1
|
Ziegler AR, Dufour A, Scott NE, Edgington-Mitchell LE. Ion Mobility-Based Enrichment-Free N-Terminomics Analysis Reveals Novel Legumain Substrates in Murine Spleen. Mol Cell Proteomics 2024; 23:100714. [PMID: 38199506 PMCID: PMC10862022 DOI: 10.1016/j.mcpro.2024.100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Aberrant levels of the asparaginyl endopeptidase legumain have been linked to inflammation, neurodegeneration, and cancer, yet our understanding of this protease is incomplete. Systematic attempts to identify legumain substrates have been previously confined to in vitro studies, which fail to mirror physiological conditions and obscure biologically relevant cleavage events. Using high-field asymmetric waveform ion mobility spectrometry (FAIMS), we developed a streamlined approach for proteome and N-terminome analyses without the need for N-termini enrichment. Compared to unfractionated proteomic analysis, we demonstrate FAIMS fractionation improves N-termini identification by >2.5 fold, resulting in the identification of >2882 unique N-termini from limited sample amounts. In murine spleens, this approach identifies 6366 proteins and 2528 unique N-termini, with 235 cleavage events enriched in WT compared to legumain-deficient spleens. Among these, 119 neo-N-termini arose from asparaginyl endopeptidase activities, representing novel putative physiological legumain substrates. The direct cleavage of selected substrates by legumain was confirmed using in vitro assays, providing support for the existence of physiologically relevant extra-lysosomal legumain activity. Combined, these data shed critical light on the functions of legumain and demonstrate the utility of FAIMS as an accessible method to improve depth and quality of N-terminomics studies.
Collapse
Affiliation(s)
- Alexander R Ziegler
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Antoine Dufour
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Nichollas E Scott
- Department of Microbiology and Immunology, Peter Doherty Institute, The University of Melbourne, Parkville, Victoria, Australia.
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Lunin SM, Novoselova EG, Glushkova OV, Parfenyuk SB, Novoselova TV, Khrenov MO. Cell Senescence and Central Regulators of Immune Response. Int J Mol Sci 2022; 23:ijms23084109. [PMID: 35456927 PMCID: PMC9028919 DOI: 10.3390/ijms23084109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/13/2022] Open
Abstract
Pathways regulating cell senescence and cell cycle underlie many processes associated with ageing and age-related pathologies, and they also mediate cellular responses to exposure to stressors. Meanwhile, there are central mechanisms of the regulation of stress responses that induce/enhance or weaken the response of the whole organism, such as hormones of the hypothalamic-pituitary-adrenal (HPA) axis, sympathetic and parasympathetic systems, thymic hormones, and the pineal hormone melatonin. Although there are many analyses considering relationships between the HPA axis and organism ageing, we found no systematic analyses of relationships between the neuroendocrine regulators of stress and inflammation and intracellular mechanisms controlling cell cycle, senescence, and apoptosis. Here, we provide a review of the effects of neuroendocrine regulators on these mechanisms. Our analysis allowed us to postulate a multilevel system of central regulators involving neurotransmitters, glucocorticoids, melatonin, and the thymic hormones. This system finely regulates the cell cycle and metabolic/catabolic processes depending on the level of systemic stress, stage of stress response, and energy capabilities of the body, shifting the balance between cell cycle progression, cell cycle stopping, senescence, and apoptosis. These processes and levels of regulation should be considered when studying the mechanisms of ageing and the proliferation on the level of the whole organism.
Collapse
|
3
|
Bell RAV, Al-Khalaf MH, Brunette S, Alsowaida D, Chu A, Bandukwala H, Dechant G, Apostolova G, Dilworth FJ, Megeney LA. Chromatin Reorganization during Myoblast Differentiation Involves the Caspase-Dependent Removal of SATB2. Cells 2022; 11:966. [PMID: 35326417 PMCID: PMC8946544 DOI: 10.3390/cells11060966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
The induction of lineage-specific gene programs are strongly influenced by alterations in local chromatin architecture. However, key players that impact this genome reorganization remain largely unknown. Here, we report that the removal of the special AT-rich binding protein 2 (SATB2), a nuclear protein known to bind matrix attachment regions, is a key event in initiating myogenic differentiation. The deletion of myoblast SATB2 in vitro initiates chromatin remodeling and accelerates differentiation, which is dependent on the caspase 7-mediated cleavage of SATB2. A genome-wide analysis indicates that SATB2 binding within chromatin loops and near anchor points influences both loop and sub-TAD domain formation. Consequently, the chromatin changes that occur with the removal of SATB2 lead to the derepression of differentiation-inducing factors while also limiting the expression of genes that inhibit this cell fate change. Taken together, this study demonstrates that the temporal control of the SATB2 protein is critical in shaping the chromatin environment and coordinating the myogenic differentiation program.
