1
|
Brückner DB, Broedersz CP. Learning dynamical models of single and collective cell migration: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:056601. [PMID: 38518358 DOI: 10.1088/1361-6633/ad36d2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Single and collective cell migration are fundamental processes critical for physiological phenomena ranging from embryonic development and immune response to wound healing and cancer metastasis. To understand cell migration from a physical perspective, a broad variety of models for the underlying physical mechanisms that govern cell motility have been developed. A key challenge in the development of such models is how to connect them to experimental observations, which often exhibit complex stochastic behaviours. In this review, we discuss recent advances in data-driven theoretical approaches that directly connect with experimental data to infer dynamical models of stochastic cell migration. Leveraging advances in nanofabrication, image analysis, and tracking technology, experimental studies now provide unprecedented large datasets on cellular dynamics. In parallel, theoretical efforts have been directed towards integrating such datasets into physical models from the single cell to the tissue scale with the aim of conceptualising the emergent behaviour of cells. We first review how this inference problem has been addressed in both freely migrating and confined cells. Next, we discuss why these dynamics typically take the form of underdamped stochastic equations of motion, and how such equations can be inferred from data. We then review applications of data-driven inference and machine learning approaches to heterogeneity in cell behaviour, subcellular degrees of freedom, and to the collective dynamics of multicellular systems. Across these applications, we emphasise how data-driven methods can be integrated with physical active matter models of migrating cells, and help reveal how underlying molecular mechanisms control cell behaviour. Together, these data-driven approaches are a promising avenue for building physical models of cell migration directly from experimental data, and for providing conceptual links between different length-scales of description.
Collapse
Affiliation(s)
- David B Brückner
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Chase P Broedersz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilian-University Munich, Theresienstr. 37, D-80333 Munich, Germany
| |
Collapse
|
2
|
Zhong A, Short C, Xu J, Fernandez GE, Malkoff N, Noriega N, Yeo T, Wang L, Mavila N, Asahina K, Wang KS. Prominin-1 promotes restitution of the murine extrahepatic biliary luminal epithelium following cholestatic liver injury. Hepatol Commun 2023; 7:e0018. [PMID: 36662671 PMCID: PMC10019165 DOI: 10.1097/hc9.0000000000000018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/22/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND AIMS Restitution of the extrahepatic biliary luminal epithelium in cholangiopathies is poorly understood. Prominin-1 (Prom1) is a key component of epithelial ciliary body of stem/progenitor cells. Given that intrahepatic Prom1-expressing progenitor cells undergo cholangiocyte differentiation, we hypothesized that Prom1 may promote restitution of the extrahepatic bile duct (EHBD) epithelium following injury. APPROACH AND RESULTS Utilizing various murine biliary injury models, we identified Prom1-expressing cells in the peribiliary glands of the EHBD. These Prom1-expressing cells are progenitor cells which give rise to cholangiocytes as part of the normal maintenance of the EHBD epithelium. Following injury, these cells proliferate significantly more rapidly to re-populate the biliary luminal epithelium. Null mutation of Prom1 leads to significantly >10-fold dilated peribiliary glands following rhesus rotavirus-mediated biliary injury. Cultured organoids derived from Prom1 knockout mice are comprised of biliary progenitor cells with altered apical-basal cellular polarity, significantly fewer and shorter cilia, and decreased organoid proliferation dynamics consistent with impaired cell motility. CONCLUSIONS We, therefore, conclude that Prom1 is involved in biliary epithelial restitution following biliary injury in part through its role in supporting cell polarity.
Collapse
Affiliation(s)
- Allen Zhong
- Developmental Biology, Regenerative Medicine, and Stem Cell Program, The Saban Research Institute, Children’s Hospital of Los Angeles, Los Angeles, California, USA
| | - Celia Short
- Developmental Biology, Regenerative Medicine, and Stem Cell Program, The Saban Research Institute, Children’s Hospital of Los Angeles, Los Angeles, California, USA
| | - Jiabo Xu
- Developmental Biology, Regenerative Medicine, and Stem Cell Program, The Saban Research Institute, Children’s Hospital of Los Angeles, Los Angeles, California, USA
| | - G. Esteban Fernandez
- Cellular Imaging Core, The Saban Research Institute, Children’s Hospital of Los Angeles, Los Angeles, California, USA
| | - Nicolas Malkoff
- Developmental Biology, Regenerative Medicine, and Stem Cell Program, The Saban Research Institute, Children’s Hospital of Los Angeles, Los Angeles, California, USA
| | - Nicolas Noriega
- Developmental Biology, Regenerative Medicine, and Stem Cell Program, The Saban Research Institute, Children’s Hospital of Los Angeles, Los Angeles, California, USA
| | - Theresa Yeo
- Developmental Biology, Regenerative Medicine, and Stem Cell Program, The Saban Research Institute, Children’s Hospital of Los Angeles, Los Angeles, California, USA
| | - Larry Wang
- Department of Pathology, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Nirmala Mavila
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Kinji Asahina
- Central Research Laboratory, Shiga University of Medical Science, Ōtsu, Shiga Prefecture, Japan
| | - Kasper S. Wang
- Developmental Biology, Regenerative Medicine, and Stem Cell Program, The Saban Research Institute, Children’s Hospital of Los Angeles, Los Angeles, California, USA
| |
Collapse
|
3
|
Wagner K, Unger L, Salman MM, Kitchen P, Bill RM, Yool AJ. Signaling Mechanisms and Pharmacological Modulators Governing Diverse Aquaporin Functions in Human Health and Disease. Int J Mol Sci 2022; 23:1388. [PMID: 35163313 PMCID: PMC8836214 DOI: 10.3390/ijms23031388] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The aquaporins (AQPs) are a family of small integral membrane proteins that facilitate the bidirectional transport of water across biological membranes in response to osmotic pressure gradients as well as enable the transmembrane diffusion of small neutral solutes (such as urea, glycerol, and hydrogen peroxide) and ions. AQPs are expressed throughout the human body. Here, we review their key roles in fluid homeostasis, glandular secretions, signal transduction and sensation, barrier function, immunity and inflammation, cell migration, and angiogenesis. Evidence from a wide variety of studies now supports a view of the functions of AQPs being much more complex than simply mediating the passive flow of water across biological membranes. The discovery and development of small-molecule AQP inhibitors for research use and therapeutic development will lead to new insights into the basic biology of and novel treatments for the wide range of AQP-associated disorders.
Collapse
Affiliation(s)
- Kim Wagner
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lucas Unger
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Mootaz M. Salman
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Roslyn M. Bill
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
4
|
Adams G, López MP, Cartagena-Rivera AX, Waterman CM. Survey of cancer cell anatomy in nonadhesive confinement reveals a role for filamin-A and fascin-1 in leader bleb-based migration. Mol Biol Cell 2021; 32:1772-1791. [PMID: 34260278 PMCID: PMC8684732 DOI: 10.1091/mbc.e21-04-0174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cancer cells migrating in confined microenvironments exhibit plasticity of migration modes. Confinement of contractile cells in a nonadhesive environment drives “leader bleb–based migration” (LBBM), morphologically characterized by a long bleb that points in the direction of movement separated from a cell body by a contractile neck. Although cells undergoing LBBM have been visualized within tumors, the organization of organelles and actin regulatory proteins mediating LBBM is unknown. We analyzed the localization of fluorescent organelle-specific markers and actin-associated proteins in human melanoma and osteosarcoma cells undergoing LBBM. We found that organelles from the endolysosomal, secretory, and metabolic systems as well as the vimentin and microtubule cytoskeletons localized primarily in the cell body, with some endoplasmic reticulum, microtubules, and mitochondria extending into the leader bleb. Overexpression of fluorescently tagged actin regulatory proteins showed that actin assembly factors localized toward the leader bleb tip, contractility regulators and cross-linkers in the cell body cortex and neck, and cross-linkers additionally throughout the leader bleb. Quantitative analysis showed that excess filamin-A and fascin-1 increased migration speed and persistence, while their depletion by small interfering RNA indicates a requirement in promoting cortical tension and pressure to drive LBBM. This indicates a critical role of specific actin crosslinkers in LBBM.
Collapse
Affiliation(s)
- Gregory Adams
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, and
| | | | - Alexander X Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, and
| |
Collapse
|
5
|
Fu W, Wu H, Cheng Z, Huang S, Rao H. The role of katanin p60 in breast cancer bone metastasis. Oncol Lett 2018; 15:4963-4969. [PMID: 29552132 PMCID: PMC5840750 DOI: 10.3892/ol.2018.7942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/06/2017] [Indexed: 12/20/2022] Open
Abstract
p60 is a subunit of katanin involved in microtubule-severing. Previous studies of p60 were primarily focused on microtubule regulation and cell cycle regulation. More recent research has demonstrated that katanin p60 possesses a function in prostate cancer bone metastasis; however, its role in breast cancer bone metastasis remains unclear. In the present study, immunohistochemistry was used to analyze the expression of katanin p60 in primary and bone metastatic breast cancer. The role of up- and downregulated katanin p60 was investigated using cell proliferation, and migration experiments. Overall, katanin p60 was highly expressed in breast cancer bone metastatic tissue compared with primary tumor tissue. In breast cancer cells, overexpression of katanin p60 inhibited cell proliferation, but promoted cell migration, whereas silencing katanin p60 expression promoted cell proliferation but inhibited cell migration. Overall, the present study indicated that katanin p60 serves a role in cell proliferation and migration, and thus may be a novel therapeutic target for prevention of breast cancer metastasis.
