and anti-Müllerian hormone (AMH). MAIN RESULTS AND THE ROLE OF CHANCE In a steroid-depleted milieu, low dose, but not high dose, P improved (P < 0.05) follicle survival, but had no effect (P > 0.05) on antrum formation and AMH production. Low-dose P increased (P < 0.05) P4 production in fast-grow follicles, and both doses of P elevated (P < 0.05) E2 production in slow-grow follicles. Additionally, low-dose P increased (P < 0.05) the percentage of no-grow follicles, and high-dose P promoted oocyte degeneration. In contrast, E2, in a steroid-depleted milieu, improved (P < 0.05) follicle survival, growth, antrum formation and oocyte health. E2 had no effect on P4 or E2 production. Follicles exposed to E2 yielded mature oocytes capable of fertilization and early cleavage, at a rate similar to untreated control follicles. LIMITATIONS, REASONS FOR CAUTION This study is limited to in vitro effects of P and E2 during the interval from the secondary to small antral stage of macaque follicles. WIDER IMPLICATIONS OF THE FINDINGS This study provides novel information on the direct actions of P4 and E2 on primate pre-antral follicle development. Combined with our previous report on the actions of androgens, our findings suggest that androgens appear to be a survival factor but hinder antral follicle differentiation, E2 appears to be a survival and growth factor at the pre-antral and early antral stage, whereas P4 may not be essential during early folliculogenesis in primates. STUDY FUNDING/COMPETING INTERESTS NIH P50 HD071836 (NCTRI), NIH ORWH/NICHD 2K12HD043488 (BIRCWH), ONPRC 8P51OD011092. There are no conflicts of interest.
Collapse
Affiliation(s)
- A Y Ting
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - J Xu
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - R L Stouffer
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
17
|
Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 2012; 487:57-63. [PMID: 22722858 PMCID: PMC3395470 DOI: 10.1038/nature11244] [Citation(s) in RCA: 771] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 05/21/2012] [Indexed: 12/05/2022]
Abstract
Embryonic stem (ES) cells are derived from blastocyst stage embryos and are believed to be functionally equivalent to the inner cell mass, which lacks the ability to produce all extraembryonic tissues. Here we report the identification of a rare transient cell population within mouse ES and induced pluripotent stem (iPS) cell cultures that express high levels of transcripts found in two-cell (2C) embryos in which the blastomeres are totipotent. We genetically tagged these 2C-like ES cells and show that they lack the ICM pluripotency proteins Oct4, Sox2, and Nanog and have acquired the ability to contribute to both embryonic and extraembryonic tissues. We show that nearly all ES cells cycle in and out of this privileged state, which we find is partially controlled by histone modifying enzymes. Transcriptome sequencing and bioinformatic analyses revealed that a significant number of 2C-transcripts are initiated from long terminal repeats derived from murine endogenous retroviruses, suggesting this foreign sequence has helped to drive cell fate regulation in placental mammals.
Collapse
|
18
|
Localization and expression of peptidylarginine deiminase 4 (PAD4) in mammalian oocytes and preimplantation embryos. ZYGOTE 2011; 21:314-24. [PMID: 22126893 DOI: 10.1017/s0967199411000633] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Post-translational modifications generally involve the addition or removal of various functional groups to or from the protein residues. However, citrullination, which is catalyzed by the peptidylarginine deiminases (PADs), involves conversion of one kind of amino acid residue into another. One of five isoforms, PAD4 is a nuclear enzyme known to play a role in development, differentiation and apoptosis through gene regulation. To investigate the possible role of PAD4 in mammalian preimplantation embryonic development, we first studied localization and expression of PAD4 and citrullinated proteins in pig and mouse oocytes, and parthenogenetic or in vitro fertilized (IVF) embryos. Immunofluorescence study revealed that PAD4 primarily localizes in the cytoplasm in pig oocytes and parthenogenetic embryos. However, the nuclear translocation of PAD4 was observed in late germinal vesicle (GV) stage oocytes prior to GV breakdown and was localized around the metaphase (M)I and II spindle. Nucleus localized PAD4 was noticed partially again in blastocysts. In mouse IVF embryos, nuclear translocation started from the 2-cell stage and gradually increased up to blastocyst. Western blot studies confirmed that PAD4 was expressed in oocytes, and parthenogenetic embryos of pig. Citrullinated proteins were detected in granular form on the chromatin in GV, MI and MII oocytes and nuclei in all the stages of the embryos studied. It was found that the target of citrullination was histone protein (H3), not B23. Therefore the presence of PAD4 and citrullinated histone H3 in oocytes and embryos suggested a possible role for PAD4 in preimplantation embryonic development.
Collapse
|
19
|
Probst AV, Almouzni G. Heterochromatin establishment in the context of genome-wide epigenetic reprogramming. Trends Genet 2011; 27:177-85. [PMID: 21497937 DOI: 10.1016/j.tig.2011.02.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/09/2011] [Accepted: 02/11/2011] [Indexed: 01/08/2023]
Abstract
Heterochromatin at pericentric satellites, characterized by a specific chromatin signature and chromocenter organization, is of paramount importance for genome function. Re-establishment of this organization after fertilization takes place in the context of genome-wide epigenetic reprogramming. We review how the asymmetry in histone variants and post-translational modifications between paternal and maternal genomes and their respective pericentric heterochromatin domains evolve during early cleavage stages in mouse. We draw a parallel between these data and the burst of pericentric satellite transcription that occurs concomitantly with the dynamic reorganization of the pericentric domains into chromocenters in two-cell stage embryos. Based on this new angle, we propose that a crucial developmental transition at the two-cell stage allows chromocenter formation by involving non-coding satellite transcripts to trigger specific chromatin changes.
Collapse
Affiliation(s)
- Aline V Probst
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 6247 and Institut National de la Santé et de la Recherche Médicale Unité 931 - Genetics, Reproduction and Development, Clermont University, 24 avenue des Landais, 63177 Aubière CEDEX, France
| | | |
Collapse
|
20
|
Rivera RM. Epigenetic aspects of fertilization and preimplantation development in mammals: lessons from the mouse. Syst Biol Reprod Med 2011; 56:388-404. [PMID: 20849224 DOI: 10.3109/19396368.2010.482726] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
During gametogenesis, the parental genomes are separated and are epigenetically marked by modifications that will direct the expression profile of genes necessary for meiosis as well as for the formation of the oocyte and sperm cell. Immediately after sperm-egg fusion, the parental haploid genomes show great epigenetic asymmetry with differences in the levels of DNA methylation and histone tail modifications. The epigenetic program acquired during oogenesis and spermatogenesis must be reset for the zygote to successfully proceed through preimplantation development and this occurs as the two genomes approach each other in preparation for karyogamy. During preimplantation development, the embryo is vested with the responsibility of maintaining the primary imprints. In addition, female embryos must silence one of the X-chromosomes in order to transcribe equal levels of X-linked genes as their male counterparts. This review is intended as a survey of the epigenetic modifications and mechanisms present in zygotes and preimplantation mouse embryos, namely DNA methylation, histone modifications, dosage compensation, genomic imprinting, and regulation by non-coding RNAs.