Collapse
Affiliation(s)
- Ryan A. V. Bell
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada; (R.A.V.B.); (M.H.A.-K.); (S.B.); (D.A.); (A.C.); (H.B.); (F.J.D.)
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mohammad H. Al-Khalaf
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada; (R.A.V.B.); (M.H.A.-K.); (S.B.); (D.A.); (A.C.); (H.B.); (F.J.D.)
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Steve Brunette
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada; (R.A.V.B.); (M.H.A.-K.); (S.B.); (D.A.); (A.C.); (H.B.); (F.J.D.)
| | - Dalal Alsowaida
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada; (R.A.V.B.); (M.H.A.-K.); (S.B.); (D.A.); (A.C.); (H.B.); (F.J.D.)
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Alphonse Chu
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada; (R.A.V.B.); (M.H.A.-K.); (S.B.); (D.A.); (A.C.); (H.B.); (F.J.D.)
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Hina Bandukwala
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada; (R.A.V.B.); (M.H.A.-K.); (S.B.); (D.A.); (A.C.); (H.B.); (F.J.D.)
| | - Georg Dechant
- Institute of Neuroscience, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (G.D.); (G.A.)
| | - Galina Apostolova
- Institute of Neuroscience, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (G.D.); (G.A.)
| | - F. Jeffrey Dilworth
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada; (R.A.V.B.); (M.H.A.-K.); (S.B.); (D.A.); (A.C.); (H.B.); (F.J.D.)
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Lynn A. Megeney
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada; (R.A.V.B.); (M.H.A.-K.); (S.B.); (D.A.); (A.C.); (H.B.); (F.J.D.)
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
4
|
Protean Regulation of Leukocyte Function by Nuclear Lamins. Trends Immunol 2021; 42:323-335. [PMID: 33653660 DOI: 10.1016/j.it.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 02/08/2023]
Abstract
The leukocyte nucleus must be sufficiently elastic to squeeze through tissue barriers during migration, but not so collapsible as to risk damaging chromatin. The proper balance is struck in part by the composition of the nuclear lamina, a flexible meshwork composed mainly of intermediate filaments woven from type A and type B lamin proteins, that is located subjacent to the inner nuclear membrane. There is now increasing evidence that, in addition to influencing nuclear shape and stiffness and cell migration, lamins and lamin-interacting proteins may also interact functionally with chromatin to influence leukocyte gene expression, differentiation, and effector function, including T cell differentiation, B cell somatic hypermutation, and the formation of neutrophil extracellular traps (NETosis).
Collapse
|
5
|
Lunin S, Khrenov M, Glushkova O, Parfenyuk S, Novoselova T, Novoselova E. Precursors of thymic peptides as stress sensors. Expert Opin Biol Ther 2020; 20:1461-1475. [PMID: 32700610 DOI: 10.1080/14712598.2020.1800636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION A large volume of data indicates that the known thymic hormones, thymulin, thymopoietin, thymosin-α, thymosin-β, and thymic humoral factor-y2, exhibit different spectra of activities. Although large in volume, available data are rather fragmented, resulting in a lack of understanding of the role played by thymic hormones in immune homeostasis. AREA COVERED Existing data compartmentalizes the effect of thymic peptides into 2 categories: influence on immune cells and interconnection with neuroendocrine systems. The current study draws attention to a third aspect of the thymic peptide effect that has not been clarified yet, wherein ubiquitous and highly abundant intranuclear precursors of so called 'thymic peptides' play a fundamental role in all somatic cells. EXPERT OPINION Our analysis indicated that, under certain stress-related conditions, these precursors are cleaved to form immunologically active peptides that rapidly leave the nucleus and intracellular spaces, to send 'distress signals' to the immune system, thereby acting as stress sensors. We propose that these peptides may form a link between somatic cells and immune as well as neuroendocrine systems. This model may provide a better understanding of the mechanisms underlying immune homeostasis, leading thereby to the development of new therapeutic regimes utilizing the characteristics of thymic peptides.