Collapse
Affiliation(s)
- Wenrong Fu
- Department of Pathology, Xiangyang Central Hospital, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Hui Wu
- Department of Clinical Laboratory, Xiangyang Central Hospital, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Zhengjiang Cheng
- Department of Clinical Laboratory, Xiangyang Central Hospital, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Shaojun Huang
- Department of Clinical Laboratory, Xiangyang Central Hospital, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Hui Rao
- Department of Clinical Laboratory, Xiangyang Central Hospital, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| |
Collapse
|
6
|
López-Ortega O, Santos-Argumedo L. Myosin 1g Contributes to CD44 Adhesion Protein and Lipid Rafts Recycling and Controls CD44 Capping and Cell Migration in B Lymphocytes. Front Immunol 2017; 8:1731. [PMID: 29321775 PMCID: PMC5732150 DOI: 10.3389/fimmu.2017.01731] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/23/2017] [Indexed: 12/30/2022] Open
Abstract
Cell migration and adhesion are critical for immune system function and involve many proteins, which must be continuously transported and recycled in the cell. Recycling of adhesion molecules requires the participation of several proteins, including actin, tubulin, and GTPases, and of membrane components such as sphingolipids and cholesterol. However, roles of actin motor proteins in adhesion molecule recycling are poorly understood. In this study, we identified myosin 1g as one of the important motor proteins that drives recycling of the adhesion protein CD44 in B lymphocytes. We demonstrate that the lack of Myo1g decreases the cell-surface levels of CD44 and of the lipid raft surrogate GM1. In cells depleted of Myo1g, the recycling of CD44 was delayed, the delay seems to be caused at the level of formation of recycling complex and entry into recycling endosomes. Moreover, a defective lipid raft recycling in Myo1g-deficient cells had an impact both on the capping of CD44 and on cell migration. Both processes required the transportation of lipid rafts to the cell surface to deliver signaling components. Furthermore, the extramembrane was essential for cell expansion and remodeling of the plasma membrane topology. Therefore, Myo1g is important during the recycling of lipid rafts to the membrane and to the accompanied proteins that regulate plasma membrane plasticity. Thus, Myosin 1g contributes to cell adhesion and cell migration through CD44 recycling in B lymphocytes.
Collapse
Affiliation(s)
- Orestes López-Ortega
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
7
|
Oh YS, Heo K, Kim EK, Jang JH, Bae SS, Park JB, Kim YH, Song M, Kim SR, Ryu SH, Kim IH, Suh PG. Dynamic relocalization of NHERF1 mediates chemotactic migration of ovarian cancer cells toward lysophosphatidic acid stimulation. Exp Mol Med 2017; 49:e351. [PMID: 28684865 PMCID: PMC5565956 DOI: 10.1038/emm.2017.88] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/28/2016] [Accepted: 01/09/2017] [Indexed: 01/05/2023] Open
Abstract
NHERF1/EBP50 (Na+/H+ exchanger regulating
factor 1; Ezrin-binding phosphoprotein of 50 kDa) organizes stable
protein complexes beneath the apical membrane of polar epithelial cells. By
contrast, in cancer cells without any fixed polarity, NHERF1 often localizes in
the cytoplasm. The regulation of cytoplasmic NHERF1 and its role in cancer
progression remain unclear. In this study, we found that, upon lysophosphatidic
acid (LPA) stimulation, cytoplasmic NHERF1 rapidly translocated to the plasma
membrane, and subsequently to cortical protrusion structures, of ovarian cancer
cells. This movement depended on direct binding of NHERF1 to C-terminally
phosphorylated ERM proteins (cpERMs). Moreover, NHERF1 depletion downregulated
cpERMs and further impaired cpERM-dependent remodeling of the cell cortex,
suggesting reciprocal regulation between these proteins. The LPA-induced protein
complex was highly enriched in migratory pseudopodia, whose formation was
impaired by overexpression of NHERF1 truncation mutants. Consistent with this,
NHERF1 depletion in various types of cancer cells abolished chemotactic cell
migration toward a LPA gradient. Taken together, our findings suggest that the
high dynamics of cytosolic NHERF1 provide cancer cells with a means of
controlling chemotactic migration. This capacity is likely to be essential for
ovarian cancer progression in tumor microenvironments containing LPA.
Collapse
Affiliation(s)
- Yong-Seok Oh
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Kyun Heo
- Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Eung-Kyun Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jin-Hyeok Jang
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Sun Sik Bae
- MRC for Ischemic Tissue Regeneration, Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jong Bae Park
- Research Institute, National Cancer Center, Goyang, Republic of Korea.,Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Yun Hee Kim
- Research Institute, National Cancer Center, Goyang, Republic of Korea.,Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Minseok Song
- Synaptic Circuit Plasticity Laboratory, Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Institute of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Sung Ho Ryu
- Division of Molecular and Life Science, Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - In-Hoo Kim
- Research Institute, National Cancer Center, Goyang, Republic of Korea.,Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Pann-Ghill Suh
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
8
|
Coordinated cell motility is regulated by a combination of LKB1 farnesylation and kinase activity. Sci Rep 2017; 7:40929. [PMID: 28102310 PMCID: PMC5244416 DOI: 10.1038/srep40929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 12/14/2016] [Indexed: 01/07/2023] Open
Abstract
Cell motility requires the precise coordination of cell polarization, lamellipodia formation, adhesion, and force generation. LKB1 is a multi-functional serine/threonine kinase that associates with actin at the cellular leading edge of motile cells and suppresses FAK. We sought to understand how LKB1 coordinates these multiple events by systematically dissecting LKB1 protein domain function in combination with live cell imaging and computational approaches. We show that LKB1-actin colocalization is dependent upon LKB1 farnesylation leading to RhoA-ROCK-mediated stress fiber formation, but membrane dynamics is reliant on LKB1 kinase activity. We propose that LKB1 kinase activity controls membrane dynamics through FAK since loss of LKB1 kinase activity results in morphologically defective nascent adhesion sites. In contrast, defective farnesylation mislocalizes nascent adhesion sites, suggesting that LKB1 farnesylation serves as a targeting mechanism for properly localizing adhesion sites during cell motility. Together, we propose a model where coordination of LKB1 farnesylation and kinase activity serve as a multi-step mechanism to coordinate cell motility during migration.
Collapse
|
9
|
Asymmetry in traction forces produced by migrating preadipocytes is bounded to 33%. Med Eng Phys 2016; 38:834-8. [DOI: 10.1016/j.medengphy.2016.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 11/22/2022]
|
10
|
Emmert M, Witzel P, Heinrich D. Challenges in tissue engineering - towards cell control inside artificial scaffolds. SOFT MATTER 2016; 12:4287-4294. [PMID: 27139622 DOI: 10.1039/c5sm02844b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Control of living cells is vital for the survival of organisms. Each cell inside an organism is exposed to diverse external mechano-chemical cues, all coordinated in a spatio-temporal pattern triggering individual cell functions. This complex interplay between external chemical cues and mechanical 3D environments is translated into intracellular signaling loops. Here, we describe how external mechano-chemical cues control cell functions, especially cell migration, and influence intracellular information transport. In particular, this work focuses on the quantitative analysis of (1) intracellular vesicle transport to understand intracellular state changes in response to external cues, (2) cellular sensing of external chemotactic cues, and (3) the cells' ability to migrate in 3D structured environments, artificially fabricated to mimic the 3D environment of tissue in the human body.
Collapse
Affiliation(s)
- M Emmert
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany. and Julius-Maximilians University Würzburg, Chemical Technology of Material Synthesis, Röntgenring 11, 97070 Würzburg, Germany
| | - P Witzel
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany. and Julius-Maximilians University Würzburg, Chemical Technology of Material Synthesis, Röntgenring 11, 97070 Würzburg, Germany
| | - D Heinrich
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany. and Leiden Institute of Physics LION, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| |
Collapse
|
11
|
Leomanni A, Schettino T, Calisi A, Lionetto MG. Mercury induced haemocyte alterations in the terrestrial snail Cantareus apertus as novel biomarker. Comp Biochem Physiol C Toxicol Pharmacol 2016; 183-184:20-7. [PMID: 26811906 DOI: 10.1016/j.cbpc.2016.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/18/2015] [Accepted: 01/21/2016] [Indexed: 11/16/2022]
Abstract
The aim of the present work was to study the response of a suite of cellular and biochemical markers in the terrestrial snail Cantareus apertus exposed to mercury in view of future use as sensitive tool suitable for mercury polluted soil monitoring and assessment. Besides standardized biomarkers (metallothionein, acetylcholinesterase, and lysosomal membrane stability) novel cellular biomarkers on haemolymph cells were analyzed, including changes in the spread cells/round cells ratio and haemocyte morphometric alterations. The animals were exposed for 14 days to Lactuca sativa soaked for 1h in HgCl2 solutions (0.5 e 1 μM). The temporal dynamics of the responses were assessed by measurements at 3, 7 and 14 days. Following exposure to HgCl2 a significant alteration in the relative frequencies of round cells and spread cells was evident, with a time and dose-dependent increase of the frequencies of round cells with respect to spread cells. These changes were accompanied by cellular morphometric alterations. Concomitantly, a high correspondence between these cellular responses and metallothionein tissutal concentration, lysosomal membrane stability and inhibition of AChE was evident. The study highlights the usefulness of the terrestrial snail C. apertus as bioindicator organism for mercury pollution biomonitoring and, in particular, the use of haemocyte alterations as a suitable biomarker of pollutant effect to be included in a multibiomarker strategy.