Collapse
|
21
|
Probst AV, Okamoto I, Casanova M, El Marjou F, Le Baccon P, Almouzni G. A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev Cell 2010; 19:625-38. [PMID: 20951352 DOI: 10.1016/j.devcel.2010.09.002] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 07/01/2010] [Accepted: 08/18/2010] [Indexed: 01/21/2023]
Abstract
At the time of fertilization, the paternal genome lacks the typical configuration and marks characteristic of pericentric heterochromatin. It is thus essential to understand the dynamics of this region during early development, its importance during that time period and how a somatic configuration is attained. Here, we show that pericentric satellites undergo a transient peak in expression precisely at the time of chromocenter formation. This transcription is regulated in a strand-specific manner in time and space and is strongly biased by the parental asymmetry. The transcriptional upregulation follows a developmental clock, yet when replication is blocked chromocenter formation is impeded. Furthermore, interference with major satellite transcripts using locked nucleic acid (LNA)-DNA gapmers results in developmental arrest before completion of chromocenter formation. We conclude that the exquisite strand-specific expression dynamics at major satellites during the 2-cell stage, with both up and downregulation, are necessary events for proper chromocenter organization and developmental progression.
Collapse
Affiliation(s)
- Aline V Probst
- Laboratory of Nuclear Dynamics and Genome Plasticity, Unité Mixte de Recherche, 218 Centre National de la Recherche Scientifique/Institut Curie, 26, rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
22
|
Bui HT, Wakayama S, Mizutani E, Park KK, Kim JH, Van Thuan N, Wakayama T. Essential role of paternal chromatin in the regulation of transcriptional activity during mouse preimplantation development. Reproduction 2010; 141:67-77. [PMID: 20974742 DOI: 10.1530/rep-10-0109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several lines of evidence indicate that the formation of a transcriptionally repressive state during the two-cell stage in the preimplantation mouse embryo is superimposed on the activation of the embryonic genome. However, it is difficult to determine the profile of newly synthesized (nascent) RNA during this phase because large amounts of maternal RNA accumulate in maturing oocytes to support early development. Using 5-bromouridine-5'-triphosphate labeling of RNA, we have verified that nascent RNA synthesis was repressed between the two-cell and four-cell transition in normally fertilized but not in parthenogenetic embryos. Moreover, this repression was contributed by sperm (male) chromatin, which we confirmed by studying androgenetic embryos. The source of factors responsible for repressing nascent RNA production was investigated using different stages of sperm development. Fertilization with immature round spermatids resulted in a lower level of transcriptional activity than with ICSI at the two-cell stage, and this was consistent with further repression at the four-cell stage in the ICSI group. Finally, study on DNA replication and chromatin remodeling was performed using labeled histones H3 and H4 to differentiate between male and female pronuclei. The combination of male and female chromatin appeared to decrease nascent RNA production in the fertilized embryo. This study indicates that paternal chromatin is important in the regulation of transcriptional activity during mouse preimplantation development and that this capacity is acquired during spermiogenesis.
Collapse
Affiliation(s)
- Hong-Thuy Bui
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
23
|
Santenard A, Ziegler-Birling C, Koch M, Tora L, Bannister AJ, Torres-Padilla ME. Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat Cell Biol 2010; 12:853-62. [PMID: 20676102 PMCID: PMC3701880 DOI: 10.1038/ncb2089] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 07/01/2010] [Indexed: 01/03/2023]
Abstract
In mammals, oocyte fertilization by sperm initiates development. This is followed by epigenetic reprogramming of both parental genomes, which involves the de novo establishment of chromatin domains. In the mouse embryo, methylation of histone H3 establishes an epigenetic asymmetry and is predominant in the maternal pronucleus. However, the roles of differential incorporation of histone H3 variants in the parental chromatin, and of modified residues within specific histone variants, have not been addressed. Here we show that the histone variant H3.3, and in particular lysine 27, is required for the establishment of heterochromatin in the mouse embryo. H3.3 localizes to paternal pericentromeric chromatin during S phase at the time of transcription of pericentromeric repeats. Mutation of H3.3 K27, but not of H3.1 K27, results in aberrant accumulation of pericentromeric transcripts, HP1 mislocalization, dysfunctional chromosome segregation and developmental arrest. This phenotype is rescued by injection of double-stranded RNA (dsRNA) derived from pericentromeric transcripts, indicating a functional link between H3.3K27 and the silencing of such regions by means of an RNA-interference (RNAi) pathway. Our work demonstrates a role for a modifiable residue within a histone-variant-specific context during reprogramming and identifies a novel function for mammalian H3.3 in the initial formation of dsRNA-dependent heterochromatin.
Collapse
MESH Headings
- Amino Acid Substitution/genetics
- Animals
- Blastocyst/cytology
- Blastocyst/metabolism
- Chromatin/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosome Segregation/genetics
- DNA, Satellite/genetics
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Embryonic Development/genetics
- Epigenesis, Genetic/genetics
- Female
- Genetic Variation
- Heterochromatin/genetics
- Heterochromatin/metabolism
- Histones/genetics
- Histones/metabolism
- Lysine/genetics
- Male
- Methylation
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- RNA, Double-Stranded/administration & dosage
- RNA, Double-Stranded/genetics
- RNA, Messenger/administration & dosage
- RNA, Messenger/genetics
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Time Factors
- Zygote/cytology
- Zygote/metabolism
Collapse
Affiliation(s)
- Angèle Santenard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, U de S, F-67404 ILLKIRCH, CU de Strasbourg, France
| | - Céline Ziegler-Birling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, U de S, F-67404 ILLKIRCH, CU de Strasbourg, France
| | - Marc Koch
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, U de S, F-67404 ILLKIRCH, CU de Strasbourg, France
| | - Làszlò Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, U de S, F-67404 ILLKIRCH, CU de Strasbourg, France
| | - Andrew J. Bannister
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Maria-Elena Torres-Padilla
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, U de S, F-67404 ILLKIRCH, CU de Strasbourg, France
| |
Collapse
|
24
|
Kafer GR, Lehnert SA, Pantaleon M, Kaye PL, Moser RJ. Expression of genes coding for histone variants and histone-associated proteins in pluripotent stem cells and mouse preimplantation embryos. Gene Expr Patterns 2010; 10:299-305. [DOI: 10.1016/j.gep.2010.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/20/2010] [Accepted: 06/10/2010] [Indexed: 01/01/2023]
|
25
|
Tokoro M, Shin SW, Nishikawa S, Lee HH, Hatanaka Y, Amano T, Mitani T, Kato H, Anzai M, Kishigami S, Saeki K, Hosoi Y, Iritani A, Matsumoto K. Deposition of acetylated histones by RNAP II promoter clearance may occur at onset of zygotic gene activation in preimplantation mouse embryos. J Reprod Dev 2010; 56:607-15. [PMID: 20710121 DOI: 10.1262/jrd.10-088m] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the contribution of phosphorylated RNA polymerase II (RNAP II) and dynamic epigenetic changes to the onset of minor zygotic gene activation (ZGA). Using immunofluorescence staining, we observed that the nuclear localization of RNAP II was initiated by 6 hours post insemination (hpi), whereas RNAP II phosphorylated at serine residue 5 of the carboxyl-terminal domain (CTD) was localized by 9 hpi, and then RNAP II phosphorylated at serine residue 2 of the CTD was localized in the nucleus of embryos by 12 hpi. In a transient gene expression assay using a plasmid reporter gene (pβ-actin/luciferase+/SV40) injected during 6-9 hpi into the male pronucleus, the luciferase+ gene was actively transcribed and translated by 13 and 15 hpi, respectively, indicating that a transcriptionally silent state persisted for at least 4 hours after injection. We found that the methylation status in the chicken β-actin promoter region of the plasmid reporter gene may not be associated with the transcriptionally silent state before minor ZGA. Exposure to trichostatin A did not induce premature expression of the silent reporter gene injected into 1-cell embryos containing histone deacetylase activity and did not affect the amount of luciferase produced per embryo. Acetylated histone H3 lysine 9/14 and acetylated histone H4 lysine 12 and 16 were enriched preferentially in the injected reporter gene at least until 13 hpi, which coincided with the transcriptionally active state. Taken together, these results suggest that deposition of selectively acetylated histones onto the chromatin of 1-cell embryos functions together with transcriptional elongation by RNAP II and that this sequential chromatin remodeling is involved in the molecular mechanism associated with the onset of minor ZGA in the preimplantation mouse embryo.