Collapse
Affiliation(s)
- Sergey Lunin
- Laboratory of Reception Mechanisms, Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS , Pushchino, Russia
| | - Maxim Khrenov
- Laboratory of Reception Mechanisms, Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS , Pushchino, Russia
| | - Olga Glushkova
- Laboratory of Reception Mechanisms, Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS , Pushchino, Russia
| | - Svetlana Parfenyuk
- Laboratory of Reception Mechanisms, Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS , Pushchino, Russia
| | - Tatyana Novoselova
- Laboratory of Reception Mechanisms, Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS , Pushchino, Russia
| | - E Novoselova
- Laboratory of Reception Mechanisms, Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS , Pushchino, Russia
| |
Collapse
|
6
|
Lindenboim L, Zohar H, Worman HJ, Stein R. The nuclear envelope: target and mediator of the apoptotic process. Cell Death Discov 2020; 6:29. [PMID: 32351716 PMCID: PMC7184752 DOI: 10.1038/s41420-020-0256-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Apoptosis is characterized by the destruction of essential cell organelles, including the cell nucleus. The nuclear envelope (NE) separates the nuclear interior from the cytosol. During apoptosis, the apoptotic machinery, in particular caspases, increases NE permeability by cleaving its proteins, such as those of the nuclear pore complex (NPC) and the nuclear lamina. This in turns leads to passive diffusion of cytosolic apoptogenic proteins, such as caspases and nucleases, through NPCs into the nucleus and the subsequent breakdown of the NE and destruction of the nucleus. However, NE leakiness at early stages of the apoptotic process can also occur in a caspase-independent manner, where Bax, by a non-canonical action, promotes transient and repetitive localized generation and subsequent rupture of nuclear protein-filled nuclear bubbles. This NE rupture leads to discharge of apoptogenic nuclear proteins from the nucleus to the cytosol, a process that can contribute to the death process. Therefore, the NE may play a role as mediator of cell death at early stages of apoptosis. The NE can also serve as a platform for assembly of complexes that regulate the death process. Thus, the NE should be viewed as both a mediator of the cell death process and a target.
Collapse
Affiliation(s)
- Liora Lindenboim
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel
| | - Hila Zohar
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel
| | - Howard J. Worman
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032 USA
| | - Reuven Stein
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel
| |
Collapse
|
7
|
Lunin SM, Khrenov MO, Glushkova OV, Vinogradova EV, Yashin VA, Fesenko EE, Novoselova EG. Extrathymic production of thymulin induced by oxidative stress, heat shock, apoptosis, or necrosis. Int J Immunopathol Pharmacol 2017; 30:58-69. [PMID: 28281875 PMCID: PMC5806779 DOI: 10.1177/0394632017694625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Thymic peptides are immune regulators produced mainly in the thymus. However, thymic peptides such as thymosin-α and thymopoietin have precursors widely expressed outside the thymus, localized in cell nuclei, and involved in vital nuclear functions. In stress-related conditions, they can relocalize. We hypothesized that another thymic peptide, thymulin, could be similarly produced by non-thymic cells during stress and have a precursor therein. Non-thymic cells, including macrophages and fibroblasts, were exposed to oxidative stress, heat, apoptosis, or necrosis. Extracellular thymulin was identified in media of both cell types 2 h after exposure to stress or lethal signals. Therefore, thymulin is released by non-thymic cells. To examine possible thymulin precursors in non-thymic cells, macrophage lysates were analyzed by western blotting. Bands stained with anti-thymulin antibody were detected in two locations, approximately 60 kDa and 10 kDa, which may be a possible precursor and intermediate. All of the exposures except for heat were effective for induction of the 10 kDa protein. BLAST search using thymulin sequence identified SPATS2L, an intranucleolar stress-response protein with molecular weight of 62 kDa, containing thymulin-like sequence. Comparisons of blots stained with anti-thymulin and anti-SPATS2L antibodies indicate that SPATS2L may be a possible candidate for the precursor of thymulin.
Collapse
Affiliation(s)
- Sergey M Lunin
- Institute of Cell Biophysics, Pushchino, Moscow region, Russia
| | - Maxim O Khrenov
- Institute of Cell Biophysics, Pushchino, Moscow region, Russia
| | | | | | - Valery A Yashin
- Institute of Cell Biophysics, Pushchino, Moscow region, Russia
| | | | | |
Collapse
|
8
|
Babbio F, Castiglioni I, Cassina C, Gariboldi MB, Pistore C, Magnani E, Badaracco G, Monti E, Bonapace IM. Knock-down of methyl CpG-binding protein 2 (MeCP2) causes alterations in cell proliferation and nuclear lamins expression in mammalian cells. BMC Cell Biol 2012; 13:19. [PMID: 22783988 PMCID: PMC3477090 DOI: 10.1186/1471-2121-13-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 07/03/2012] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND MeCP2 (CpG-binding protein 2) is a nuclear multifunctional protein involved in several cellular processes, like large-scale chromatin reorganization and architecture, and transcriptional regulation. In recent years, a non-neuronal role for MeCP2 has emerged in cell growth and proliferation. Mutations in the MeCP2 gene have been reported to determine growth disadvantages in cultured lymphocyte cells, and its functional ablation suppresses cell growth in glial cells and proliferation in mesenchymal stem cells and prostate cancer cells. MeCP2 interacts with lamin B receptor (LBR) and with Heterochromatin Protein 1 (HP1) at the nuclear envelope (NE), suggesting that it could be part of complexes involved in attracting heterochromatin at the nuclear periphery and in mediating gene silencing. The nuclear lamins, major components of the lamina, have a role in maintaining NE integrity, in orchestrating mitosis, in DNA replication and transcription, in regulation of mitosis and apoptosis and in providing anchoring sites for chromatin domains.In this work, we inferred that MeCP2 might have a role in nuclear envelope stability, thereby affecting the proliferation pattern of highly proliferating systems. RESULTS By performing knock-down (KD) of MeCP2 in normal murine (NIH-3 T3) and in human prostate transformed cells (PC-3 and LNCaP), we observed a strong proliferation decrease and a defect in the cell cycle progression, with accumulation of cells in S/G2M, without triggering a strong apoptotic and senescent phenotype. In these cells, KD of MeCP2 evidenced a considerable decrease of the levels of lamin A, lamin C, lamin B1 and LBR proteins. Moreover, by confocal analysis we confirmed the reduction of lamin A levels, but we also observed an alteration in the shape of the nuclear lamina and an irregular nuclear rim. CONCLUSIONS Our results that indicate reduced levels of NE components, are consistent with a hypothesis that the deficiency of MeCP2 might cause the lack of a key "bridge" function that links the peripheral heterochromatin to the NE, thereby causing an incorrect assembly of the NE itself, together with a decreased cell proliferation and viability.
