1
|
Ren S, Hu P, Jia J, Ni J, Jiang T, Yang H, Bai J, Tian C, Chen L, Huang Q, Lv B, Feng X, Li C. Engineering of Saccharomyces cerevisiae for sensing sweetness. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Cevheroğlu O, Becker JM, Son ÇD. GPCR-Gα protein precoupling: Interaction between Ste2p, a yeast GPCR, and Gpa1p, its Gα protein, is formed before ligand binding via the Ste2p C-terminal domain and the Gpa1p N-terminal domain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2435-2446. [PMID: 28958779 DOI: 10.1016/j.bbamem.2017.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 01/19/2023]
Abstract
G protein coupled receptors bind ligands that initiate intracellular signaling cascades via heterotrimeric G proteins. In this study, involvement of the N-terminal residues of yeast G-alpha (Gpa1p) with the C-terminal residues of a full-length or C-terminally truncated Ste2p were investigated using bioluminescence resonance energy transfer (BRET), a non-radiative energy transfer phenomenon where protein-protein interactions can be quantified between a donor bioluminescent molecule and a suitable acceptor fluorophore. Constitutive and position-dependent BRET signal was observed in the absence of agonist (α-factor). Upon the activation of the receptors with α-factor, no significant change in BRET signal was observed. The location of Ste2p-Gpa1p heterodimer was investigated using confocal fluorescence microscopy and bimolecular fluorescence complementation (BiFC) assay, a technique where two non-fluorescent fragments of a fluorescent protein reassemble in vivo to restore fluorescence property thereby directly reporting a protein-protein interaction. BiFC experiments resulted in a dimerization signal intracellularly during biosynthesis on the endoplasmic reticulum (ER) and on the plasma membrane (PM). The constitutive BRET and BiFC signals observed on ER between Ste2p and Gpa1p in their quiescent and activated states are indicative of pre-coupling between these two proteins. This study is the first to show that the extreme N-terminus of yeast G protein alpha subunit is in close proximity to its receptor. The data suggests a pre-coupled heterodimer prior to receptor activation. The images presented in this study are the first direct in vivo evidence showing the localization of receptor - G protein heterodimers during biosynthesis and before reaching the plasma membrane.
Collapse
Affiliation(s)
- Orkun Cevheroğlu
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, United States; Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupinar Blv. No: 1, Çankaya, Ankara, 06800, Turkey
| | - Jeffrey M Becker
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, United States
| | - Çağdaş D Son
- Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupinar Blv. No: 1, Çankaya, Ankara, 06800, Turkey.
| |
Collapse
|
3
|
Ruta LL, Kissen R, Nicolau I, Neagoe AD, Petrescu AJ, Bones AM, Farcasanu IC. Heavy metal accumulation by Saccharomyces cerevisiae cells armed with metal binding hexapeptides targeted to the inner face of the plasma membrane. Appl Microbiol Biotechnol 2017; 101:5749-5763. [PMID: 28577027 DOI: 10.1007/s00253-017-8335-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/02/2017] [Accepted: 05/06/2017] [Indexed: 11/30/2022]
Abstract
Accumulation of heavy metals without developing toxicity symptoms is a phenotype restricted to a small group of plants called hyperaccumulators, whose metal-related characteristics suggested the high potential in biotechnologies such as bioremediation and bioextraction. In an attempt to extrapolate the heavy metal hyperaccumulating phenotype to yeast, we obtained Saccharomyces cerevisiae cells armed with non-natural metal-binding hexapeptides targeted to the inner face of the plasma membrane, expected to sequester the metal ions once they penetrated the cell. We describe the construction of S. cerevisiae strains overexpressing metal-binding hexapeptides (MeBHxP) fused to the carboxy-terminus of a myristoylated green fluorescent protein (myrGFP). Three non-toxic myrGFP-MeBHxP (myrGFP-H6, myrGFP-C6, and myrGFP-(DE)3) were investigated against an array of heavy metals in terms of their effect on S. cerevisiae growth, heavy metal (hyper) accumulation, and capacity to remove heavy metal from contaminated environments.