Collapse
Affiliation(s)
- Mikiko Tokoro
- Division of Biological Science, Graduate School of Biology-Oriented Science and Technology, Kinki University, Wakayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Suo L, Meng QG, Pei Y, Yan CL, Fu XW, Bunch TD, Zhu SE. Changes in acetylation on lysine 12 of histone H4 (acH4K12) of murine oocytes during maternal aging may affect fertilization and subsequent embryo development. Fertil Steril 2009; 93:945-51. [PMID: 19285668 DOI: 10.1016/j.fertnstert.2008.12.128] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 12/17/2008] [Accepted: 12/24/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To compare acH4K12 levels in oocytes during mouse aging and then assess how such changes might affect the developmental potential of oocytes. DESIGN Experimental animal study. SETTING State key laboratory and university research laboratory. ANIMAL(S) Kunming white strain mice. INTERVENTION(S) Oocytes obtained from TSA treated group or aging mouse group were fertilized and the formation of pronuclei and subsequently developmental potential in vitro or in vivo were assessed. MAIN OUTCOME MEASURE(S) AcH4K12 levels in oocytes were assessed using fluorescence staining, and confocal microscopy and oocyte developmental potentials were determined by in vitro or in vivo methods. RESULT(S) The AcH4K12 levels in oocytes statistically significantly increased during mouse aging. When histone acetylation of oocytes of young mice was artificially increased by trichostatin A (TSA) treatment, the acH4K12 levels in male and female pronuclei in fertilized oocytes showed statistically significant changes. About 38.9% of TSA-treated oocytes failed to form pronuclei or formed morphologically abnormal pronuclei 6 hours after fertilization, which statistically significantly decreased the blastocyst rate of TSA-treated oocytes when compared with the control group (41.5% vs. 60.5%). A similar reduction in blastocyst development was also observed when oocytes collected in older mice were compared with younger mice (17.3% vs. 69.4%). CONCLUSION(S) The AcH4K12 levels in oocytes statistically significantly increased during the aging process in mice, and such changes may affect the acetylation patterns and morphology of pronuclei during fertilization and lead to a reduction in oocyte developmental potential.
Collapse
Affiliation(s)
- Lun Suo
- Laboratory of Animal Embryonic Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
28
|
Seneda MM, Godmann M, Murphy BD, Kimmins S, Bordignon V. Developmental regulation of histone H3 methylation at lysine 4 in the porcine ovary. Reproduction 2008; 135:829-38. [PMID: 18502896 DOI: 10.1530/rep-07-0448] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Follicular growth and oogenesis involve highly dynamic changes in morphogenesis, chromatin structure, and gene transcription. The tight coordination of these events leads to ovulation of a mature oocyte and formation of the luteal tissue necessary to regulate embryo implantation and development. This entire process is regulated by numerous endocrine and in situ mechanisms. The role of epigenetic mechanisms in folliculogenesis, such as the biochemical modification of the DNA packaging proteins, the histones, is not well understood. Our objective was to determine the cellular and follicular stage-specific patterns of histone H3 methylation at lysine 4 (K4) in porcine preovulatory follicles and during luteinization in pig ovaries. Ovary tissues were collected from slaughtered prepubertal and cyclic gilts at various stages of the estrous cycle, pregnancy, and from ovaries recovered from gonatropin-treated gilts at 0, 24, and 38 h post human chorionic gonadotropin (hCG) injection. Samples were fixed in 4% paraformaldehyde and processed for embedding in paraffin and sectioned using standard histological protocols. Immunofluorescent staining was performed on 3 microm thick sections. The immunostaining pattern of mono-, di-, and tri-methylated histone H3-K4 and lysine-specific demethylase 1 (LSD1, also known as KDM1 or AOF1) was assessed. Interestingly, H3-K4 mono-, di-, and tri-methylation in follicles of prepubertal gilts was specifically distributed and developmentally regulated. While granulosa cells of primary, secondary, and early antral follicles were negative for H3-K4 methylation those from large antral follicles showed a striking upregulation in the cells located in the proximity to the oocyte. Specifically, the cumulus oophorus displayed intense staining for H3-K4 methylation and signals were strongest in the granulosa cells in the inner two cell layers of the follicular wall. Although all oocytes from primary to large antral stage follicles were positive for H3-K4 mono-, di-, and tri-methylation, the patterns of distribution were altered through oocyte follicle development. H3-K4 methylation in granulosa cells was dramatically reduced as time to ovulation approached and was low to undetected at 38 h post hCG treatment. H3-K4 mono-, di-, and tri-methylation in large luteal cells increased as differentiation evolved but remained low in small luteal cells. Strikingly, LSD1 (KDM1) expression was found to be restricted to the corpus luteum. In summary, this study provides new information on histone H3-K4 methylation patterns in the oocyte and follicle during folliculogenesis, which suggests that these epigenetic markers serve an essential regulatory role during folliculogenesis.
Collapse
Affiliation(s)
- Marcelo M Seneda
- Departamento de Clínicas Veterinárias, Universidade Estadual de Londrina, Londrina, Paraná, 86051-990, Brasil
| | | | | | | | | |
Collapse
|
29
|
Magnani L, Cabot RA. Manipulation of SMARCA2 and SMARCA4 transcript levels in porcine embryos differentially alters development and expression of SMARCA1, SOX2, NANOG, and EIF1. Reproduction 2008; 137:23-33. [PMID: 18845624 DOI: 10.1530/rep-08-0335] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Epigenetic reprogramming plays a pivotal role during embryogenesis, including both covalent and non-covalent modifications to chromatin. In this study, we investigated the role of SNF2 chromatin remodeling ATPases (SMARCA2 (previously known as BRAHMA), SMARCA4 (previously known as BRG1), SMARCA5 (previously known as SNF2H), SMARCA1 (previously known as SNF2L), CHD3, and CHD5) during porcine preimplantation embryonic development. Transcript levels for these ATPases change dynamically throughout development. We also investigated the effect of altering transcript levels of SMARCA2 and SMARCA4 via mRNA injection. Overexpression of SMARCA2 and SMARCA4 severely impaired embryo development. Results from these experiments show that embryos injected with SMARCA2 mRNA arrest between the four-cell and blastocyst stages. However, embryos injected with either wild-type SMARCA4 or a dominant negative variant or SMARCA4 arrest before zygotic genome activation. No differences in transcript abundance of SOX2, POU5F1, NANOG, and EIF1 (previously known as eIF1A) were detected after injection with SMARCA2 or its dominant negative variant at 48 h post-injection. Conversely, embryos injected with wild-type SMARCA4 and its dominant negative variant possessed altered expression of these genes. Examination of SNF2-type ATPase transcript abundance across all treatment groups revealed that only SMARCA1 was altered following injection with wild-type SMARCA2 and wild-type and dominant negative SMARCA4. We conclude that the arrest in porcine embryo development observed after injection is specific to the ATPase injected. Our data strongly support the hypothesis that SMARCA2 and SMARCA4 play different but fundamental roles controlling gene expression during early mammalian embryogenesis.