Collapse
Affiliation(s)
- Federica Babbio
- Department of Theoretical and Applied Sciences, Insubria University, via A. da Giussano 10, Busto Arsizio, 21052, Italy
| | - Ilaria Castiglioni
- Department of Theoretical and Applied Sciences, Insubria University, via A. da Giussano 10, Busto Arsizio, 21052, Italy
| | - Chiara Cassina
- Department of Theoretical and Applied Sciences, Insubria University, via A. da Giussano 10, Busto Arsizio, 21052, Italy
| | - Marzia Bruna Gariboldi
- Department of Theoretical and Applied Sciences, Insubria University, via A. da Giussano 10, Busto Arsizio, 21052, Italy
| | - Christian Pistore
- Department of Theoretical and Applied Sciences, Insubria University, via A. da Giussano 10, Busto Arsizio, 21052, Italy
| | - Elena Magnani
- Department of Theoretical and Applied Sciences, Insubria University, via A. da Giussano 10, Busto Arsizio, 21052, Italy
| | - Gianfranco Badaracco
- Department of Biotechnologies and Life Sciences, Insubria University, via H. J. Dunant 3, Varese 21100, Italy
| | - Elena Monti
- Department of Theoretical and Applied Sciences, Insubria University, via A. da Giussano 10, Busto Arsizio, 21052, Italy
| | - Ian Marc Bonapace
- Department of Theoretical and Applied Sciences, Insubria University, via A. da Giussano 10, Busto Arsizio, 21052, Italy
| |
Collapse
|
9
|
Abstract
The ubiquitin hybrid genes Uba80 and Uba52 encode ubiquitin (Ub), which is fused to the ribosomal proteins S27a (RPS27a) and L40 (RPL40), respectively. Here, we show that these genes are preferentially over-expressed during hepatoma cell apoptosis. Experiments using the tet-inducible transgenic system revealed that over-expression of the ubiquitin hybrid genes sensitized the cells to apoptosis. Further analysis suggested that Ub, and not RPS27a or RPL40, was associated with apoptotic cell death. Cleavage-resistant mutation analysis revealed that the N-terminal portion and the last two amino acids (GG) of Ub are critical for cleavage at the junction between the two protein moieties. An apoptogenic stimulus enhances the nuclear targeting and aggregation of Ub in the nucleus, resulting in histone H2A deubiquitylation followed by abnormal ubiquitylation of the nuclear envelope and the lamina. These events accompany the apoptotic nuclear morphology in the late stage of apoptosis. Each fused RP is localized in the nucleoli. These results suggest a role for Ub hybrid proteins in the altered nuclear dynamics of Ub during tumor cell apoptosis induced by apoptogenic stimuli.
Collapse
|
10
|
Cohen S, Etingov I, Panté N. Effect of viral infection on the nuclear envelope and nuclear pore complex. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 299:117-59. [PMID: 22959302 DOI: 10.1016/b978-0-12-394310-1.00003-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nuclear envelope (NE) is a vital structure that separates the nucleus from the cytoplasm. Because the NE is such a critical cellular barrier, many viral pathogens have evolved to modulate its permeability. They do this either by breaching the NE or by disrupting the integrity and functionality of the nuclear pore complex (NPC). Viruses modulate NE permeability for different reasons. Some viruses disrupt NE to deliver the viral genome into the nucleus for replication, while others cause NE disruption during nuclear egress of newly assembled capsids. Yet, other viruses modulate NE permeability and affect the compartmentalization of host proteins or block the nuclear transport of host proteins involved in the host antiviral response. Recent scientific advances demonstrated that other viruses use proteins of the NPC for viral assembly or disassembly. Here we review the ways in which various viruses affect NE and NPC during infection.