Collapse
Affiliation(s)
- Lavinia Liliana Ruta
- Faculty of Chemistry, University of Bucharest, Sos. Panduri 90-92, Bucharest, Romania
| | - Ralph Kissen
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Ioana Nicolau
- Faculty of Chemistry, University of Bucharest, Sos. Panduri 90-92, Bucharest, Romania
| | - Aurora Daniela Neagoe
- Faculty of Biology, University of Bucharest, Spl. Independentei 91-95, Bucharest, Romania
| | - Andrei José Petrescu
- Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, Romania
| | - Atle M Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | | |
Collapse
|
4
|
Valle-Maldonado MI, Jácome-Galarza IE, Díaz-Pérez AL, Martínez-Cadena G, Campos-García J, Ramírez-Díaz MI, Reyes-De la Cruz H, Riveros-Rosas H, Díaz-Pérez C, Meza-Carmen V. Phylogenetic analysis of fungal heterotrimeric G protein-encoding genes and their expression during dimorphism in Mucor circinelloides. Fungal Biol 2015; 119:1179-1193. [DOI: 10.1016/j.funbio.2015.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/08/2015] [Accepted: 08/10/2015] [Indexed: 01/27/2023]
|
5
|
Role of the unfolded protein response in regulating the mucin-dependent filamentous-growth mitogen-activated protein kinase pathway. Mol Cell Biol 2015; 35:1414-32. [PMID: 25666509 DOI: 10.1128/mcb.01501-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Signaling mucins are evolutionarily conserved regulators of signal transduction pathways. The signaling mucin Msb2p regulates the Cdc42p-dependent mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in yeast. The cleavage and release of the glycosylated inhibitory domain of Msb2p is required for MAPK activation. We show here that proteolytic processing of Msb2p was induced by underglycosylation of its extracellular domain. Cleavage of underglycosylated Msb2p required the unfolded protein response (UPR), a quality control (QC) pathway that operates in the endoplasmic reticulum (ER). The UPR regulator Ire1p, which detects misfolded/underglycosylated proteins in the ER, controlled Msb2p cleavage by regulating transcriptional induction of Yps1p, the major protease that processes Msb2p. Accordingly, the UPR was required for differentiation to the filamentous cell type. Cleavage of Msb2p occurred in conditional trafficking mutants that trap secretory cargo in the endomembrane system. Processed Msb2p was delivered to the plasma membrane, and its turnover by the ubiquitin ligase Rsp5p and ESCRT attenuated the filamentous-growth pathway. We speculate that the QC pathways broadly regulate signaling glycoproteins and their cognate pathways by recognizing altered glycosylation patterns that can occur in response to extrinsic cues.
Collapse
|
6
|
Fukuda N, Doi M, Honda S. Yeast one-hybrid gγ recruitment system for identification of protein lipidation motifs. PLoS One 2013; 8:e70100. [PMID: 23922919 PMCID: PMC3724820 DOI: 10.1371/journal.pone.0070100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/14/2013] [Indexed: 12/11/2022] Open
Abstract
Fatty acids and isoprenoids can be covalently attached to a variety of proteins. These lipid modifications regulate protein structure, localization and function. Here, we describe a yeast one-hybrid approach based on the Gγ recruitment system that is useful for identifying sequence motifs those influence lipid modification to recruit proteins to the plasma membrane. Our approach facilitates the isolation of yeast cells expressing lipid-modified proteins via a simple and easy growth selection assay utilizing G-protein signaling that induces diploid formation. In the current study, we selected the N-terminal sequence of Gα subunits as a model case to investigate dual lipid modification, i.e., myristoylation and palmitoylation, a modification that is widely conserved from yeast to higher eukaryotes. Our results suggest that both lipid modifications are required for restoration of G-protein signaling. Although we could not differentiate between myristoylation and palmitoylation, N-terminal position 7 and 8 play some critical role. Moreover, we tested the preference for specific amino-acid residues at position 7 and 8 using library-based screening. This new approach will be useful to explore protein-lipid associations and to determine the corresponding sequence motifs.