Collapse
Affiliation(s)
- Luca Magnani
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
30
|
Li X, Kato Y, Tsuji Y, Tsunoda Y. The effects of trichostatin A on mRNA expression of chromatin structure-, DNA methylation-, and development-related genes in cloned mouse blastocysts. CLONING AND STEM CELLS 2008; 10:133-42. [PMID: 18241125 DOI: 10.1089/clo.2007.0066] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Trichostatin A (TSA) is the most potent histone deacetylase (HDAC) inhibitor known. We previously reported that treatment of mouse somatic cell nuclear-transferred (SCNT) oocytes with TSA significantly increased the blastocyst rate, blastocyst cell number, and full-term development. How TSA enhances the epigenetic remodeling ability of somatic nuclei and the expression of development-related genes, however, is not known. In the present study, we compared the expression patterns of nine genes involved in chromatin structure and DNA methylation, and seven development-related genes in blastocysts developed from SCNT oocytes treated with and without TSA, and in blastocysts developed in vivo and in vitro using real-time reverse transcription-polymerase chain reaction. In vivo-recovered blastocysts and blastocysts developed from TSA-treated SCNT oocytes exhibited similar expression patterns for Hdac1, 2, and 3, CBP, PCAF, and Dnmt3b genes compared with in vitro-developed blastocysts and blastocysts developed from SCNT oocytes without TSA treatment. There were significantly lower expression levels of Hdac1 and Hdac2 transcripts in TSA-treated and in vivo-recovered blastocysts than in TSA-untreated and in vitro-developed blastocysts. The finding that TSA treatment of SCNT oocytes significantly upregulated Sox2 and cMyc transcripts in blastocysts indicated that both transcripts are TSA-responsive genes. Thus, TSA treatment of mouse SCNT oocytes decreased the expression of chromatin structure- and DNA methylation-related genes, and increased the expression of Sox2 and cMyc genes in blastocysts. Such modifications might be a reason for the high developmental potential of mouse SCNT oocytes treated with TSA.
Collapse
Affiliation(s)
- Xiangping Li
- Laboratory of Animal Reproduction, College of Agriculture, Kinki University, Nara, Japan
| | | | | | | |
Collapse
|
31
|
Shi LH, Miao YL, Ouyang YC, Huang JC, Lei ZL, Yang JW, Han ZM, Song XF, Sun QY, Chen DY. Trichostatin A (TSA) improves the development of rabbit-rabbit intraspecies cloned embryos, but not rabbit-human interspecies cloned embryos. Dev Dyn 2008; 237:640-8. [PMID: 18265023 DOI: 10.1002/dvdy.21450] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The interspecies somatic cell nuclear transfer (iSCNT) technique for therapeutic cloning gives great promise for treatment of many human diseases. However, the incomplete nuclear reprogramming and the low blastocyst rate of iSCNT are still big problems. Herein, we observed the effect of TSA on the development of rabbit-rabbit intraspecies and rabbit-human interspecies cloned embryos. After treatment with TSA for 6 hr during activation, we found that the blastocyst rate of rabbit-rabbit cloned embryos was more than two times higher than that of untreated embryos; however, the blastocyst rate of TSA-treated rabbit-human interspecies cloned embryos decreased. We also found evident time-dependent histone deacetylation-reacetylation changes in rabbit-rabbit cloned embryos, but not in rabbit-human cloned embryos from fusion to 6 hr after activation. Our results suggest that TSA-treatment does not improve blastocyst development of rabbit-human iSCNT embryos and that abnormal histone deacetylation-reacetylation changes in iSCNT embryos may account for their poor blastocyst development.
Collapse
Affiliation(s)
- Li-Hong Shi
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mof (MYST1 or KAT8) is essential for progression of embryonic development past the blastocyst stage and required for normal chromatin architecture. Mol Cell Biol 2008; 28:5093-105. [PMID: 18541669 DOI: 10.1128/mcb.02202-07] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Acetylation of histone tails is a hallmark of transcriptionally active chromatin. Mof (males absent on the first; also called MYST1 or KAT8) is a member of the MYST family of histone acetyltransferases and was originally discovered as an essential component of the X chromosome dosage compensation system in Drosophila. In order to examine the role of Mof in mammals in vivo, we generated mice carrying a null mutation of the Mof gene. All Mof-deficient embryos fail to develop beyond the expanded blastocyst stage and die at implantation in vivo. Mof-deficient cell lines cannot be derived from Mof(-/-) embryos in vitro. Mof(-/-) embryos fail to acetylate histone 4 lysine 16 (H4K16) but have normal acetylation of other N-terminal histone lysine residues. Mof(-/-) cell nuclei exhibit abnormal chromatin aggregation preceding activation of caspase 3 and DNA fragmentation. We conclude that Mof is functionally nonredundant with the closely related MYST histone acetyltransferase Tip60. Our results show that Mof performs a different role in mammals from that in flies at the organism level, although the molecular function is conserved. We demonstrate that Mof is required specifically for the maintenance of H4K16 acetylation and normal chromatin architecture of all cells of early male and female embryos.
Collapse
|
33
|
Ma P, Schultz RM. Histone deacetylase 1 (HDAC1) regulates histone acetylation, development, and gene expression in preimplantation mouse embryos. Dev Biol 2008; 319:110-20. [PMID: 18501342 DOI: 10.1016/j.ydbio.2008.04.011] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 04/07/2008] [Accepted: 04/07/2008] [Indexed: 11/19/2022]
Abstract
Superimposed on activation of the embryonic genome in preimplantation mouse embryos is the formation of a chromatin-mediated transcriptionally repressive state that arises in the late two-cell embryo and becomes more pronounced with development. In this study, we investigated expression and function of Class I histone deacetylases (HDAC) HDAC1, HDAC2, and HDAC3 during preimplantation development. HDAC1 is likely a major deacetylase in preimplantation embryos and its expression inversely correlates with changes in the acetylation state of histone H4K5 during preimplantation development. RNAi-mediated reduction of HDAC1 leads to hyperacetylation of histone H4 and a developmental delay even though expression of HDAC2 and HDAC3 is significantly induced in Hdac1-suppressed embryos; increased expression of p21(Cip1/Waf) may contribute to the observed developmental delay. RNAi-mediated reduction of HDAC2 has no noticeable effect on preimplantation development, suggesting that individual HDACs have distinct functions during preimplantation development. Although RNAi-mediated targeting of Hdac3 mRNA was very efficient, maternal HDAC3 protein was stable during preimplantation development, thereby preventing an examination of its role. HDAC1 knockdown does not increase the rate of global transcription in late 2-cell embryos, but does result in elevated levels of expression of a subset of genes; this increased expression correlates with hyperacetylation of histone H4. Results of these experiments suggest that HDAC1 is involved in the development of a transcriptionally repressive state that initiates in 2-cell embryos.