Collapse
Affiliation(s)
- Sarah Cohen
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
11
|
Butin-Israeli V, Ben-nun-Shaul O, Kopatz I, Adam SA, Shimi T, Goldman RD, Oppenheim A. Simian virus 40 induces lamin A/C fluctuations and nuclear envelope deformation during cell entry. Nucleus 2011; 2:320-30. [PMID: 21941111 PMCID: PMC3260569 DOI: 10.4161/nucl.2.4.16371] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 06/27/2011] [Accepted: 07/02/2011] [Indexed: 12/25/2022] Open
Abstract
The canonical gate of viruses and viral genomes into the nucleus in non-dividing cells is the nuclear pore, embedded within the nuclear envelope. However, we found that for SV40, the nuclear envelope poses a major hurdle to infection: FISH analysis revealed that the majority of viral DNA remains trapped in the ER; silencing of Lamin A/C rendered the cells more susceptible to infection; and proliferating cells are more susceptible to infection than quiescent cells. Surprisingly, we observed that following SV40 infection the nuclear envelope, including lamins A/C, B1, B2 and the nuclear pore complex, was dramatically deformed, as seen by immunohistochemistry. The infection induced fluctuations in the level of lamin A/C, dephosphorylation of an unknown epitope and leakage to the cytoplasm just prior to and during nuclear entry. Deformations were transient, and the spherical structure of the nuclear envelope was restored subsequent to nuclear entry. Nuclear envelope deformations and lamin A/C dephosphorylation depended on caspase-6 cleavage of lamin A/C. Notably, we have previously reported that inhibition of caspase-6 abolishes SV40 infection. Taken together the results suggest that alterations of the nuclear lamina, induced by the infecting virus, are involved in the nuclear entry of the SV40 genome. We propose that SV40 utilize this unique, previously unknown mechanism for direct trafficking of its genome from the ER to the nucleus. As SV40 serves as a paradigm for the pathogenic human BK, JC and Merkel cell polyomavirus, this study suggests nuclear entry as a novel drug target for these infections.
Collapse
Affiliation(s)
- Veronika Butin-Israeli
- Department of Hematology; Hebrew University-Hadassah Medical School; Jerusalem, Israel
- Department of Cell and Molecular Biology; Feinberg School of Medicine; Northwestern University; Chicago, IL USA
| | - Orly Ben-nun-Shaul
- Department of Hematology; Hebrew University-Hadassah Medical School; Jerusalem, Israel
| | - Idit Kopatz
- Department of Hematology; Hebrew University-Hadassah Medical School; Jerusalem, Israel
| | - Stephen A Adam
- Department of Cell and Molecular Biology; Feinberg School of Medicine; Northwestern University; Chicago, IL USA
| | - Takeshi Shimi
- Department of Cell and Molecular Biology; Feinberg School of Medicine; Northwestern University; Chicago, IL USA
| | - Robert D Goldman
- Department of Cell and Molecular Biology; Feinberg School of Medicine; Northwestern University; Chicago, IL USA
| | - Ariella Oppenheim
- Department of Hematology; Hebrew University-Hadassah Medical School; Jerusalem, Israel
| |
Collapse
|
12
|
Lu W, Gotzmann J, Sironi L, Jaeger VM, Schneider M, Lüke Y, Uhlén M, Szigyarto CAK, Brachner A, Ellenberg J, Foisner R, Noegel AA, Karakesisoglou I. Sun1 forms immobile macromolecular assemblies at the nuclear envelope. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2415-26. [DOI: 10.1016/j.bbamcr.2008.09.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/03/2008] [Accepted: 09/05/2008] [Indexed: 10/25/2022]
|
13
|
Bradley CM, Jones S, Huang Y, Suzuki Y, Kvaratskhelia M, Hickman AB, Craigie R, Dyda F. Structural basis for dimerization of LAP2alpha, a component of the nuclear lamina. Structure 2007; 15:643-53. [PMID: 17562312 DOI: 10.1016/j.str.2007.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/20/2007] [Accepted: 04/18/2007] [Indexed: 01/20/2023]
Abstract
Lamina-associated polypeptides (LAPs) are important components of the nuclear lamina, the dense network of filaments that supports the nuclear envelope and also extends into the nucleoplasm. The main protein constituents of the nuclear lamina are the constitutively expressed B-type lamins and the developmentally regulated A- and C-type lamins. LAP2alpha is the only non-membrane-associated member of the LAP family. It preferentially binds lamin A/C, has been implicated in cell-cycle regulation and chromatin organization, and has also been found to be a component of retroviral preintegration complexes. As an approach to understanding the role of LAP2alpha in cellular pathways, we have determined the crystal structure of the C-terminal domain of LAP2alpha, residues 459-693. The C-terminal domain is dimeric and possesses an extensive four-stranded, antiparallel coiled coil. The surface involved in binding lamin A/C is proposed based on results from alanine-scanning mutagenesis and a solid-phase overlay binding assay.