Collapse
Affiliation(s)
- Nobuo Fukuda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki, Japan
| | - Motomichi Doi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki, Japan
| | - Shinya Honda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Lu SX, Hrabak EM. The myristoylated amino-terminus of an Arabidopsis calcium-dependent protein kinase mediates plasma membrane localization. PLANT MOLECULAR BIOLOGY 2013; 82:267-78. [PMID: 23609608 PMCID: PMC3668125 DOI: 10.1007/s11103-013-0061-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 04/15/2013] [Indexed: 05/21/2023]
Abstract
Calcium-dependent protein kinases (CDPK) are a major group of calcium-stimulated kinases found in plants and some protists. Many CDPKs are membrane-associated, presumably because of lipid modifications at their amino termini. We investigated the subcellular location and myristoylation of AtCPK5, a member of the Arabidopsis CDPK family. Most AtCPK5 was associated with the plasma membrane as demonstrated by two-phase fractionation of plant microsomes and by in vivo detection of AtCPK5-GFP fusion proteins. AtCPK5 was a substrate for plant N-myristoyltransferase and myristoylation was prevented by converting the glycine at the proposed site of myristate attachment to alanine (G2A). In transgenic plants, a G2A mutation completely abolished AtCPK5 membrane association, indicating that myristoylation was essential for membrane binding. The first sixteen amino acids of AtCPK5 were sufficient to direct plasma membrane localization. In addition, differentially phosphorylated forms of AtCPK5 were detected both in planta and after expression of AtCPK5 in a cell-free plant extract. Our results demonstrate that AtCPK5 is myristoylated at its amino terminus and that myristoylation is required for membrane binding.
Collapse
Affiliation(s)
- Sheen X. Lu
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
- Present Address: Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, CA 09905 USA
| | - Estelle M. Hrabak
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| |
Collapse
|
8
|
The filamentous growth MAPK Pathway Responds to Glucose Starvation Through the Mig1/2 transcriptional repressors in Saccharomyces cerevisiae. Genetics 2012; 192:869-87. [PMID: 22904036 DOI: 10.1534/genetics.112.142661] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In the budding yeast S. cerevisiae, nutrient limitation induces a MAPK pathway that regulates filamentous growth and biofilm/mat formation. How nutrient levels feed into the regulation of the filamentous growth pathway is not entirely clear. We characterized a newly identified MAPK regulatory protein of the filamentous growth pathway, Opy2. A two-hybrid screen with the cytosolic domain of Opy2 uncovered new interacting partners including a transcriptional repressor that functions in the AMPK pathway, Mig1, and its close functional homolog, Mig2. Mig1 and Mig2 coregulated the filamentous growth pathway in response to glucose limitation, as did the AMP kinase Snf1. In addition to associating with Opy2, Mig1 and Mig2 interacted with other regulators of the filamentous growth pathway including the cytosolic domain of the signaling mucin Msb2, the MAP kinase kinase Ste7, and the MAP kinase Kss1. As for Opy2, Mig1 overproduction dampened the pheromone response pathway, which implicates Mig1 and Opy2 as potential regulators of pathway specificity. Taken together, our findings provide the first regulatory link in yeast between components of the AMPK pathway and a MAPK pathway that controls cellular differentiation.