Collapse
Affiliation(s)
- Pengpeng Ma
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | | |
Collapse
|
34
|
Lingenfelter BM, Dailey RA, Inskeep EK, Vernon MW, Poole DH, Rhinehart JD, Yao J. Changes of maternal transcripts in oocytes from persistent follicles in cattle. Mol Reprod Dev 2007; 74:265-72. [PMID: 16998844 DOI: 10.1002/mrd.20568] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A high incidence of early embryonic loss is associated with prolonged dominance of follicles. The objective of the present experiment was to determine if persistence of a follicle resulted in alterations in mRNA expression of important genes in the oocyte. Cows were assigned to four groups: growing follicles on day 6 (G0h) or day 8 (G48h) and persistent follicles on day 13 (P0h) or day 15 (P48h) of the estrous cycle (estrus = day 0). All cows were super-stimulated on day 1-4. Cows in G48h, P0h, and P48h groups received 25 mg prostaglandin (PG) F2alpha on day 6. Cows in P0h and P48h groups received progesterone from CIDR-B devices on day 5 through 13. Ovaries of cows in G0h, G48h, P0h, and P48h groups were removed on day 6, 8, 13, and 15, respectively. Oocytes were aspirated immediately after colpotomy and denuded of cumulus cells. Quantitative real-time PCR was used to measure the mRNA abundances of 10 selected genes important for early embryogenesis in oocytes obtained from growing and persistent follicles. Relative abundances of MSY2, PARN, and YY1 mRNA (P < 0.05) were significantly lower in oocytes from persistent than from growing follicles. Oocytes from persistent follicles, however, had greater abundances of PAP and eIF-4E transcripts (P < 0.05). The data indicate that persistence of a follicle leads to altered abundances of mRNA for genes important for regulation of transcription and protein translation in the oocyte, which could compromise development of early embryos in cows that ovulate a persistent follicle.
Collapse
Affiliation(s)
- Brandon M Lingenfelter
- Division of Animal and Veterinary Sciences, West Virginia University, Morgantown, West Virginia 26506-6108, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Bastos GM, Gonçalves PBD, Bordignon V. Immunolocalization of the High-Mobility Group N2 protein and acetylated histone H3K14 in early developing parthenogenetic bovine embryos derived from oocytes of high and low developmental competence. Mol Reprod Dev 2007; 75:282-90. [PMID: 17712799 DOI: 10.1002/mrd.20798] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This study investigated differences in the distribution of acetylated histone H3 at Lysine 14 (H3K14ac) and the High-Mobility Group N2 (HMGN2) protein in the chromatin of early- (before 24 hr) and late-cleaved (after 24 hr) bovine embryos derived from small- (1-2 mm) and large-follicles (4-8 mm). The presence of HMGN2 and H3K14ac has been associated with different nuclear functions including chromatin condensation, transcription, DNA replication and repair. In vitro matured oocytes were parthenogenetically activated (PA) and cultured in synthetic oviduct fluid medium. Early- and late-cleaved embryos were fixed at 36, 50, 60, 70 and 80 hr after PA to detect the presence of H3K14ac and HMGN2. The rates of nuclear maturation (81.1% vs. 58.7%), early cleavage (46.9% vs. 38.9%), and development to blastocyst stage (34.3% vs. 18.9%) were higher (P < 0.05) in oocytes derived from large- compared to small follicles. The proportion of positively stained nuclei at 50 and 60 hr after PA was higher for both H3K14ac (27.2% vs. 4.8% and 64.3% vs. 30%) and HMGN2 (47% vs. 21.3% and 60.6% vs. 46%) in early versus late cleaved embryos derived from small- versus large-follicles, respectively. However, the rate of positive nuclei in early-cleaved embryos from small-versus large-follicles was similar for HMGN2 (87% vs. 93%) but lower for H3K14ac (51% vs. 64.4%) at 80 hr after PA. These data suggest that less developmentally competent embryos derived from small follicles had an altered chromatin remodeling process at the early stages of development compared to those derived from large follicles that are more competent to support development to blastocyst stage.
Collapse
Affiliation(s)
- Guilherme M Bastos
- Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | | |
Collapse
|
36
|
Vassena R, Han Z, Gao S, Baldwin DA, Schultz RM, Latham KE. Tough beginnings: alterations in the transcriptome of cloned embryos during the first two cell cycles. Dev Biol 2006; 304:75-89. [PMID: 17234177 PMCID: PMC1868510 DOI: 10.1016/j.ydbio.2006.12.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 12/07/2006] [Accepted: 12/08/2006] [Indexed: 12/27/2022]
Abstract
Cloned embryos produced by somatic cell nuclear transfer (SCNT) display a plethora of phenotypic characteristics that make them different from fertilized embryos, indicating defects in the process of nuclear reprogramming by the recipient ooplasm. To elucidate the extent and timing of nuclear reprogramming, we used microarrays to analyze the transcriptome of mouse SCNT embryos during the first two cell cycles. We identified a large number of genes mis-expressed in SCNT embryos. We found that genes involved in transcription and regulation of transcription are prominent among affected genes, and thus may be particularly difficult to reprogram, and these likely cause a ripple effect that alters the transcriptome of many other functions, including oxidative phosphorylation, transport across membrane, and mRNA transport and processing. Interestingly, we also uncovered widespread alterations in the maternal (i.e., non-transcribed) mRNA population of SCNT embryos. We conclude that gene expression in early SCNT embryos is grossly abnormal, and that this is at least in part the result of incomplete reprogramming of transcription factor genes.
Collapse
Affiliation(s)
- Rita Vassena
- The Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine
| | - Zhiming Han
- The Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine
| | - Shaorong Gao
- The Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine
| | | | | | - Keith E Latham
- The Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine
- Department of Biochemistry, Temple University School of Medicine
- * Correspondence: 3307 N Broad Street, Philadelphia, PA 19140, Tel. 215-707-7577, Fax. 215-707-1454,
| |
Collapse
|
37
|
Abstract
The induction of mesoderm and/or endoderm from prospective ectoderm and dorsalization of the marginal zone mesoderm may be linked to inhibition of cell cycling and DNA synthesis in early amphibian embryos. In turn, this may lead to reduction of somatic H1 histone accumulation. A greater number of cell cycles and rounds of DNA synthesis characterizes the induction of neural tissue. This is correlated with an increase of somatic H1 histone accumulation. The number of rounds of DNA replication may regulate the level of H1 histone accumulation and this may have a role in germ layer determination.
Collapse
Affiliation(s)
- Reed A Flickinger
- Department of Biological Sciences, State University of New York, Buffalo, New York 14260, USA.
| |
Collapse
|
38
|
Rybouchkin A, Kato Y, Tsunoda Y. Role of Histone Acetylation in Reprogramming of Somatic Nuclei Following Nuclear Transfer1. Biol Reprod 2006; 74:1083-9. [PMID: 16481594 DOI: 10.1095/biolreprod.105.047456] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Before fertilization, chromatins of both mouse oocytes and spermatozoa contain very few acetylated histones. Soon after fertilization, chromatins of both gametes become highly acetylated. The same deacetylation-reacetylation changes occur with histones of somatic nuclei transferred into enucleated oocytes. The significance of these events in somatic chromatin reprogramming to the totipotent state is not known. To investigate their importance in reprogramming, we injected cumulus cell nuclei into enucleated mouse oocytes and estimated the histone deacetylation dynamics with immunocytochemistry. Other reconstructed oocytes were cultured before and/or after activation in the presence of the highly potent histone deacetylase inhibitor trychostatin A (TSA) for up to 9 h postactivation. The potential of TSA-treated and untreated oocytes to develop to the blastocyst stage and to full term was compared. Global deacetylation of histones in the cumulus nuclei occurred between 1 and 3 h after injection. TSA inhibition of histone deacetylation did not affect the blastocyst rate (37% with and 34% without TSA treatment), whereas extension of the TSA treatment beyond the activation point significantly increased the blastocyst rate (up to 81% versus 40% without TSA treatment) and quality (on average, 59 versus 45 cells in day 4 blastocysts with and without TSA treatment, respectively). TSA treatment also slightly increased full-term development (from 0.8% to 2.8%). Thus, deacetylation of somatic histones is not important for reprogramming, and hyperacetylation might actually improve reprogramming.