Collapse
Affiliation(s)
- Christina Marchetti Bradley
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Marceau N, Schutte B, Gilbert S, Loranger A, Henfling MER, Broers JLV, Mathew J, Ramaekers FCS. Dual roles of intermediate filaments in apoptosis. Exp Cell Res 2007; 313:2265-81. [PMID: 17498695 DOI: 10.1016/j.yexcr.2007.03.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/05/2007] [Accepted: 03/12/2007] [Indexed: 02/06/2023]
Abstract
New roles have emerged recently for intermediate filaments (IFs), namely in modulating cell adhesion and growth, and providing resistance to various forms of stress and to apoptosis. In this context, we first summarize findings on the IF association with the cell response to mechanical stress and growth stimulation, in light of growth-related signaling events that are relevant to death-receptor engagement. We then address the molecular mechanisms by which IFs can provide cell resistance to apoptosis initiated by death-receptor stimulation and to necrosis triggered by excessive oxidative stress. In the same way, we examine IF involvement, along with cytolinker participation, in sequential caspase-mediated protein cleavages that are part of the overall cell death execution, particularly those that generate new functional IF protein fragments and uncover neoantigen markers. Finally, we report on the usefulness of these markers as diagnostic tools for disease-related aspects of apoptosis in humans. Clearly, the data accumulated in recent years provide new and significant insights into the multiple functions of IFs, particularly their dual roles in cell response to apoptotic insults.
Collapse
Affiliation(s)
- Normand Marceau
- Centre de recherche en cancérologie de l'Université Laval and L'Hôtel-Dieu de Québec (CHUQ), Québec, Canada G1R 2J6
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Brachner A, Reipert S, Foisner R, Gotzmann J. LEM2 is a novel MAN1-related inner nuclear membrane protein associated with A-type lamins. J Cell Sci 2007; 118:5797-810. [PMID: 16339967 DOI: 10.1242/jcs.02701] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The LEM (lamina-associated polypeptide-emerin-MAN1) domain is a motif shared by a group of lamin-interacting proteins in the inner nuclear membrane (INM) and in the nucleoplasm. The LEM domain mediates binding to a DNA-crosslinking protein, barrier-to-autointegration factor (BAF). We describe a novel, ubiquitously expressed LEM domain protein, LEM2, which is structurally related to MAN1. LEM2 contains an N-terminal LEM motif, two predicted transmembrane domains and a MAN1-Src1p C-terminal (MSC) domain highly homologous to MAN1, but lacks the MAN1-specific C-terminal RNA-recognition motif. Immunofluorescence microscopy of digitonin-treated cells and subcellular fractionation identified LEM2 as a lamina-associated protein residing in the INM. LEM2 binds to the lamin C tail in vitro. Targeting of LEM2 to the nuclear envelope requires A-type lamins and is mediated by the N-terminal and transmembrane domains. Highly overexpressed LEM2 accumulates in patches at the nuclear envelope and forms membrane bridges between nuclei of adjacent cells. LEM2 structures recruit A-type lamins, emerin, MAN1 and BAF, whereas lamin B and lamin B receptor are excluded. Our data identify LEM2 as a novel A-type-lamin-associated INM protein involved in nuclear structure organization.
Collapse
Affiliation(s)
- Andreas Brachner
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, Medical University of Vienna, Dr Bohrgasse 9/3, A-1030 Vienna, Austria
| | | | | | | |
Collapse
|
16
|
Abstract
The nuclear pore complex (NPC) is the sole gateway between the nucleus and the cytoplasm of interphase eukaryotic cells, and it mediates all trafficking between these 2 cellular compartments. As such, the NPC and nuclear transport play central roles in translocating death signals from the cell membrane to the nucleus where they initiate biochemical and morphological changes occurring during apoptosis. Recent findings suggest that the correlation between the NPC, nuclear transport, and apoptosis goes beyond the simple fact that NPCs mediate nuclear transport of key players involved in the cell death program. In this context, the accessibility of key regulators of apoptosis appears to be highly modulated by nuclear transport (e.g., impaired nuclear import might be an apoptotic trigger). In this review, recent findings concerning the unexpected tight link between NPCs, nuclear transport, and apoptosis will be presented and critically discussed.