Collapse
|
9
|
Shpakov AO, Pertseva MN. Chapter 4 Signaling Systems of Lower Eukaryotes and Their Evolution. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:151-282. [DOI: 10.1016/s1937-6448(08)01004-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Patel SS, Belmont BJ, Sante JM, Rexach MF. Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell 2007; 129:83-96. [PMID: 17418788 DOI: 10.1016/j.cell.2007.01.044] [Citation(s) in RCA: 408] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 11/23/2006] [Accepted: 01/24/2007] [Indexed: 12/24/2022]
Abstract
Nuclear pore complexes (NPCs) form aqueous conduits in the nuclear envelope and gate the diffusion of large proteins between the cytoplasm and nucleoplasm. NPC proteins (nucleoporins) that contain phenylalanine-glycine motifs in filamentous, natively unfolded domains (FG domains) line the diffusion conduit of the NPC, but their role in the size-selective barrier is unclear. We show that deletion of individual FG domains in yeast relaxes the NPC permeability barrier. At the molecular level, the FG domains of five nucleoporins anchored at the NPC center form a cohesive meshwork of filaments through hydrophobic interactions, which involve phenylalanines in FG motifs and are dispersed by aliphatic alcohols. In contrast, the FG domains of four peripherally anchored nucleoporins are generally noncohesive. The results support a two-gate model of NPC architecture featuring a central diffusion gate formed by a meshwork of cohesive FG nucleoporin filaments and a peripheral gate formed by repulsive FG nucleoporin filaments.
Collapse
Affiliation(s)
- Samir S Patel
- MCD Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
11
|
Shpakov AO. Serpentine type receptors and heterotrimeric G-proteins in yeasts: Structural-functional organization and molecular mechanisms of action. J EVOL BIOCHEM PHYS+ 2007. [DOI: 10.1134/s0022093007010012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Harashima T, Heitman J. Galpha subunit Gpa2 recruits kelch repeat subunits that inhibit receptor-G protein coupling during cAMP-induced dimorphic transitions in Saccharomyces cerevisiae. Mol Biol Cell 2005; 16:4557-71. [PMID: 16030250 PMCID: PMC1237064 DOI: 10.1091/mbc.e05-05-0403] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/23/2005] [Accepted: 07/12/2005] [Indexed: 11/11/2022] Open
Abstract
All eukaryotic cells sense extracellular stimuli and activate intracellular signaling cascades via G protein-coupled receptors (GPCR) and associated heterotrimeric G proteins. The Saccharomyces cerevisiae GPCR Gpr1 and associated Galpha subunit Gpa2 sense extracellular carbon sources (including glucose) to govern filamentous growth. In contrast to conventional Galpha subunits, Gpa2 forms an atypical G protein complex with the kelch repeat Gbeta mimic proteins Gpb1 and Gpb2. Gpb1/2 negatively regulate cAMP signaling by inhibiting Gpa2 and an as yet unidentified target. Here we show that Gpa2 requires lipid modifications of its N-terminus for membrane localization but association with the Gpr1 receptor or Gpb1/2 subunits is dispensable for membrane targeting. Instead, Gpa2 promotes membrane localization of its associated Gbeta mimic subunit Gpb2. We also show that the Gpa2 N-terminus binds both to Gpb2 and to the C-terminal tail of the Gpr1 receptor and that Gpb1/2 binding interferes with Gpr1 receptor coupling to Gpa2. Our studies invoke novel mechanisms involving GPCR-G protein modules that may be conserved in multicellular eukaryotes.