Collapse
Affiliation(s)
- Andrei Rybouchkin
- Laboratory of Animal Reproduction, College of Agriculture, Kinki University, Nara 631-8505, Japan
| | | | | |
Collapse
|
39
|
Thundathil J, Filion F, Smith LC. Molecular control of mitochondrial function in preimplantation mouse embryos. Mol Reprod Dev 2006; 71:405-13. [PMID: 15895466 DOI: 10.1002/mrd.20260] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mitochondria play a key role in a number of physiological events during all stages of life, including the very first stages following fertilization. It is, therefore, important to understand the mechanisms controlling mitochondrial activity during early embryogenesis to determine their role in development outcome. The objective of this study was to investigate the molecular control of mitochondrial transcription and mitochondrial DNA (mtDNA) replication in mouse preimplantation embryos. We estimated the mtDNA copy number and characterized the expression patterns of two mitochondrial genes and several nuclear genes that encode mitochondrial transcription and replication factors throughout preimplantation development. Mitochondrial gene transcripts were present in larger quantities in morula and blastocyst stage embryos relative to other stages. A significant increase in the amount of mRNA for nuclear genes encoding mtDNA transcription factors was observed in eight-cell stage embryos. Although a similar increase in the mRNA levels of nuclear genes encoding mtDNA replication factors was observed in morula and blastocyst stage embryos, the number of mtDNA molecules remained stable during preimplantation stages, suggesting that nuclear-encoded mitochondrial transcription factors are involved in the regulation of mtDNA transcription during early development. Although transcripts of replication factors are abundant at the morula and blastocyst stage, mtDNA replication did not occur until the blastocyst stage, suggesting that the inhibition of mtDNA replication is controlled at the post-transcriptional level during early embryogenesis.
Collapse
Affiliation(s)
- Jacob Thundathil
- Centre de recherche en reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, Québec, Canada
| | | | | |
Collapse
|
40
|
De La Fuente R. Chromatin modifications in the germinal vesicle (GV) of mammalian oocytes. Dev Biol 2006; 292:1-12. [PMID: 16466710 DOI: 10.1016/j.ydbio.2006.01.008] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 12/30/2005] [Accepted: 01/06/2006] [Indexed: 11/16/2022]
Abstract
The nucleus of eukaryotic cells is organized into functionally specialized compartments that are essential for the control of gene expression, chromosome architecture and cellular differentiation. The mouse oocyte nucleus or germinal vesicle (GV) exhibits a unique chromatin configuration that is subject to dynamic modifications during oogenesis. This process of 'epigenetic maturation' is critical to confer the female gamete with meiotic as well as developmental competence. In spite of its biological significance, little is known concerning the cellular and molecular mechanisms regulating large-scale chromatin structure in mammalian oocytes. Here, recent findings that provide mechanistic insight into the complex relationship between large-scale chromatin structure and global transcriptional repression in pre-ovulatory oocytes will be discussed. Post-translational modifications of histone proteins such as acetylation and methylation are crucial for heterochromatin formation and thus play a key role in remodeling the oocyte genome. This strategy involves multiple and hierarchical chromatin modifications that regulate nuclear dynamics in response to a developmentally programmed signal(s), presumably of paracrine origin, before the resumption of meiosis. Models for the experimental manipulation of large-scale chromatin structure in vivo and in vitro will be instrumental to determine the key cellular pathways and oocyte-derived factors involved in genome-wide chromatin modifications. Importantly, analysis of the functional differentiation of chromatin structure in the oocyte genome with high resolution and in real time will have wide-ranging implications to understand the role of nuclear organization in meiosis, the events of nuclear reprogramming and the spatio-temporal regulation of gene expression during development and differentiation.
Collapse
Affiliation(s)
- Rabindranath De La Fuente
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, PA 19348, USA.
| |
Collapse
|
41
|
Allard P, Yang Q, Marzluff WF, Clarke HJ. The stem-loop binding protein regulates translation of histone mRNA during mammalian oogenesis. Dev Biol 2005; 286:195-206. [PMID: 16125165 PMCID: PMC5123871 DOI: 10.1016/j.ydbio.2005.07.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 06/22/2005] [Accepted: 07/19/2005] [Indexed: 01/01/2023]
Abstract
Although messenger RNAs encoding the histone proteins are among the most abundant in mammalian oocytes, the mechanism regulating their translation has not been identified. The stem-loop binding protein (SLBP) binds to a highly conserved sequence in the 3'-untranslated region (utr) of the non-polyadenylated histone mRNAs in somatic cells and mediates their stabilization and translation. We previously showed that SLBP, which is expressed only during S-phase of proliferating cells, is expressed in growing oocytes at G2 of the cell cycle and accumulates substantially during meiotic maturation. We report here that elevating the amount of SLBP in immature (G2) oocytes is sufficient to increase translation of a reporter mRNA bearing the histone 3'-utr and endogenous histone synthesis and that this effect is not mediated through increased stability of the encoding mRNAs. We further report that translation of the reporter mRNA increases dramatically during meiotic maturation coincident with the accumulation of SLBP. Conversely, when SLBP accumulation during maturation is prevented using RNA interference, both translation of the reporter mRNA and synthesis of endogenous histones are significantly reduced. This effect is not mediated by a loss of the encoding mRNAs. Moreover, following fertilization, SLBP-depleted oocytes also show a significant decrease in pronuclear size and in the amount of acetylated histone detectable on the chromatin. These results demonstrate that histone synthesis in immature and maturing oocytes is governed by a translational control mechanism that is directly regulated by changes in the amount of SLBP.
Collapse
Affiliation(s)
- Patrick Allard
- Department of Biology, McGill University, Montreal, QC, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
| | - Qin Yang
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
| | - William F. Marzluff
- Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Hugh J. Clarke
- Department of Biology, McGill University, Montreal, QC, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
- Corresponding author. Room F3.50, Royal Victoria Hospital, 687 Pine Ave. W., Montreal, QC, Canada H3A 1A1. Fax: +1 514 843 1662. (H.J. Clarke)
| |
Collapse
|
42
|
Falender AE, Shimada M, Lo YK, Richards JS. TAF4b, a TBP associated factor, is required for oocyte development and function. Dev Biol 2005; 288:405-19. [PMID: 16289522 DOI: 10.1016/j.ydbio.2005.09.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 09/09/2005] [Accepted: 09/21/2005] [Indexed: 11/28/2022]
Abstract
Development of a fertilizable oocyte is a complex process that relies on the precise temporal and spatial expression of specific genes in germ cells and in surrounding somatic cells. Since female mice null for Taf4b, a TBP associated factor, are sterile, we sought to determine when during follicular development this phenotype was first observed. At postnatal day 3, ovaries of Taf4b null females contained fewer (P < 0.01) oocytes than ovaries of wild type and heterozygous Taf4b mice. However, expression of only one somatic cell marker Foxl2 was reduced in ovaries at day 15. Despite the reduced number of follicles, many proceed to the antral stage, multiple genes associated with granulosa cell differentiation and oocyte maturation were expressed in a normal pattern, and immature Taf4b null females could be hormonally primed to ovulate and mate. However, the ovulated cumulus oocyte complexes from the Taf4b null mice had fewer (P < 0.01) cumulus cells, and the oocytes were functionally abnormal. GVBD and polar body extrusion were reduced significantly (P < 0.01). The few oocytes that were fertilized failed to progress beyond the two-cell stage of development. Thus, infertility in Taf4b null female mice is associated with defects in early follicle formation, oocyte maturation, and zygotic cleavage following ovulation and fertilization.