Collapse
Affiliation(s)
- Alessandro Leomanni
- Dept. of Biological and Environmental Science and Technologies (DiSTeBa), Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy
| | - Trifone Schettino
- Dept. of Biological and Environmental Science and Technologies (DiSTeBa), Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy
| | - Antonio Calisi
- Dept. of Biological and Environmental Science and Technologies (DiSTeBa), Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy
| | - Maria Giulia Lionetto
- Dept. of Biological and Environmental Science and Technologies (DiSTeBa), Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
12
|
Rehberg M, Nekolla K, Sellner S, Praetner M, Mildner K, Zeuschner D, Krombach F. Intercellular Transport of Nanomaterials is Mediated by Membrane Nanotubes In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1882-1890. [PMID: 26854197 DOI: 10.1002/smll.201503606] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/22/2015] [Indexed: 06/05/2023]
Abstract
So-called membrane nanotubes are cellular protrusions between cells whose functions include cell communication, environmental sampling, and protein transfer. It has been previously reported that systemically administered carboxyl-modified quantum dots (cQDs) are rapidly taken up by perivascular macrophages in skeletal muscle of healthy mice. Expanding these studies, it is found, by means of in vivo fluorescence microscopy on the mouse cremaster muscle, rapid uptake of cQDs not only by perivascular macrophages but also by tissue-resident cells, which are localized more than 100 μm distant from the closest vessel. Confocal microscopy on muscle tissue, immunostained for the membrane dye DiI, reveals the presence of continuous membranous structures between MHC-II-positive, F4/80-positive cells. These structures contain microtubules, components of the cytoskeleton, which clearly colocalize with cQDs. The cQDs are exclusively found inside endosomal vesicles. Most importantly, by using in vivo fluorescence microscopy, this study detected fast (0.8 μm s(-1) , mean velocity), bidirectional movement of cQDs in such structures, indicating transport of cQD-containing vesicles along microtubule tracks by the action of molecular motors. The findings are the first to demonstrate membrane nanotube function in vivo and they suggest a previously unknown route for the distribution of nanomaterials in tissue.
Collapse
Affiliation(s)
- Markus Rehberg
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katharina Nekolla
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sabine Sellner
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marc Praetner
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | - Fritz Krombach
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
13
|
Golgi polarization plays a role in the directional migration of neonatal dermal fibroblasts induced by the direct current electric fields. Biochem Biophys Res Commun 2015; 460:255-60. [PMID: 25772616 DOI: 10.1016/j.bbrc.2015.03.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/05/2015] [Indexed: 12/30/2022]
Abstract
Directional cell migration requires cell polarization. The reorganization of the Golgi apparatus is an important phenomenon in the polarization and migration of many types of cells. Direct current electric fields (dc (EF) induced directional cell migration in a wide variety of cells. Here nHDFs migrated toward cathode under 1 V/cm dc EF, however 1 μM of brefeldin A (BFA) inhibited the dc EF induced directional migration. BFA (1 μM) did not cause the complete Golgi dispersal for 2 h. When the Golgi polarization maintained their direction of polarity, the direction of cell migration also kept toward the same direction of the Golgi polarization even though the dc EF was reversed. In this study, the importance of the Golgi polarization in the directional migration of nHDf under dc EF was identified.
Collapse
|
14
|
Darido C, Jane SM. Grhl3 and GEF19 in the front rho. Small GTPases 2014; 1:104-107. [PMID: 21686262 DOI: 10.4161/sgtp.1.2.13620] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 09/10/2010] [Accepted: 09/14/2010] [Indexed: 11/19/2022] Open
Abstract
Directional migration is a critical component of cell motility is observed in many diverse processes including embryogenesis, immune surveillance and wound repair. A central aspect of directional migration is cellular polarity, which is established through several signaling pathways that converge on the small GTPases. These factors orchestrate precise spatial and temporal organization of the actin cytoskeleton at the leading edge of the cell, and induce polarized capture and stabilization of microtubules and their associated microtubule organizing center (MTOC). Studies of the regulation of the GTPases have predominantly focused on post-translational mechanisms involving guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and guanine nucleotide dissociation inhibitors (GDIs). In this commentary, we examine the transcriptional regulation of these factors, focusing on the recently described regulation of RhoGEF19, an activator of RhoA, by the epidermal-specific transcription factor GRHL3, and the importance of this regulatory mechanism in wound repair. Our findings establish novel links between epidermal cell migration in wound healing and the planar cell polarity (PCP) signaling pathway, and establish a paradigm for tissue-specific regulation of Rho GTPase activity.
Collapse
Affiliation(s)
- Charbel Darido
- Rotary Bone Marrow Research Laboratories; Parkville, Victoria Australia
| | | |
Collapse
|
15
|
Zheng W, Xie Y, Sun K, Wang D, Zhang Y, Wang C, Chen Y, Jiang X. An on-chip study on the influence of geometrical confinement and chemical gradient on cell polarity. BIOMICROFLUIDICS 2014; 8:052010. [PMID: 25538801 PMCID: PMC4222261 DOI: 10.1063/1.4898209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/06/2014] [Indexed: 06/04/2023]
Abstract
Cell polarity plays key roles in tissue development, regeneration, and pathological processes. However, how the cells establish and maintain polarity is still obscure so far. In this study, by employing microfluidic techniques, we explored the influence of geometrical confinement and chemical stimulation on the cell polarity and their interplay. We found that teardrop shape-induced anterior/posterior polarization of cells displayed homogeneous distribution of epidermal growth factor receptor, and the polarity could be maintained in a uniform epidermal growth factor (EGF) solution, but be broken by a reverse gradient of EGF, implying different mechanism of geometrical and chemical cue-induced cell polarity. Further studies indicated that a teardrop pattern could cause polarized distribution of microtubule-organization center and nucleus-Golgi complex, and this polarity was weakened when the cells were released from the confinement. Our study provides the evidence regarding the difference between geometrical and chemical cue-induced cell polarity and would be useful for understanding relationship between polarity and directional migration of cells.
Collapse
Affiliation(s)
- Wenfu Zheng
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology , 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
| | - Yunyan Xie
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology , 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
| | - Kang Sun
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology , 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
| | - Dong Wang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology , 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
| | - Yi Zhang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology , 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
| | - Chen Wang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology , 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
| | - Yong Chen
- Ecole Normale Superieure , 24 rue Lhomond, Paris, France
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology , 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, China
| |
Collapse
|
16
|
Nielsen N, Lindemann O, Schwab A. TRP channels and STIM/ORAI proteins: sensors and effectors of cancer and stroma cell migration. Br J Pharmacol 2014; 171:5524-40. [PMID: 24724725 DOI: 10.1111/bph.12721] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/24/2014] [Accepted: 04/03/2014] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Cancer cells are strongly influenced by host cells within the tumour stroma and vice versa. This leads to the development of a tumour microenvironment with distinct physical and chemical properties that are permissive for tumour progression. The ability to migrate plays a central role in this mutual interaction. Migration of cancer cells is considered as a prerequisite for tumour metastasis and the migration of host stromal cells is required for reaching the tumour site. Increasing evidence suggests that transient receptor potential (TRP) channels and STIM/ORAI proteins affect key calcium-dependent mechanisms implicated in both cancer and stroma cell migration. These include, among others, cytoskeletal remodelling, growth factor/cytokine signalling and production, and adaptation to tumour microenvironmental properties such as hypoxia and oxidative stress. In this review, we will summarize the current knowledge regarding TRP channels and STIM/ORAI proteins in cancer and stroma cell migration. We focus on how TRP channel or STIM/ORAI-mediated Ca(2+) signalling directly or indirectly influences cancer and stroma cell migration by affecting the above listed mechanisms. LINKED ARTICLES This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.
Collapse
Affiliation(s)
- N Nielsen
- Institute of Physiology II, University of Münster, Münster, Germany
| | | | | |
Collapse
|
17
|
A cadherin switch underlies malignancy in high-grade gliomas. Oncogene 2014; 34:1991-2002. [DOI: 10.1038/onc.2014.122] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 12/14/2022]
|
18
|
Plestant C, Strale PO, Seddiki R, Nguyen E, Ladoux B, Mège RM. Adhesive interactions of N-cadherin limit the recruitment of microtubules to cell–cell contacts through organization of actomyosin. J Cell Sci 2014; 127:1660-71. [DOI: 10.1242/jcs.131284] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
ABSTRACT
Adhesive interactions of cadherins induce crosstalk between adhesion complexes and the actin cytoskeleton, allowing strengthening of adhesions and cytoskeletal organization. The underlying mechanisms are not completely understood, and microtubules (MTs) might be involved, as for integrin-mediated cell–extracellular-matrix adhesions. Therefore, we investigated the relationship between N-cadherin and MTs by analyzing the influence of N-cadherin engagement on MT distribution and dynamics. MTs progressed less, with a lower elongation rate, towards cadherin adhesions than towards focal adhesions. Increased actin treadmilling and the presence of an actomyosin contractile belt, suggested that actin relays inhibitory signals from cadherin adhesions to MTs. The reduced rate of MT elongation, associated with reduced recruitment of end-binding (EB) proteins to plus ends, was alleviated by expression of truncated N-cadherin, but was only moderately affected when actomyosin was disrupted. By contrast, destabilizing actomyosin fibers allowed MTs to enter the adhesion area, suggesting that tangential actin bundles impede MT growth independently of MT dynamics. Blocking MT penetration into the adhesion area strengthened cadherin adhesions. Taken together, these results establish a crosstalk between N-cadherin, F-actin and MTs. The opposing effects of cadherin and integrin engagement on actin organization and MT distribution might induce bias of the MT network during cell polarization.