Collapse
Affiliation(s)
- Toshiaki Harashima
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
13
|
Jansen G, Wu C, Schade B, Thomas DY, Whiteway M. Drag&Drop cloning in yeast. Gene 2004; 344:43-51. [PMID: 15656971 DOI: 10.1016/j.gene.2004.10.016] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 09/13/2004] [Accepted: 10/14/2004] [Indexed: 11/29/2022]
Abstract
We have developed a set of vectors that have enhanced capabilities for efficiently constructing and expressing differentially tagged fusion proteins using Drag&Drop cloning in the yeast Saccharomyces cerevisiae. The pGREG vectors are based on the pRS series with an additional general kanR selection marker. In vivo homologous recombination is used to introduce genes of interest into galactose-inducible expression vectors (pGREGs), permitting the formation of amino-terminal fusions. The vectors all contain common regions for recombination that flank the stuffer fragment. Introduction of common recombination sequences at the end of PCR fragments will permit the cloning of genes without the need for specific restriction sites. In this process, the selectable stuffer HIS3 gene is replaced by successful gene integration, and a screen for loss of the selection marker identifies potential recombinants. Due to the modular structure of the vectors, genes introduced into one vector can be readily transferred by in vivo recombination to all other members of the vector system, thus permitting rapid and easy Drag&Drop construction of a series of tagged proteins. The pGREG series combines features for expression, tagging, integration, localization and library construction with the advantage of obtaining immediate results from sub-sequent experiments. This Drag&Drop system also allows efficient cloning and expression of heterologous genes in large-scale experiments.
Collapse
Affiliation(s)
- Gregor Jansen
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3G 1Y6.
| | | | | | | | | |
Collapse
|
14
|
Butz JA, Niebauer RT, Robinson AS. Co-expression of molecular chaperones does not improve the heterologous expression of mammalian G-protein coupled receptor expression in yeast. Biotechnol Bioeng 2003; 84:292-304. [PMID: 12968283 DOI: 10.1002/bit.10771] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The limitations to high-level expression of integral membrane proteins are not well understood. The human A(2)a adenosine receptor (A(2)a) and mouse Substance P receptor (SPR) were individually expressed in S. cerevisiae to identify potential cellular bottlenecks for G-protein coupled receptors. In the yeast system, A(2)a was not N-linked glycosylated but was functional and plasma membrane-localized. A(2)a also contained an intramolecular disulfide bond. Substance P receptor was also not N-linked glycosylated in yeast, but, unlike A(2)a, SPR was intracellularly retained, nonfunctional, and did not appear to contain an intramolecular disulfide bond. Since both receptors contain N-linked glycosylation and disulfide bonds in mammalian systems, machinery responsible for interacting with these modifications was investigated-specifically, the potential interactions between the nascent receptor and ER-resident proteins were explored. The chaperones calnexin and protein disulfide isomerase were co-overexpressed with the GPCRs to determine the effect on total and active yields of A(2)a and SPR, as well as on receptor trafficking. The effect of co-expressing the chaperone BiP on the total yields of A(2)a as well as intracellular fates of both receptors were determined. The co-expression of ER resident proteins did not improve A(2)a yields nor did they restore SPR activity or improve SPR cell surface expression. Taken together, these results indicate that an ER-folding bottleneck does not limit the expression of the mammalian receptors in yeast.
Collapse
Affiliation(s)
- James A Butz
- Department of Chemical Engineering, University of Delaware, 259 Colburn Laboratory, Newark, DE 19716, USA
| | | | | |
Collapse
|
15
|
Go L, Mitchell J. Palmitoylation is required for membrane association of activated but not inactive invertebrate visual Gqalpha. Comp Biochem Physiol B Biochem Mol Biol 2003; 135:601-9. [PMID: 12892752 DOI: 10.1016/s1096-4959(03)00140-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The invertebrate visual G protein, iGqalpha plays a central role in invertebrate phototransduction by relaying signals from rhodopsin to phospholipase C leading to membrane depolarization. Previous studies have shown reversible association of iGqalpha with rhabdomeric membranes regulated by light. To address the mechanism of membrane association we cloned iGqalpha from a Loligo pealei photoreceptor cDNA library and expressed it in HEK293T cells. Mutations were introduced to eliminate putative sites for palmitoylation at cysteines in positions 3 and 4. Membrane and soluble fractions were prepared from cells where iGqalpha was either activated or maintained in the GDP-bound form, followed by identification of iGqalpha through immunoblot analysis. The wild-type iGqalpha was entirely membrane-bound and shown to be post-translationally modified by palmitoylation. The mutant iGqalpha (C3,4A) was not palmitoylated yet it was found to be membrane-associated in the inactive state, however, approximately half of the protein became soluble when activated. These results suggest that palmitoylation is not required for membrane association of iGqalpha in the inactive state but is important in maintaining the stable membrane association of activated iGqalpha-GTP. The mechanism by which iGqalpha moves away from the membrane into the cytosol in response to prolonged light-stimulation in the native squid eye appears, therefore, to involve both activation and depalmitoylation processes.