Collapse
Affiliation(s)
- Allison E Falender
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
43
|
De La Fuente R, Viveiros MM, Burns KH, Adashi EY, Matzuk MM, Eppig JJ. Major chromatin remodeling in the germinal vesicle (GV) of mammalian oocytes is dispensable for global transcriptional silencing but required for centromeric heterochromatin function. Dev Biol 2005; 275:447-58. [PMID: 15501230 DOI: 10.1016/j.ydbio.2004.08.028] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Revised: 08/02/2004] [Accepted: 08/06/2004] [Indexed: 10/26/2022]
Abstract
Global silencing of transcriptional activity in the oocyte genome occurs just before the resumption of meiosis and is a crucial developmental transition at the culmination of oogenesis. Transcriptionally quiescent oocytes rely on stored maternal transcripts to sustain the completion of meiosis, fertilization, and early embryonic cleavage stages. Thus, the timing of silencing is key for successful embryo development. Yet, the cellular and molecular pathways coordinating dynamic changes in large-scale chromatin structure with the onset of transcriptional repression are poorly understood. Here, oocytes obtained from nucleoplasmin 2 knockout (Npm2-/-) mice were used to investigate the relationship between transcriptional repression and chromatin remodeling in the germinal vesicle (GV) of mammalian oocytes. Although temporally linked, global silencing of transcription and chromatin remodeling in the oocyte genome can be experimentally dissociated and therefore must be regulated through distinct pathways. Detection of centromeric heterochromatin DNA sequences with a mouse pan-centromeric chromosome paint revealed that most centromeres are found in close apposition with the nucleolus in transcriptionally quiescent oocytes and therefore constitute an important component of the perinucleolar heterochromatin rim or karyosphere. Pharmacological inhibition of histone deacetylases (HDACs) with trichostatin A (TSA) revealed that HDACs are essential for large-scale chromatin remodeling in the GV. Importantly, the specialized nuclear architecture acquired upon transcriptional repression is essential for meiotic progression as interference with global deacetylation and partial disruption of the karyosphere resulted in a dramatic increase in the proportion of oocytes exhibiting abnormal meiotic chromosome and spindle configuration. These results indicate that the unique chromatin remodeling mechanism in oocytes may be specifically related to meiotic cell division in female mammals.
Collapse
|
44
|
Mano N, Kasuga K, Kobayashi N, Goto J. A Nonenzymatic Modification of the Amino-terminal Domain of Histone H3 by Bile Acid Acyl Adenylate. J Biol Chem 2004; 279:55034-41. [PMID: 15465822 DOI: 10.1074/jbc.m409205200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although it has been proposed that the secondary bile acids, deoxycholic acid and lithocholic acid, increase the number of aberrant crypt foci in the colon and may act as colon tumor promoters, there is little evidence detailing their mechanism of action. Histones play an important role in controlling gene expression, and the posttranslational modification of histones plays a role in regulation of intracellular signal transduction. In particular, the amino-terminal tail domain of histone H3 is sensitive to several posttranslational modifications, and acetylation of this domain changes its electrostatic environment and results in the loss of native folding. Therefore, we studied the modification of epsilon-amino groups on human histone H3 by deoxycholyl adenylate, which is an active intermediate in deoxycholyl thioester biosynthesis. After incubation of recombinant human histone H3 with a smaller amount of acyl adenylate, followed by enzymatic digestion, the peptide fragment mixtures were analyzed by matrix-assisted laser desorption ionization mass spectrometry. These data showed the formation of only one adduct fragment, which corresponded to amino acids 3-8 with a deoxycholate adduct, suggesting that the epsilon-amino group of Lys(4) had the highest reactivity. This novel modification, formation of a bile acid adduct on the histone H3 amino-terminal tail domain through an active acyl adenylate, may relate to the carcinogenesis-promoting effects of secondary bile acids.
Collapse
Affiliation(s)
- Nariyasu Mano
- Graduate School of Pharmaceutical Sciences, Tohoku University, 101 Seiryo-machi, Aobayama, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | |
Collapse
|
45
|
Fiorenza MT, Bevilacqua A, Canterini S, Torcia S, Pontecorvi M, Mangia F. Early transcriptional activation of the hsp70.1 gene by osmotic stress in one-cell embryos of the mouse. Biol Reprod 2004; 70:1606-13. [PMID: 14766729 DOI: 10.1095/biolreprod.103.024877] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In fertilized mouse eggs, de novo transcription of embryonic genes is first observed during the S phase of the one-cell stage. This transcription, however, is mostly limited to the male pronucleus and possibly uncoupled from translation, making the functional meaning obscure. We found that one-cell mouse embryos respond to the osmotic shock of in vitro isolation with migration of HSF1, the canonical stress activator of mammalian heat shock genes, to pronuclei and by transient transcription of the hsp70.1, but not hsp70.3 and hsp90, heat shock genes. Isolated growing dictyate oocytes also display a nuclear HSF1 localization, but, in contrast with embryos, they transcribe both hsp70.1 and hsp70.3 genes only after heat shock. Intranuclear injection of double-stranded oligodeoxyribonucleotides containing HSE, GAGA box or GC box consensus sequences, and antibodies raised to transcription factors HSF1, HSF2, Drosophila melanogaster GAGA factor, or Sp1 demonstrated that hsp70.1 transcription depends on HSF1 in both oocytes and embryos and that Sp1 is dispensable in oocytes and inhibitory in the embryos. Hsp70.1 thus represents the first endogenous gene so far identified to be physiologically activated and tightly regulated after fertilization in mammals.
Collapse
Affiliation(s)
- Maria Teresa Fiorenza
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Psychology, Section of Neuroscience, UniversityLa Sapienza of Rome, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Gao S, Chung YG, Parseghian MH, King GJ, Adashi EY, Latham KE. Rapid H1 linker histone transitions following fertilization or somatic cell nuclear transfer: evidence for a uniform developmental program in mice. Dev Biol 2004; 266:62-75. [PMID: 14729478 DOI: 10.1016/j.ydbio.2003.10.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
H1 linker histones (H1s) are key regulators of chromatin structure and function. The functions of different H1s during early embryogenesis, and mechanisms regulating their associations with chromatin are largely unknown. The developmental transitions of H1s during oocyte growth and maturation, fertilization and early embryogenesis, and in cloned embryos were examined. Oocyte-specific H1FOO, but not somatic H1s, associated with chromatin in oocytes (growing, GV-stage, and MII-arrested), pronuclei, and polar bodies. H1FOO associated with sperm or somatic cell chromatin within 5 min of intracytoplasmic sperm injection (ICSI) or somatic cell nuclear transfer (SCNT), and completely replaced somatic H1s by 60 min. The switching from somatic H1s to H1FOO following SCNT was developmentally regulated. H1FOO was replaced by somatic H1s during the late two- and four-cell stages. H1FOO association with chromatin can occur in the presence of a nuclear envelope and independently of pronucleus formation, is regulated by factors associated with the spindle, and is likely an active process. All SCNT constructs recapitulated the normal sequence of H1 transitions, indicating that this alone does not signify a high developmental potential. A paucity of all known H1s in two-cell embryos may contribute to precocious gene transcription in fertilized embryos, and the elaboration of somatic cell characteristics in cloned embryos.