Collapse
Affiliation(s)
- Charlotte Plestant
- Institut du Fer à Moulin, UMRS 839 INSERM, Université Pierre et Marie Curie, 75005 Paris, France
| | - Pierre-Olivier Strale
- Institut du Fer à Moulin, UMRS 839 INSERM, Université Pierre et Marie Curie, 75005 Paris, France
| | - Rima Seddiki
- Institut du Fer à Moulin, UMRS 839 INSERM, Université Pierre et Marie Curie, 75005 Paris, France
- Institut Jacques Monod, UMR7592 CNRS, Université Paris Diderot, 75013 Paris, France
| | - Emmanuelle Nguyen
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Benoit Ladoux
- Institut Jacques Monod, UMR7592 CNRS, Université Paris Diderot, 75013 Paris, France
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - René-Marc Mège
- Institut du Fer à Moulin, UMRS 839 INSERM, Université Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
19
|
Bisel B, Calamai M, Vanzi F, Pavone FS. Decoupling polarization of the Golgi apparatus and GM1 in the plasma membrane. PLoS One 2013; 8:e80446. [PMID: 24312472 PMCID: PMC3846482 DOI: 10.1371/journal.pone.0080446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/03/2013] [Indexed: 01/19/2023] Open
Abstract
Cell polarization is a process of coordinated cellular rearrangements that prepare the cell for migration. GM1 is synthesized in the Golgi apparatus and localized in membrane microdomains that appear at the leading edge of polarized cells, but the mechanism by which GM1 accumulates asymmetrically is unknown. The Golgi apparatus itself becomes oriented toward the leading edge during cell polarization, which is thought to contribute to plasma membrane asymmetry. Using quantitative image analysis techniques, we measure the extent of polarization of the Golgi apparatus and GM1 in the plasma membrane simultaneously in individual cells subject to a wound assay. We find that GM1 polarization starts just 10 min after stimulation with growth factors, while Golgi apparatus polarization takes 30 min. Drugs that block Golgi polarization or function have no effect on GM1 polarization, and, conversely, inhibiting GM1 polarization does not affect Golgi apparatus polarization. Evaluation of Golgi apparatus and GM1 polarization in single cells reveals no correlation between the two events. Our results indicate that Golgi apparatus and GM1 polarization are controlled by distinct intracellular cascades involving the Ras/Raf/MEK/ERK and the PI3K/Akt/mTOR pathways, respectively. Analysis of cell migration and invasion suggest that MEK/ERK activation is crucial for two dimensional migration, while PI3K activation drives three dimensional invasion, and no cumulative effect is observed from blocking both simultaneously. The independent biochemical control of GM1 polarity by PI3K and Golgi apparatus polarity by MEK/ERK may act synergistically to regulate and reinforce directional selection in cell migration.
Collapse
Affiliation(s)
- Blaine Bisel
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- * E-mail:
| | - Martino Calamai
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council of Italy (CNR), Florence, Italy
| | - Francesco Vanzi
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- Department of Evolutionary Biology “Leo Pardi”, University of Florence, Florence, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
20
|
Stock C, Ludwig FT, Hanley PJ, Schwab A. Roles of ion transport in control of cell motility. Compr Physiol 2013; 3:59-119. [PMID: 23720281 DOI: 10.1002/cphy.c110056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell motility is an essential feature of life. It is essential for reproduction, propagation, embryonic development, and healing processes such as wound closure and a successful immune defense. If out of control, cell motility can become life-threatening as, for example, in metastasis or autoimmune diseases. Regardless of whether ciliary/flagellar or amoeboid movement, controlled motility always requires a concerted action of ion channels and transporters, cytoskeletal elements, and signaling cascades. Ion transport across the plasma membrane contributes to cell motility by affecting the membrane potential and voltage-sensitive ion channels, by inducing local volume changes with the help of aquaporins and by modulating cytosolic Ca(2+) and H(+) concentrations. Voltage-sensitive ion channels serve as voltage detectors in electric fields thus enabling galvanotaxis; local swelling facilitates the outgrowth of protrusions at the leading edge while local shrinkage accompanies the retraction of the cell rear; the cytosolic Ca(2+) concentration exerts its main effect on cytoskeletal dynamics via motor proteins such as myosin or dynein; and both, the intracellular and the extracellular H(+) concentration modulate cell migration and adhesion by tuning the activity of enzymes and signaling molecules in the cytosol as well as the activation state of adhesion molecules at the cell surface. In addition to the actual process of ion transport, both, channels and transporters contribute to cell migration by being part of focal adhesion complexes and/or physically interacting with components of the cytoskeleton. The present article provides an overview of how the numerous ion-transport mechanisms contribute to the various modes of cell motility.
Collapse
Affiliation(s)
- Christian Stock
- Institute of Physiology II, University of Münster, Münster, Germany.
| | | | | | | |
Collapse
|
21
|
Abstract
Morphological polarization involving changes in cell shape and redistribution of cellular signaling machinery, initiate the migration of mammalian cells. Golgi complex typically localizes in front of the nucleus, and this frontwards polarization has been proposed to be involved in directional migration. However, the sequence of events remains unresolved. Does Golgi polarization precede directional migration or vice-versa? We address this question by constraining cells to specific areas and shapes then tracking their motile behavior and the spatio-temporal distribution of Golgi apparatus upon release. Results show that while the position of the Golgi complex depends on the cell geometry, the subcellular localization of the Golgi complex does not define the cell's leading edge. Cells constrained within elongated geometries exhibit polarized extension of lamellipodia and upon release, migrate preferentially along the long axis of the cell. Minimally constrained cells released from larger areas however, exhibit retarded migration regardless of lamellipodia protrusion activity.
Collapse
|
22
|
Jones MC, Machida K, Mayer BJ, Turner CE. Paxillin kinase linker (PKL) regulates Vav2 signaling during cell spreading and migration. Mol Biol Cell 2013; 24:1882-94. [PMID: 23615439 PMCID: PMC3681694 DOI: 10.1091/mbc.e12-09-0654] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Rho family of GTPases plays an important role in coordinating dynamic changes in the cell migration machinery after integrin engagement with the extracellular matrix. Rho GTPases are activated by guanine nucleotide exchange factors (GEFs) and negatively regulated by GTPase-activating proteins (GAPs). However, the mechanisms by which GEFs and GAPs are spatially and temporally regulated are poorly understood. Here the activity of the proto-oncogene Vav2, a GEF for Rac1, RhoA, and Cdc42, is shown to be regulated by a phosphorylation-dependent interaction with the ArfGAP PKL (GIT2). PKL is required for Vav2 activation downstream of integrin engagement and epidermal growth factor (EGF) stimulation. In turn, Vav2 regulates the subsequent redistribution of PKL and the Rac1 GEF β-PIX to focal adhesions after EGF stimulation, suggesting a feedforward signaling loop that coordinates PKL-dependent Vav2 activation and PKL localization. Of interest, Vav2 is required for the efficient localization of PKL and β-PIX to the leading edge of migrating cells, and knockdown of Vav2 results in a decrease in directional persistence and polarization in migrating cells, suggesting a coordination between PKL/Vav2 signaling and PKL/β-PIX signaling during cell migration.
Collapse
Affiliation(s)
- Matthew C Jones
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210-2375, USA
| | | | | | | |
Collapse
|
23
|
Ko YG, Co CC, Ho CC. Gradient-free directional cell migration in continuous microchannels. SOFT MATTER 2013; 9:2467-2474. [PMID: 24533031 PMCID: PMC3921693 DOI: 10.1039/c2sm27567h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Directing cell movements within 3D channels is a key challenge in biomedical devices and tissue engineering. In two dimensions, closely spaced arrays of asymmetric teardrop islands can intermittently polarize cells and sustain their autonomous directional migration with no gradients. However, in 3D microchannels composed of linearly connected teardrop segments, negligibly low directional bias is observed. Rather than adopt teardrop shapes, cells evade morphological polarization by spreading across multiple teardrop segments, only partly filling each. We demonstrate here that cells can be forced to adopt the shape of individual segments by connecting the segments at an angle to minimize cell spreading across multiple segments. The resulting rhythmic polarization leads to significant directional bias for NIH3T3 fibroblasts, epithelial cells, and even cells whose intracellular signalling have been purposely altered to affect lamellipodia extension (Rac1) and cell polarity (Cdc42). This gradient-free approach to directing cell migration in 3D microchannels may find significant applications in tissue scaffolds and cell on a chip devices.