Collapse
Affiliation(s)
- Birthe Fahrenkrog
- ME Müller Institute for Structural Biology, Biozentrum, University of Basel, Switzerland.
| |
Collapse
|
17
|
Broers JLV, Ramaekers FCS, Bonne G, Yaou RB, Hutchison CJ. Nuclear Lamins: Laminopathies and Their Role in Premature Ageing. Physiol Rev 2006; 86:967-1008. [PMID: 16816143 DOI: 10.1152/physrev.00047.2005] [Citation(s) in RCA: 425] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has been demonstrated that nuclear lamins are important proteins in maintaining cellular as well as nuclear integrity, and in maintaining chromatin organization in the nucleus. Moreover, there is growing evidence that lamins play a prominent role in transcriptional control. The family of laminopathies is a fast-growing group of diseases caused by abnormalities in the structure or processing of the lamin A/C ( LMNA) gene. Mutations or incorrect processing cause more than a dozen different inherited diseases, ranging from striated muscular diseases, via fat- and peripheral nerve cell diseases, to progeria. This broad spectrum of diseases can only be explained if the responsible A-type lamin proteins perform multiple functions in normal cells. This review gives an overview of current knowledge on lamin structure and function and all known diseases associated with LMNA abnormalities. Based on the knowledge of the different functions of A-type lamins and associated proteins, explanations for the observed phenotypes are postulated. It is concluded that lamins seem to be key players in, among others, controlling the process of cellular ageing, since disturbance in lamin protein structure gives rise to several forms of premature ageing.
Collapse
Affiliation(s)
- J L V Broers
- Department of Molecular Cell Biology, University of Maastricht, Research Institutes CARIM, GROW, and EURON, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
Padmakumar VC, Libotte T, Lu W, Zaim H, Abraham S, Noegel AA, Gotzmann J, Foisner R, Karakesisoglou I. The inner nuclear membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear envelope. J Cell Sci 2005; 118:3419-30. [PMID: 16079285 DOI: 10.1242/jcs.02471] [Citation(s) in RCA: 326] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nesprins form a novel class of nuclear envelope-anchored spectrin-repeat proteins. We show that a direct association of their highly conserved C-terminal luminal domain with the inner nuclear membrane protein Sun1 mediates their nuclear envelope localisation. In Nesprin-1 and Nesprin-2 the conserved C-terminal amino acids PPPX are essential for the interaction with a C-terminal region in Sun1. In fact, Sun1 is required for the proper nuclear envelope localisation of Nesprin-2 as shown using dominant-negative mutants and by knockdown of Sun1 expression. Sun1 itself does not require functional A-type lamins for its localisation at the inner nuclear membrane in mammalian cells. Our findings propose a conserved nuclear anchorage mechanism between Caenorhabditis elegans and mammals and suggest a model in which Sun1 serves as a ;structural bridge' connecting the nuclear interior with the actin cytoskeleton.
Collapse
Affiliation(s)
- V C Padmakumar
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sacher J, Weigl L, Werner M, Szegedi C, Hohenegger M. Delineation of myotoxicity induced by 3-hydroxy-3-methylglutaryl CoA reductase inhibitors in human skeletal muscle cells. J Pharmacol Exp Ther 2005; 314:1032-41. [PMID: 15914674 DOI: 10.1124/jpet.105.086462] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors (statins) are widely used and well tolerated cholesterol-lowering drugs. In rare cases, side effects occur in skeletal muscle, including myositis or even rhabdomyolysis. However, the molecular mechanisms are not well understood that lead to these muscle-specific side effects. Here, we show that statins cause apoptosis in differentiated human skeletal muscle cells. The prototypical representative of statins, simvastatin, triggered sustained intracellular Ca(2+) transients, leading to calpain activation. Intracellular chelation of Ca(2+) completely abrogated cell death. Moreover, ryanodine also completely prevented the simvastatin-induced calpain activation. Nevertheless, an activation of the ryanodine receptor by simvastatin could not be observed. Downstream of the calpain activation simvastatin led to a translocation of Bax to mitochondria in a caspase 8-independent manner. Consecutive activation of caspase 9 and 3 execute apoptotic cell death that was in part reversed by the coadministration of mevalonic acid. Conversely, the simvastatin-induced activation of calpain was not prevented by mevalonic acid. These data delineate the signaling cascade that leads to muscle injury caused by statins. Our observations also have implications for improving the safety of this important medication and explain to some extent why physical exercise aggravates skeletal muscle side effects.