Collapse
Affiliation(s)
- Lynle Go
- Department of Pharmacology, University of Toronto, 1 King's College Circle, Room 4342, Toronto, ON, Canada M5S 1A8
| | | |
Collapse
|
16
|
Ma H, Peterson YK, Bernard ML, Lanier SM, Graber SG. Influence of cytosolic AGS3 on receptor--G protein coupling. Biochemistry 2003; 42:8085-93. [PMID: 12834360 DOI: 10.1021/bi034561p] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Activator of G protein signaling 3 (AGS3) activates the Gbetagamma mating pathway in yeast in a manner that is independent of heptahelical receptors. It competes with Gbetagamma subunits to bind GDP-bound Gi/o(alpha) subunits via four repeated G protein regulatory (GPR) domains in the carboxyl-terminal half of the molecule. However, little is known about the functional role of AGS3 in cellular signaling. Here the effect of AGS3 on receptor-G protein coupling was examined in an Sf9 cell membrane-based reconstitution system. A GST-AGS3-GPR fusion protein containing the four individual AGS3-GPR domains inhibits receptor coupling to Galpha subunits as effectively as native AGS3 and more effectively than GST fusion proteins containing the individual AGS3-GPR domains. While none of the GPR domains distinguished among the three G(i)alpha subunits, both individual and full-length GPR domains interacted more weakly with G(o)alpha than with G(i)alpha. Cytosolic AGS3, but not membrane-associated AGS3, can interact with G(i)alpha subunits and disrupt their receptor coupling. Immunoblotting studies reveal that cytosolic AGS3 can remove G(i)alpha subunits from the membrane and sequester G(i)alpha subunits in the cytosol. These findings suggest that AGS3 may downregulate heterotrimeric G protein signaling by interfering with receptor coupling.
Collapse
Affiliation(s)
- Hongzheng Ma
- Department of Biochemistry and Molecular Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9142, USA
| | | | | | | | | |
Collapse
|
17
|
Blackwell E, Halatek IM, Kim HJN, Ellicott AT, Obukhov AA, Stone DE. Effect of the pheromone-responsive G(alpha) and phosphatase proteins of Saccharomyces cerevisiae on the subcellular localization of the Fus3 mitogen-activated protein kinase. Mol Cell Biol 2003; 23:1135-50. [PMID: 12556475 PMCID: PMC141143 DOI: 10.1128/mcb.23.4.1135-1150.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mating-specific G(alpha) protein of Saccharomyces cerevisiae, Gpa1, stimulates adaptation to pheromone by a mechanism independent of G(beta gamma) sequestration. Genetic evidence suggests that Gpa1 targets the Fus3 mitogen-activated protein kinase, and it has recently been shown that the two proteins interact in cells responding to pheromone. To test the possibility that Gpa1 downregulates the mating signal by affecting the localization of Fus3, we created a Fus3-green fluorescent protein (GFP) fusion protein. In vegetative cells, Fus3-GFP was found in both the cytoplasm and the nucleus. Pheromone stimulated a measurable increase in the ratio of nuclear to cytoplasmic Fus3-GFP. In contrast, the relative level of nuclear Fus3-GFP decreased as cells recovered from pheromone arrest and did not increase when cells adapted to chronic stimulus were challenged again. Accumulation of Fus3-GFP in the nuclei of stimulated cells was also inhibited by overexpression of either wild-type Gpa1, the E364K hyperadaptive mutant form of Gpa1, or the Msg5 dually specific phosphatase. The effects of Gpa1 and Msg5 on Fus3 are partially interdependent. In a genetic screen for adaptive defective mutants, a nonsense allele of the nucleocytoplasmic transport receptor, Kap104, was identified. Truncation of the Kap104 cargo-binding domain blocked the effect of both Gpa1(E364K) and Msg5 on Fus3-GFP localization. Based on these results, we propose that Gpa1 and Msg5 work in concert to downregulate the mating signal and that they do so by inhibiting the pheromone-induced increase of Fus3 in the nucleus. Kap104 is required for the G(alpha)/phosphatase-mediated effect on Fus3 localization.