Collapse
Affiliation(s)
- Young-Gwang Ko
- Department of Chemical and Materials Engineering, University of Cincinnati, OH45221, USA. Fax: 1 513 556 3473; Tel: 1 513 556 2438
| | - Carlos C. Co
- Department of Chemical and Materials Engineering, University of Cincinnati, OH45221, USA. Fax: 1 513 556 3473; Tel: 1 513 556 2438
| | - Chia-Chi Ho
- Department of Chemical and Materials Engineering, University of Cincinnati, OH45221, USA. Fax: 1 513 556 3473; Tel: 1 513 556 2438
| |
Collapse
|
24
|
Schwab A, Fabian A, Hanley PJ, Stock C. Role of ion channels and transporters in cell migration. Physiol Rev 2013; 92:1865-913. [PMID: 23073633 DOI: 10.1152/physrev.00018.2011] [Citation(s) in RCA: 315] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell motility is central to tissue homeostasis in health and disease, and there is hardly any cell in the body that is not motile at a given point in its life cycle. Important physiological processes intimately related to the ability of the respective cells to migrate include embryogenesis, immune defense, angiogenesis, and wound healing. On the other side, migration is associated with life-threatening pathologies such as tumor metastases and atherosclerosis. Research from the last ≈ 15 years revealed that ion channels and transporters are indispensable components of the cellular migration apparatus. After presenting general principles by which transport proteins affect cell migration, we will discuss systematically the role of channels and transporters involved in cell migration.
Collapse
|
25
|
Johnson MD, O'Connell M. Na-K-2Cl cotransporter and aquaporin 1 in arachnoid granulations, meningiomas, and meningiomas invading dura. Hum Pathol 2013; 44:1118-24. [PMID: 23317544 DOI: 10.1016/j.humpath.2012.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 09/26/2012] [Accepted: 09/28/2012] [Indexed: 11/30/2022]
Abstract
Meningioma invasion of the dura may contribute to the high rate of recurrence. Recently, ion channels that affect cell shape and movement have been implicated in cancer invasion. Combined Na-K-2Cl cotransporter (NKCC1) and aquaporin 1 (AQP1) expression in arachnoid granulations and meningiomas with and without dural invasion has not been characterized. Arachnoid granulations associated with dura were collected from 10 adult formalin-fixed dura/leptomeninges. Thirty-four frozen meningiomas were evaluated by Western blot. An additional 58 formalin-fixed, paraffin-embedded meningiomas including 36 World Health Organization grade I, 15 grade II, and 7 grade III meningiomas were evaluated by immunohistochemistry. By Western blot, NKCC1 was found in 17 (100%) of 17 World Health Organization grade I, 13 (87%) of 15 grade II, and both grade III meningiomas. Distinct AQP1 was not detected in the meningioma lysates tested. By immunohistochemistry, extensive NKCC1 but no AQP1 immunoreactivity was detected in the arachnoid granulation cells. Extensive NKCC1 was detected in meningioma cells in 56 and in capillaries in 43 by immunohistochemistry. In those tumors with dural or bone/soft tissue invasion, NKCC1 immunoreactivity was seen in invading cells in all cases and in their capillaries in the majority. AQP1 was detected in meningioma cells in 29 and in capillaries in all. AQP1 was also detected in cells and capillaries invading the dura or bone in 10 and 18 of 18, respectively. This was extensive in all subtypes of meningiomas studied. These findings suggest that NKCC1 and AQP1 participate in meningioma biology and invasion. NKCC1 might be targeted by FDA-approved NKCC1 inhibitors.
Collapse
Affiliation(s)
- Mahlon D Johnson
- Department of Pathology, Division of Neuropathology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | |
Collapse
|
26
|
Abstract
Cell shape is known to have profound effects on a number of cell behaviors. In this paper we have studied its role in cell migration through modeling the effect of cell shape on the cell traction force distribution, the traction force dependent stability of cell adhesion and the matrix rigidity dependent traction force formation. To quantify the driving force of cell migration, a new parameter called the motility factor, that takes account of the effect of cell shape, matrix rigidity and dynamic stability of cell adhesion, is proposed. We showed that the motility factor depends on the matrix rigidity in a biphasic manner, which is consistent with the experimental observations of the biphasic dependence of cell migration speed on the matrix rigidity. We showed that the cell shape plays a pivotal role in the cell migration behavior by regulating the traction force at the cell front and rear. The larger the cell polarity, the larger the motility factor is. The keratocyte-like shape has a larger motility factor than the fibroblast-like shape, which explains why keratocyte has a much higher migration speed. The motility factor might be an appropriate parameter for a quantitative description of the driving force of cell migration.
Collapse
Affiliation(s)
- Yuan Zhong
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology, Beijing, People's Republic of China
| | | |
Collapse
|
27
|
Happel P, Möller K, Schwering NK, Dietzel ID. Migrating oligodendrocyte progenitor cells swell prior to soma dislocation. Sci Rep 2013; 3:1806. [PMID: 23657670 PMCID: PMC3648797 DOI: 10.1038/srep01806] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/24/2013] [Indexed: 11/09/2022] Open
Abstract
The migration of oligodendrocyte progenitor cells (OPCs) to the white matter is an indispensable requirement for an intact brain function. The mechanism of cell migration in general is not yet completely understood. Nevertheless, evidence is accumulating that besides the coordinated rearrangement of the cytoskeleton, a finetuned interplay of ion and water fluxes across the cell membrane is essential for cell migration. One part of a general hypothesis is that a local volume increase towards the direction of movement triggers a mechano-activated calcium influx that regulates various procedures at the rear end of a migrating cell. Here, we investigated cell volume changes of migrating OPCs using scanning ion conductance microscopy. We found that during accelerated migration OPCs undergo an increase in the frontal cell body volume. These findings are supplemented with time lapse calcium imaging data that hint an increase in calcium content the frontal part of the cell soma.
Collapse
Affiliation(s)
- Patrick Happel
- Central Unit for Ionbeams and Radionuclides (RUBION), Ruhr-University Bochum, Bochum, Germany.
| | | | | | | |
Collapse
|
28
|
Abstract
There is increasing evidence to support a gene economy model that is fully based on the principles of evolution in which a limited number of proteins does not necessarily reflect a finite number of biochemical processes. The concept of 'gene sharing' proposes that a single protein can have alternate functions that are typically attributed to other proteins. GAPDH appears to play this role quite well in that it exhibits more than one function. GAPDH represents the prototype for this new paradigm of protein multi-functionality. The chapter discusses the diverse functions of GAPDH among three broad categories: cell structure, gene expression and signal transduction. Protein function is curiously re-specified given the cell's unique needs. GAPDH provides the cell with the means of linking metabolic activity to various cellular processes. While interpretations may often lead to GAPDH's role in meeting focal energy demands, this chapter discusses several other very distinct GAPDH functions (i.e. membrane fusogenic properties) that are quite different from its ability to catalyze oxidative phosphorylation of the triose, glyceraldehyde 3-phosphate. It is suggested that a single protein participates in multiple processes in the structural organization of the cell, controls the transmission of genetic information (i.e. GAPDH's involvement may not be finite) and mediates intracellular signaling.
Collapse
|
29
|
Barrow J. Wnt/planar cell polarity signaling: an important mechanism to coordinate growth and patterning in the limb. Organogenesis 2012; 7:260-6. [PMID: 22198433 DOI: 10.4161/org.7.4.19049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The limb is one of the premier models for studying how a simple embryonic anlage develops into complex three-dimensional form. One of the key issues in the limb field has been to determine how the limb becomes patterned along its proximal (shoulder/hip) to distal (digits) axis. For decades it has been known that the apical ectodermal ridge (AER) plays a crucial role in distal outgrowth and patterning of the vertebrate embryonic limb. Most studies have explored the relationship between the AER and the progressive assignment of cell fates to mesenchyme along the proximal to distal (PD) axis. Comparatively few, however, have examined the additional role of the AER to regulate distal outgrowth of the limb and how this growth may also influence pattern along the PD axis. Here, I will review key studies that explore the role of growth in limb development. In particular, I will focus on a recent flurry of papers that examine the role of the Wnt/planar cell polarity (PCP) pathway in regulating directed growth of the limb mesenchyme. Finally, I will discuss a potential mechanism that relates the AER to the Wnt/PCP pathway and how directed growth can play a role in shaping the limb along the PD axis.
Collapse
Affiliation(s)
- Jeffery Barrow
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
30
|
A role for PP1/NIPP1 in steering migration of human cancer cells. PLoS One 2012; 7:e40769. [PMID: 22815811 PMCID: PMC3397927 DOI: 10.1371/journal.pone.0040769] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/13/2012] [Indexed: 01/03/2023] Open
Abstract
Electrical gradients are present in many developing and regenerating tissues and around tumours. Mimicking endogenous electric fields in vitro has profound effects on the behaviour of many cell types. Intriguingly, specific cell types migrate cathodally, others anodally and some polarise with their long axis perpendicular to the electric vector. These striking phenomena are likely to have in vivo relevance since one of the determining factors during cancer metastasis is the ability to switch between attractive and repulsive migration in response to extracellular guidance stimuli. We present evidence that the cervical cancer cell line HeLa migrates cathodally in a direct current electric field of physiological intensity, while the strongly metastatic prostate cancer cell line PC-3-M migrates anodally. Notably, genetic disruption of protein serine/threonine phosphatase-1 (PP1) and its regulator NIPP1 decrease directional migration in these cell lines. Conversely, the inducible expression of NIPP1 switched the directional response of HeLa cells from cathodal to slightly anodal in a PP1-dependent manner. Remarkably, induction of a hyperactive PP1/NIPP1 holoenzyme, further shifted directional migration towards the anode. We show that PP1 association with NIPP1 upregulates signalling by the GTPase Cdc42 and demonstrate that pharmacological inhibition of Cdc42 in cells overexpressing NIPP1 recovered cathodal migration. Taken together, we provide the first evidence for regulation of directional cell migration by NIPP1. In addition, we identify PP1/NIPP1 as a novel molecular compass that controls directed cell migration via upregulation of Cdc42 signalling and suggest a way by which PP1/NIPP1 may contribute to the migratory properties of cancer cells.