Collapse
Affiliation(s)
- Shaorong Gao
- Department of Biochemistry, The Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
47
|
Teranishi T, Tanaka M, Kimoto S, Ono Y, Miyakoshi K, Kono T, Yoshimura Y. Rapid replacement of somatic linker histones with the oocyte-specific linker histone H1foo in nuclear transfer. Dev Biol 2004; 266:76-86. [PMID: 14729479 DOI: 10.1016/j.ydbio.2003.10.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The most distinctive feature of oocyte-specific linker histones is the specific timing of their expression during embryonic development. In Xenopus nuclear transfer, somatic linker histones in the donor nucleus are replaced with oocyte-specific linker histone B4, leading to the involvement of oocyte-specific linker histones in nuclear reprogramming. We recently have discovered a mouse oocyte-specific linker histone, named H1foo, and demonstrated its expression pattern in normal preimplantation embryos. The present study was undertaken to determine whether the replacement of somatic linker histones with H1foo occurs during the process of mouse nuclear transfer. H1foo was detected in the donor nucleus soon after transplantation. Thereafter, H1foo was restricted to the chromatin in up to two-cell stage embryos. After fusion of an oocyte with a cell expressing GFP (green fluorescent protein)-tagged somatic linker histone H1c, immediate release of H1c in the donor nucleus was observed. In addition, we used fluorescence recovery after photobleaching (FRAP), and found that H1foo is more mobile than H1c in living cells. The greater mobility of H1foo may contribute to its rapid replacement and decreased stability of the embryonic chromatin structure. These results suggest that rapid replacement of H1c with H1foo may play an important role in nuclear remodeling.
Collapse
Affiliation(s)
- Takahide Teranishi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Qiu JJ, Zhang WW, Wu ZL, Wang YH, Qian M, Li YP. Delay of ZGA initiation occurred in 2-cell blocked mouse embryos. Cell Res 2003; 13:179-85. [PMID: 12862318 DOI: 10.1038/sj.cr.7290162] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
One-cell mouse embryos from KM strain and B6C3F1 strain were cultured in M16 medium, in which 2-cell block generally occurs. Embryos of KM strain exhibited 2-cell block, whereas B6C3F1 embryos, which are regarded as a nonblocking strain, proceeded to the 4-cell stage in our culture condition. It is often assumed that the block of early development is due to the failure of zygotic gene activation (ZGA) in cultured embryos. In this study we examined protein synthesis patterns by two-dimensional gel electrophoresis of [35S] methionine radiolabeled 2-cell embryos. Embryos from the blocking strain and the nonblocking strain were compared in their development both in vitro and in vivo. The detection of TRC expression, a marker of ZGA, at 42 h post hCG in KM embryos developed in vitro suggested that ZGA was also initiated even in the 2-cell arrested embryos. Nevertheless, a significant delay of ZGA was observed in KM strain as compared with normally developed B6C3F1 embryos. At the very beginning of major ZGA as early as 36 h post hCG, TRC has already been expressed in B6C3F1 embryos developed in vitro and KM embryos developed in vivo. But for 2-cell blocked KM embryos, TRC was still not detectable even at 38 h post hCG. These evidences suggest that 2-cell-blocked embryos do initiate ZGA, and that 2-cell block phenomenon is due not to the disability in initiating ZGA, but to a delay of ZGA.
Collapse
Affiliation(s)
- Jia Jing Qiu
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031 Shanghai, China
| | | | | | | | | | | |
Collapse
|
49
|
Vignon X, Zhou Q, Renard JP. Chromatin as a regulative architecture of the early developmental functions of mammalian embryos after fertilization or nuclear transfer. CLONING AND STEM CELLS 2003; 4:363-77. [PMID: 12626100 DOI: 10.1089/153623002321025041] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nuclear transfer of a somatic nucleus into an enucleated oocyte has demonstrated in several mammalian species that the chromatin of a differentiated nucleus can be reprogrammed so as to be able to direct the full development of the reconstructed embryo. This review focus on the timing of the early events that allow the return of somatic chromatin to a totipotent state. Our understanding of the modifications associated with chromatin remodeling is limited by the low amount of biological material available in mammals at early developmental stages and the fact that very few genetic studies have been conducted with nuclear transfer embryos. However, the importance of several factors such as the covalent modifications of DNA through the methylation of CpG dinucleotides, the exchange of histones through a reorganized nuclear membrane, and the interaction between cytoplasmic oocyte components and nuclear complexes in the context of nuclear transfer is becoming clear. A better characterization of the changes in somatic chromatin after nuclear transfer and the identification of oocyte factors or structures that govern the formation of a functional nucleus will help us to understand the relationship between chromatin structure and cellular totipotency.
Collapse
Affiliation(s)
- Xavier Vignon
- UMR Biologie du Développement et Biotechnologie, INRA 78352, Jouy en Josas, France
| | | | | |
Collapse
|
50
|
Fu G, Ghadam P, Sirotkin A, Khochbin S, Skoultchi AI, Clarke HJ. Mouse oocytes and early embryos express multiple histone H1 subtypes. Biol Reprod 2003; 68:1569-76. [PMID: 12606334 DOI: 10.1095/biolreprod.102.012336] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Oocytes and embryos of many species, including mammals, contain a unique linker (H1) histone, termed H1oo in mammals. It is uncertain, however, whether other H1 histones also contribute to the linker histone complement of these cells. Using immunofluorescence and radiolabeling, we have examined whether histone H10, which frequently accumulates in the chromatin of nondividing cells, and the somatic subtypes of H1 are present in mouse oocytes and early embryos. We report that oocytes and embryos contain mRNA encoding H10. A polymerase chain reaction-based test indicated that the poly(A) tail did not lengthen during meiotic maturation, although it did so beginning at the four-cell stage. Antibodies raised against histone H10 stained the nucleus of wild-type prophase-arrested oocytes but not of mice lacking the H10 gene. Following fertilization, H10 was detected in the nuclei of two-cell embryos and less strongly at the four-cell stage. No signal was detected in H10 -/- embryos. Radiolabeling revealed that species comigrating with the somatic H1 subtypes H1a and H1c were synthesized in maturing oocytes and in one- and two-cell embryos. Beginning at the four-cell stage in both wild-type and H10 -/- embryos, species comigrating with subtypes H1b, H1d, and H1e were additionally synthesized. These results establish that histone H10 constitutes a portion of the linker histone complement in oocytes and early embryos and that changes in the pattern of somatic H1 synthesis occur during early embryonic development. Taken together with previous results, these findings suggest that multiple H1 subtypes are present on oocyte chromatin and that following fertilization changes in the histone H1 complement accompany the establishment of regulated embryonic gene expression.
Collapse
Affiliation(s)
- Germaine Fu
- Department of Obstetrics and Gynecology, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|