Collapse
Affiliation(s)
- Ernest Blackwell
- Laboratory for Molecular Biology, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | | | | | |
Collapse
|
18
|
Peng G, Hopper JE. Gene activation by interaction of an inhibitor with a cytoplasmic signaling protein. Proc Natl Acad Sci U S A 2002; 99:8548-53. [PMID: 12084916 PMCID: PMC124307 DOI: 10.1073/pnas.142100099] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2002] [Indexed: 01/22/2023] Open
Abstract
Galactose-inducible genes (GAL genes) in yeast Saccharomyces cerevisiae are efficiently transcribed only when the sequence-specific transcription activator Gal4p is activated. Activation of Gal4p requires the interaction between the Gal4p inhibitory protein Gal80p and the galactokinase paralog, Gal3p. It has been proposed that Gal3p binds to a Gal80p-Gal4p complex in the nucleus to activate Gal4p. Here, we present evidence that the Gal3p-Gal80p interaction occurs in the cytoplasm, and concurrently, Gal80p is removed from Gal4p at the GAL gene promoter. We also show that GAL gene expression can be activated by heterologous protein-protein interaction in the cytoplasm that is independent of galactose and Gal3p function. These results indicate that galactose-triggered Gal3p-Gal80p association in the cytoplasm activates Gal4p in the nucleus.
Collapse
Affiliation(s)
- Gang Peng
- Graduate Program in Biochemistry and Molecular Biology, Intercollege Graduate Program in Genetics, and Department of Biochemistry and Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
19
|
Evanko DS, Thiyagarajan MM, Wedegaertner PB. Interaction with Gbetagamma is required for membrane targeting and palmitoylation of Galpha(s) and Galpha(q). J Biol Chem 2000; 275:1327-36. [PMID: 10625681 DOI: 10.1074/jbc.275.2.1327] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peripheral membrane proteins utilize a variety of mechanisms to attach tightly, and often reversibly, to cellular membranes. The covalent lipid modifications, myristoylation and palmitoylation, are critical for plasma membrane localization of heterotrimeric G protein alpha subunits. For alpha(s) and alpha(q), two subunits that are palmitoylated but not myristoylated, we examined the importance of interacting with the G protein betagamma dimer for their proper plasma membrane localization and palmitoylation. Conserved alpha subunit N-terminal amino acids predicted to mediate binding to betagamma were mutated to create a series of betagamma binding region mutants expressed in HEK293 cells. These alpha(s) and alpha(q) mutants were found in soluble rather than particulate fractions, and they no longer localized to plasma membranes as demonstrated by immunofluorescence microscopy. The mutations also inhibited incorporation of radiolabeled palmitate into the proteins and abrogated their signaling ability. Additional alpha(q) mutants, which contain these mutations but are modified by both myristate and palmitate, retained their localization to plasma membranes and ability to undergo palmitoylation. These findings identify binding to betagamma as a critical membrane attachment signal for alpha(s) and alpha(q) and as a prerequisite for their palmitoylation, while myristoylation can restore membrane localization and palmitoylation of betagamma binding-deficient alpha(q) subunits.
Collapse
Affiliation(s)
- D S Evanko
- Department of Microbiology and Immunology and Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|