Collapse
|
31
|
Kapoor S, Panda D. Kinetic stabilization of microtubule dynamics by indanocine perturbs EB1 localization, induces defects in cell polarity and inhibits migration of MDA-MB-231 cells. Biochem Pharmacol 2012; 83:1495-506. [PMID: 22387536 DOI: 10.1016/j.bcp.2012.02.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/15/2012] [Accepted: 02/16/2012] [Indexed: 01/11/2023]
Abstract
Cell motility is an essential aspect of metastatic spread of cancer. Microtubule-targeted agents exhibit anti-metastatic properties, the underlying mechanism of which remains understudied. In this study, we have investigated the role of microtubule dynamics in migration of cancer cells using indanocine, a synthetic small molecule inhibitor of tubulin. We found that indanocine, at concentrations that did not visibly affect microtubule organization, suppressed dynamic instability of microtubules and reduced the rate of migration of highly metastatic MDA-MB-231 cells. Indanocine-treated cells were defective in lamellipodium formation and could not develop polarized morphology. The kinetic stabilization of microtubules was associated with a marked increase in their acetylation level and a perturbation in the localization of EB1, a microtubule plus end binding protein. Using standard scratch wound healing assay and immunofluorescence analysis; we found that microtubule acetylation occurred in the direction of migration in vehicle-treated cells, whereas indanocine treatment led to a global acetylation of microtubules. The results together suggested that selective stabilization of microtubules was perturbed in the presence of indanocine that possibly resulted in lack of cell polarization and a concurrent reduction in migration of cells. Moreover, microtubule stabilization by indanocine affected adhesion turnover and impaired the polarized pattern of adhesion sites in cells. Together the results indicated that the regulation of microtubule dynamics is required to coordinate cell polarization as well as adhesion asymmetry and support the hypothesis that the perturbation of microtubule dynamics by tubulin-targeted agents can be exploited to restrict the migration of tumor cells.
Collapse
Affiliation(s)
- Sonia Kapoor
- Wadhwani Research Centre, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | | |
Collapse
|
32
|
Zhao M, Chalmers L, Cao L, Vieira AC, Mannis M, Reid B. Electrical signaling in control of ocular cell behaviors. Prog Retin Eye Res 2012; 31:65-88. [PMID: 22020127 PMCID: PMC3242826 DOI: 10.1016/j.preteyeres.2011.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/01/2011] [Accepted: 10/04/2011] [Indexed: 12/13/2022]
Abstract
Epithelia of the cornea, lens and retina contain a vast array of ion channels and pumps. Together they produce a polarized flow of ions in and out of cells, as well as across the epithelia. These naturally occurring ion fluxes are essential to the hydration and metabolism of the ocular tissues, especially for the avascular cornea and lens. The directional transport of ions generates electric fields and currents in those tissues. Applied electric fields affect migration, division and proliferation of ocular cells which are important in homeostasis and healing of the ocular tissues. Abnormalities in any of those aspects may underlie many ocular diseases, for example chronic corneal ulcers, posterior capsule opacity after cataract surgery, and retinopathies. Electric field-inducing cellular responses, termed electrical signaling here, therefore may be an unexpected yet powerful mechanism in regulating ocular cell behavior. Both endogenous electric fields and applied electric fields could be exploited to regulate ocular cells. We aim to briefly describe the physiology of the naturally occurring electrical activities in the corneal, lens, and retinal epithelia, to provide experimental evidence of the effects of electric fields on ocular cell behaviors, and to suggest possible clinical implications.
Collapse
Affiliation(s)
- Min Zhao
- Department of Dermatology, UC Davis School of Medicine, 2921 Stockton Blvd., Sacramento, CA 95817, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Mashidori T, Shirataki H, Kamai T, Nakamura F, Yoshida KI. Increased alpha-taxilin protein expression is associated with the metastatic and invasive potential of renal cell cancer. ACTA ACUST UNITED AC 2011; 32:103-10. [PMID: 21551945 DOI: 10.2220/biomedres.32.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intracellular vesicle trafficking is the principal transportation system in eukaryotic cells, and is considered to be involved in a variety of processes related to cell proliferation. A protein named alpha-taxilin has been identified as a binding partner of the syntaxin family, which coordinates intracellular vesicle trafficking. To clarify the role of alpha-taxilin in renal cell carcinoma (RCC), we investigated alpha-taxilin protein expression in clear cell RCC tissues. We analyzed alphataxilin protein in matched sets of tumor and non-tumor tissues from the surgical specimens of 52 Japanese RCC patients by Western blotting. We also studied the relation between alpha-taxilin protein expression in tumor tissues and various clinicopathological features. The alpha-taxilin protein level was higher in tumor tissues than in non-tumor tissues (P < 0.05). Increased expression of alpha-taxilin protein in primary tumors was related to local invasion (P < 0.001), pathological vessel invasion (P < 0.001), and metastasis (P < 0.0001). Kaplan-Meier plots of survival for patients with low versus high alpha-taxilin expression revealed that high expression in tumor tissues was associated with shorter overall survival in all patients (P < 0.05) and with shorter disease-free survival in patients without metastasis (P < 0.01). These findings suggest that alpha-taxilin influences the metastatic and invasive potential of RCC.
Collapse
Affiliation(s)
- Tomoko Mashidori
- Department of Urology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | | | | | | | | |
Collapse
|
34
|
Cuddapah VA, Sontheimer H. Ion channels and transporters [corrected] in cancer. 2. Ion channels and the control of cancer cell migration. Am J Physiol Cell Physiol 2011; 301:C541-9. [PMID: 21543740 DOI: 10.1152/ajpcell.00102.2011] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A hallmark of high-grade cancers is the ability of malignant cells to invade unaffected tissue and spread disease. This is particularly apparent in gliomas, the most common and lethal type of primary brain cancer affecting adults. Migrating cells encounter restricted spaces and appear able to adjust their shape to accommodate to narrow extracellular spaces. A growing body of work suggests that cell migration/invasion is facilitated by ion channels and transporters. The emerging concept is that K(+) and Cl(-) function as osmotically active ions, which cross the plasma membrane in concert with obligated water thereby adjusting a cell's shape and volume. In glioma cells Na(+)-K(+)-Cl(-) cotransporters (NKCC1) actively accumulate K(+) and Cl(-), establishing a gradient for KCl efflux. Ca(2+)-activated K(+) channels and voltage-gated Cl(-) channels are largely responsible for effluxing KCl promoting hydrodynamic volume changes. In other cancers, different K(+) or even Na(+) channels may function in concert with a variety of Cl(-) channels to support similar volume changes. Channels involved in migration are frequently regulated by Ca(2+) signaling, most likely coupling extracellular stimuli to cell migration. Importantly, the inhibition of ion channels and transporters appears to be clinically relevant for the treatment of cancer. Recent preclinical data indicates that inhibition of NKCC1 with an FDA-approved drug decreases neoplastic migration. Additionally, ongoing clinical trials demonstrate that an inhibitor of chloride channels may be a therapy for the treatment of gliomas. Data reviewed here strongly indicate that ion channels are a promising target for the development of novel therapeutics to combat cancer.
Collapse
Affiliation(s)
- Vishnu Anand Cuddapah
- Department of Neurobiology and Center for Glial Biology in Medicine, University of Alabama at Birmingham, USA
| | | |
Collapse
|
35
|
Abstract
Actin-rich cellular protrusions or pseudopodia form via local actin filament polymerization and branching and represent a variety of polarized cellular domains including lamellipodia, filipodia, and neuronal growth cones. RNA localization and local protein translation in these domains are important for various cellular processes. RNA transport and local synthesis have been implicated in cell migration and tumor cell metastasis as well as in neuronal plasticity in neurons. Characterization of the mRNAs present in these domains is key to understanding the functional role of mRNA translocation and local protein translation in cellular processes. We describe here a method to segregate pseudopodia of metastatic cancer cells from the cell body using porous polycarbonate filters. This approach enables the purification and identification of RNAs and proteins in these protrusive cellular domains.
Collapse
|
36
|
Native type IV collagen induces cell migration through a CD9 and DDR1-dependent pathway in MDA-MB-231 breast cancer cells. Eur J Cell Biol 2010; 89:843-52. [PMID: 20709424 DOI: 10.1016/j.ejcb.2010.07.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 07/02/2010] [Accepted: 07/02/2010] [Indexed: 12/25/2022] Open
Abstract
CD9 is a member of the tetraspanin family and is widely expressed in the plasma membrane of several cell types as well as malignant cells. CD9 associates with a number of transmembrane proteins, which facilitates biological processes, including cell signaling, adhesion, migration and proliferation. DDR1 is activated by native type IV collagen and overexpressed in human breast cancer. Type IV collagen is the main component of basement membranes, and may interact with cell surface biomolecules, promoting adhesion and motility. However, the role of DDR1 and type IV collagen in the regulation of CD9-cell surface levels and migration in breast cancer cells has not been studied in detail. We demonstrate here that native type IV collagen induces a transient increase of CD9-cell surface levels through a DDR1-dependent pathway in MDA-MB-231 breast cancer cells, as revealed by flow cytometry and Western blotting using specific antibodies that recognize CD9. In contrast, type IV collagen does not induce any increase of CD9-cell surface levels in the mammary non-tumorigenic epithelial cells MCF10A and MCF12A. Transient increase of CD9-cell surface levels is coupled with clathrin-mediated endocytosis and it is dependent of DDR1 expression. In addition, type IV collagen induces cell migration through a DDR1 and CD9-dependent pathway. In summary, our data demonstrate, for the first time, that native type IV collagen induces a transient increase of CD9-cell surface levels and cell migration through a DDR1 and CD9-dependent pathway in MDA-MB-231 breast cancer cells.
Collapse
|
37
|
Kuroda H, Saito K, Kuroda M, Suzuki Y. Differential expression of glu-tubulin in relation to mammary gland disease. Virchows Arch 2010; 457:477-82. [PMID: 20697907 DOI: 10.1007/s00428-010-0955-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/17/2010] [Accepted: 07/25/2010] [Indexed: 12/13/2022]
Abstract
Tubulin is one of the molecular components that regulate cytosketal structure relating to cell differentiation, invasion, and metastasis in cancer. Recently, glu-tubulin, in which the C-terminal tyrosine of α-tubulin is removed by tubulin carboxypeptidase, overexpression has been reported in malignant tumors of the mammary gland immunohistochemically. We identified 147 cases accessioned in the Department of Pathology, International University of Health and Welfare Hospital from 2003 to 2009. Of the 78 malignant tumor cases, staining for glu-tubulin was observed in 56 (71.8%), and only 22 cases showed no significant staining. However, in benign disease, glu-tubulin staining was detected in the cytoplasm of fibroblasts and endothelial cells, but was completely absent from epithelial cells in 64 of 69 cases. When the expression of glu-tubulin was compared between malignant tumor, benign tumor, and other benign disease, a significant differentiation was found among expressions of this protein. These results indicate that glu-tubulin represents a strong selective expression for cancer cells and may be useful to identify and quantify human breast cancer.
Collapse
Affiliation(s)
- Hajime Kuroda
- Department of Pathology, International University of Health and Welfare Hospital, Nasushiobara, Tochigi 329-2763, Japan.
| | | | | | | |
Collapse
|
38
|
Wyngaarden LA, Vogeli KM, Ciruna BG, Wells M, Hadjantonakis AK, Hopyan S. Oriented cell motility and division underlie early limb bud morphogenesis. Development 2010; 137:2551-8. [PMID: 20554720 DOI: 10.1242/dev.046987] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The vertebrate limb bud arises from lateral plate mesoderm and its overlying ectoderm. Despite progress regarding the genetic requirements for limb development, morphogenetic mechanisms that generate early outgrowth remain relatively undefined. We show by live imaging and lineage tracing in different vertebrate models that the lateral plate contributes mesoderm to the early limb bud through directional cell movement. The direction of cell motion, longitudinal cell axes and bias in cell division planes lie largely parallel to one another along the rostrocaudal (head-tail) axis in lateral plate mesoderm. Transition of these parameters from a rostrocaudal to a mediolateral (outward from the body wall) orientation accompanies early limb bud outgrowth. Furthermore, we provide evidence that Wnt5a acts as a chemoattractant in the emerging limb bud where it contributes to the establishment of cell polarity that is likely to underlie the oriented cell behaviours.
Collapse
Affiliation(s)
- Laurie A Wyngaarden
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Le Foll F, Rioult D, Boussa S, Pasquier J, Dagher Z, Leboulenger F. Characterisation of Mytilus edulis hemocyte subpopulations by single cell time-lapse motility imaging. FISH & SHELLFISH IMMUNOLOGY 2010; 28:372-386. [PMID: 19944763 DOI: 10.1016/j.fsi.2009.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 10/28/2009] [Accepted: 11/14/2009] [Indexed: 05/28/2023]
Abstract
In bivalve molluscs, defence against pathogens mainly relies on fast tissue infiltration by immunocompetent hemocytes that migrate from circulating hemolymph to sites of infection, in order to deliver, in situ, an effective immune response. In the present work, we have investigated dynamics of hemocyte subpopulations motility by combining flow cytometry coupled to Coulter-type cell volume determination, Hoffman modulation contrast microscopy, time-lapse imaging and off-line analysis of cell shape changes. Our results revealed fast modifications of hemocyte aspect in vitro, with bidirectional transitions from spread outlines to condensed cell body morphologies, in the minute range. Amoeboid or non-amoeboid types of locomotion were observed, depending on the cell shapes and on the cell subtypes, with velocities reaching up to 30 mum min(-1). Correlations between motion profiles, Hemacolor staining and flow cytometry analysis on living cells help to propose a functional mussel hemocyte classification including the motile properties of these cells. In particular, basophils were shown to be involved in dynamic hemocyte-hemocyte interactions and in the constitution of aggregation cores. Physiological implications, in terms of immune response in organisms devoid of endothelium-closed vascular system, and potential applications of hemocyte motility studies for the development and the interpretation of experiments involving hemocytes in the field of marine ecotoxicology are discussed.
Collapse
Affiliation(s)
- Frank Le Foll
- Laboratory of Ecotoxicology, University of Le Havre, EA 3222, IFRMP 23, BP 540, 76058 Le Havre cedex, France.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
The ER (endoplasmic reticulum) is a fascinating organelle that is highly dynamic, undergoing constant movement and reorganization. It has many key roles, including protein synthesis, folding and trafficking, calcium homoeostasis and lipid synthesis. It can expand in size when needed, and the balance between tubular and lamellar regions can be altered. The distribution and organization of the ER depends on both motile and static interactions with microtubules and the actin cytoskeleton. In the present paper, we review how the ER moves, and consider why this movement may be important for ER and cellular function.
Collapse
|
41
|
Loose M, Schwille P. Biomimetic membrane systems to study cellular organization. J Struct Biol 2009; 168:143-51. [DOI: 10.1016/j.jsb.2009.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 03/26/2009] [Accepted: 03/30/2009] [Indexed: 12/23/2022]
|
42
|
Abstract
Cell motility is important for many physiological and pathological processes including organ development, wound healing, cancer metastasis and correct immune responses. In particular, epithelial wound healing is both a medically relevant topic and a common experimental model. Mechanisms underlying generation of a polarized cell and maintenance of a motile phenotype during steady-state migration are not well understood. Polarized trafficking of bulk membrane and cell adhesion molecules has been implicated in regulation of cell motility. The present review focuses on the role of different trafficking pathways in epithelial cell migration, including clathrin-mediated endocytosis, caveolar endocytosis, exocytosis of biosynthetic cargo, ‘short-loop’ and ‘long-loop’ endosomal recycling.
Collapse
|
43
|
Hauge H, Fjelland KE, Sioud M, Aasheim HC. Evidence for the involvement of FAM110C protein in cell spreading and migration. Cell Signal 2009; 21:1866-73. [PMID: 19698782 DOI: 10.1016/j.cellsig.2009.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 08/03/2009] [Accepted: 08/07/2009] [Indexed: 10/20/2022]
Abstract
A number of factors, including protein kinases, Rho GTPases and actin and microtubule cytoskeletons play a crucial role in cell migration and spreading. We have recently shown that ectopic expression of FAM110C can alter cellular morphology by mechanisms yet to be determined. In this study, a FAM110C antiserum has been developed and used to study endogenously expressed FAM110C. Our data show that FAM110C is expressed by different cell lines and it can be detected throughout the cell. Interestingly, depletion of FAM110C by short interfering RNA reduced integrin-mediated filopodia formation, hepatocyte growth factor-induced migration, and phosphorylation of the Akt1 kinase in the epithelial cell line HepG2. Furthermore, co-immunoprecipitation and co-localization studies show that both ectopically and endogenously expressed FAM110C interact, or is part of a protein complex, with the Akt1 kinase. This interaction is transient and follows the activation of Akt1. In addition, we show that alpha-tubulin co-precipitates with FAM110C which further supports an interaction with the microtubule cytoskeleton. Collectively, these findings suggest a new function for FAM110C in the regulation of cell spreading, migration and filopodia induction.
Collapse
Affiliation(s)
- Helena Hauge
- Department of Immunology the Norwegian Radium Hospital Rikshospitalet University Hospital, Oslo, Norway
| | | | | | | |
Collapse
|
44
|
Patel PC, Fisher KH, Yang ECC, Deane CM, Harrison RE. Proteomic analysis of microtubule-associated proteins during macrophage activation. Mol Cell Proteomics 2009; 8:2500-14. [PMID: 19651621 DOI: 10.1074/mcp.m900190-mcp200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Classical activation of macrophages induces a wide range of signaling and vesicle trafficking events to produce a more aggressive cellular phenotype. The microtubule (MT) cytoskeleton is crucial for the regulation of immune responses. In the current study, we used a large scale proteomics approach to analyze the change in protein composition of the MT-associated protein (MAP) network by macrophage stimulation with the inflammatory cytokine interferon-gamma and the endotoxin lipopolysaccharide. Overall the analysis identified 409 proteins that bound directly or indirectly to MTs. Of these, 52 were up-regulated 2-fold or greater and 42 were down-regulated 2-fold or greater after interferon-gamma/lipopolysaccharide stimulation. Bioinformatics analysis based on publicly available binary protein interaction data produced a putative interaction network of MAPs in activated macrophages. We confirmed the up-regulation of several MAPs by immunoblotting and immunofluorescence analysis. More detailed analysis of one up-regulated protein revealed a role for HSP90beta in stabilization of the MT cytoskeleton during macrophage activation.
Collapse
Affiliation(s)
- Prerna C Patel
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | | | | | | | | |
Collapse
|
45
|
Chien J, Ota T, Aletti G, Shridhar R, Boccellino M, Quagliuolo L, Baldi A, Shridhar V. Serine protease HtrA1 associates with microtubules and inhibits cell migration. Mol Cell Biol 2009; 29:4177-87. [PMID: 19470753 PMCID: PMC2715801 DOI: 10.1128/mcb.00035-09] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 02/25/2009] [Accepted: 05/18/2009] [Indexed: 12/20/2022] Open
Abstract
HtrA1 belongs to a family of serine proteases found in organisms ranging from bacteria to humans. Bacterial HtrA1 (DegP) is a heat shock-induced protein that behaves as a chaperone at low temperature and as a protease at high temperature to help remove unfolded proteins during heat shock. In contrast to bacterial HtrA1, little is known about the function of human HtrA1. Here, we report the first evidence that human HtrA1 is a microtubule-associated protein and modulates microtubule stability and cell motility. Intracellular HtrA1 is localized to microtubules in a PDZ (PSD95, Dlg, ZO1) domain-dependent, nocodazole-sensitive manner. During microtubule assembly, intracellular HtrA associates with centrosomes and newly polymerized microtubules. In vitro, purified HtrA1 promotes microtubule assembly. Moreover, HtrA1 cosediments and copurifies with microtubules. Purified HtrA1 associates with purified alpha- and beta-tubulins, and immunoprecipitation of endogenous HtrA1 results in coprecipitation of alpha-, beta-, and gamma-tubulins. Finally, downregulation of HtrA1 promotes cell motility, whereas enhanced expression of HtrA1 attenuates cell motility. These results offer an original identification of HtrA1 as a microtubule-associated protein and provide initial mechanistic insights into the role of HtrA1 in the regulation of cell motility by modulating microtubule stability.
Collapse
Affiliation(s)
- Jeremy Chien
- Experimental Pathology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
HIV-1 Nef Interferes with Host Cell Motility by Deregulation of Cofilin. Cell Host Microbe 2009; 6:174-86. [DOI: 10.1016/j.chom.2009.06.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/30/2009] [Accepted: 06/01/2009] [Indexed: 11/21/2022]
|
47
|
Rab11-FIP3 is a Rab11-binding protein that regulates breast cancer cell motility by modulating the actin cytoskeleton. Eur J Cell Biol 2009; 88:325-41. [PMID: 19327867 DOI: 10.1016/j.ejcb.2009.02.186] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 01/29/2009] [Accepted: 02/02/2009] [Indexed: 12/19/2022] Open
Abstract
Cell adhesion and motility are very dynamic processes that require the temporal and spatial coordination of many cellular structures. ADP-ribosylation factor 6 (Arf6) has emerged as master regulator of endocytic membrane traffic and cytoskeletal dynamics during cell movement. Recently, a novel Arf6-binding protein known as FIP3/arfophilin/eferin has been identified. In addition to Arf6, FIP3 also interacts with Rab11, a small monomeric GTPase that regulates endocytic membrane transport. Both Arf6 and Rab11 GTPases have been implicated in regulation of cell motility. Here we test the role of FIP3 in breast carcinoma cell motility. First, we demonstrate that FIP3 is associated with recycling endosomes that are present at the leading edge of motile cells. Second, we show that FIP3 is required for the motility of MDA-MB-231 breast carcinoma cells. Third, we demonstrate that FIP3 regulates Rac1-dependent actin cytoskeleton dynamics and modulates the formation and ruffling of lamellipodia. Finally, we demonstrate that FIP3 regulates the localization of Arf6 at the plasma membrane of MDA-MB-231 cells. Based on our data we propose that FIP3 affects cell motility by regulating Arf6 localization to the plasma membrane of the leading edge, thus regulating polarized Rac1 activation and actin dynamics.
Collapse
|
48
|
Gassama-Diagne A, Payrastre B. Phosphoinositide signaling pathways: promising role as builders of epithelial cell polarity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:313-43. [PMID: 19215908 DOI: 10.1016/s1937-6448(08)01808-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polarity is a prerequisite for proper development and function of epithelia in metazoa. The major feature of polarized epithelial cells is the presence of specialized domains with asymmetric distribution of macromolecular contents including proteins and lipids. The apical domain is involved in exchange with the organ lumen, and the basolateral membrane maintains contact with neighboring cells and the underlying extracellular matrix. The two domains are separated by tight junctions, which act as a diffusion barrier to prevent free mixing of domain-specific proteins and lipids. Extensive studies have shed light on the numerous protein families involved in cell polarization. However, many questions still remain regarding the molecular mechanisms of polarity regulation and in particular very little is known about the role of lipids in building polarity. In this chapter, essential determinants of epithelial polarity will be reviewed with a particular focus on metabolism and function of phosphoinositides.
Collapse
Affiliation(s)
- Ama Gassama-Diagne
- Unité Mixte INSERM U785/Université Paris XI, Centre Hépatobiliaire, Hôpital Paul Brousse, Villejuif, France
| | | |
Collapse
|
49
|
Stuart HC, Jia Z, Messenberg A, Joshi B, Underhill TM, Moukhles H, Nabi IR. Localized Rho GTPase activation regulates RNA dynamics and compartmentalization in tumor cell protrusions. J Biol Chem 2008; 283:34785-95. [PMID: 18845542 DOI: 10.1074/jbc.m804014200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
mRNA trafficking and local protein translation are associated with protrusive cellular domains, such as neuronal growth cones, and deregulated control of protein translation is associated with tumor malignancy. We show here that activated RhoA, but not Rac1, is enriched in pseudopodia of MSV-MDCK-INV tumor cells and that Rho, Rho kinase (ROCK), and myosin II regulate the microtubule-independent targeting of RNA to these tumor cell domains. ROCK inhibition does not affect pseudopodial actin turnover but significantly reduces the dynamics of pseudopodial RNA turnover. Gene array analysis shows that 7.3% of the total genes analyzed exhibited a greater than 1.6-fold difference between the pseudopod and cell body fractions. Of these, only 13.2% (261 genes) are enriched in pseudopodia, suggesting that only a limited number of total cellular mRNAs are enriched in tumor cell protrusions. Comparison of the tumor pseudopod mRNA cohort and a cohort of mRNAs enriched in neuronal processes identified tumor pseudopod-specific signaling networks that were defined by expression of M-Ras and the Shp2 protein phosphatase. Pseudopod expression of M-Ras and Shp2 mRNA were diminished by ROCK inhibition linking pseudopodial Rho/ROCK activation to the localized expression of specific mRNAs. Pseudopodial enrichment for mRNAs involved in protein translation and signaling suggests that local mRNA translation regulates pseudopodial expression of less stable signaling molecules as well as the cellular machinery to translate these mRNAs. Pseudopodial Rho/ROCK activation may impact on tumor cell migration and metastasis by stimulating the pseudopodial translocation of mRNAs and thereby regulating the expression of local signaling cascades.
Collapse
Affiliation(s)
- Heather C Stuart
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Wei JF, Wei L, Zhou X, Lu ZY, Francis K, Hu XY, Liu Y, Xiong WC, Zhang X, Banik NL, Zheng SS, Yu SP. Formation of Kv2.1-FAK complex as a mechanism of FAK activation, cell polarization and enhanced motility. J Cell Physiol 2008; 217:544-57. [PMID: 18615577 DOI: 10.1002/jcp.21530] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Focal adhesion kinase (FAK) plays key roles in cell adhesion and migration. We now report that the delayed rectifier Kv2.1 potassium channel, through its LD-like motif in N-terminus, may interact with FAK and enhance phosphorylation of FAK(397) and FAK(576/577). Overlapping distribution of Kv2.1 and FAK was observed on soma and proximal dendrites of cortical neurons. FAK expression promotes a polarized membrane distribution of the Kv2.1 channel. In Kv2.1-transfected CHO cells, formation of the Kv2.1-FAK complex was stimulated by fibronectin/integrin and inhibited by the K(+) channel blocker tetraethylammonium (TEA). FAK phosphorylation was minimized by shRNA knockdown of the Kv2.1 channel, point mutations of the N-terminus, and TEA, respectively. Cell migration morphology was altered by Kv2.1 knockdown or TEA, hindering cell migration activity. In wound healing tests in vitro and a traumatic injury animal model, Kv2.1 expression and co-localization of Kv2.1 and FAK significantly enhanced directional cell migration and wound closure. It is suggested that the Kv2.1 channel may function as a promoting signal for FAK activation and cell motility.
Collapse
Affiliation(s)
- Jian-Feng Wei
- Key Laboratory of Combined Multi-organ Transplantation of Ministry of Health China, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|