Collapse
Affiliation(s)
- Julia Sacher
- Center of Biomolecular Medicine and Pharmacology, Medical University of Vienna, Austria
| | | | | | | | | |
Collapse
|
20
|
Gruenbaum Y, Goldman RD, Meyuhas R, Mills E, Margalit A, Fridkin A, Dayani Y, Prokocimer M, Enosh A. The nuclear lamina and its functions in the nucleus. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 226:1-62. [PMID: 12921235 DOI: 10.1016/s0074-7696(03)01001-5] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nuclear lamina is a structure near the inner nuclear membrane and the peripheral chromatin. It is composed of lamins, which are also present in the nuclear interior, and lamin-associated proteins. The increasing number of proteins that interact with lamins and the compound interactions between these proteins and chromatin-associated proteins make the nuclear lamina a highly complex but also a very exciting structure. The nuclear lamina is an essential component of metazoan cells. It is involved in most nuclear activities including DNA replication, RNA transcription, nuclear and chromatin organization, cell cycle regulation, cell development and differentiation, nuclear migration, and apoptosis. Specific mutations in nuclear lamina genes cause a wide range of heritable human diseases. These diseases include Emery-Dreifuss muscular dystrophy, limb girdle muscular dystrophy, dilated cardiomyopathy (DCM) with conduction system disease, familial partial lipodystrophy (FPLD), autosomal recessive axonal neuropathy (Charcot-Marie-Tooth disorder type 2, CMT2), mandibuloacral dysplasia (MAD), Hutchison Gilford Progeria syndrome (HGS), Greenberg Skeletal Dysplasia, and Pelger-Huet anomaly (PHA). Genetic analyses in Caenorhabditis elegans, Drosophila, and mice show new insights into the functions of the nuclear lamina, and recent structural analyses have begun to unravel the molecular structure and assembly of lamins and their associated proteins.
Collapse
Affiliation(s)
- Yosef Gruenbaum
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bengtsson L, Wilson KL. Multiple and surprising new functions for emerin, a nuclear membrane protein. Curr Opin Cell Biol 2004; 16:73-9. [PMID: 15037308 DOI: 10.1016/j.ceb.2003.11.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Emerin is an integral protein of the nuclear inner membrane. Emerin is not essential, but its loss of function causes Emery-Dreifuss muscular dystrophy. We summarize significant recent progress in understanding emerin, which was previously known to interact with barrier-to-autointegration factor and lamins. New partners include transcription repressors, an mRNA splicing regulator, a nuclear membrane protein named nesprin, nuclear myosin I and F-actin. These interactors imply multiple roles for emerin in the nucleus, some of which overlap with related LEM-domain proteins.
Collapse
Affiliation(s)
- Luiza Bengtsson
- Department of Cell Biology, WBSB room G-9, Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205, USA
| | | |
Collapse
|
22
|
Kihlmark M, Rustum C, Eriksson C, Beckman M, Iverfeldt K, Hallberg E. Correlation between nucleocytoplasmic transport and caspase-3-dependent dismantling of nuclear pores during apoptosis. Exp Cell Res 2004; 293:346-56. [PMID: 14729472 DOI: 10.1016/j.yexcr.2003.10.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During apoptosis (also called programmed cell death), the chromatin condenses and the DNA is cleaved into oligonucleosomal fragments. Caspases are believed to play a major role in nuclear apoptosis. However, the relation between dismantling of nuclear pores, disruption of the nucleocytoplasmic barrier, and nuclear entry of caspases is unclear. We have analyzed nuclear import of the green fluorescent protein fused to a nuclear localization signal (GFP-NLS) in tissue culture cells undergoing apoptosis. Decreased nuclear accumulation of GFP-NLS could be detected at the onset of nuclear apoptosis manifested as dramatic condensation and redistribution of chromatin toward the nuclear periphery. At this step, dismantling of nuclear pores was already evident as indicated by proteolysis of the nuclear pore membrane protein POM121. Thus, disruption of nuclear compartmentalization correlated with early signs of nuclear pore damage. Both these events clearly preceded massive DNA fragmentation, detected by TUNEL assay. Furthermore, we show that in apoptotic cells, POM121 is specifically cleaved at aspartate-531 in its large C-terminal portion by a caspase-3-dependent mechanism. Cleavage of the C-terminal portion of POM121, which is adjoining the nuclear pore complex, is likely to disrupt interactions with other nuclear pore proteins affecting the stability of the pore complex. A temporal correlation of apoptotic events supports a model where caspase-dependent disassembly of nuclear pores and disruption of the nucleocytoplasmic barrier paves the way for nuclear entry of caspases and subsequent activation of CAD-mediated DNA fragmentation.
Collapse
Affiliation(s)
- Madeleine Kihlmark
- Section for Natural Sciences, Södertörns Högskola (University College), 141 89 Huddinge, Sweden
| | | | | | | | | | | |
Collapse
|
23
|
Fischer U, Jänicke RU, Schulze-Osthoff K. Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 2003; 10:76-100. [PMID: 12655297 PMCID: PMC7091709 DOI: 10.1038/sj.cdd.4401160] [Citation(s) in RCA: 758] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Apoptotic cell death is executed by the caspase-mediated cleavage of various vital proteins. Elucidating the consequences of this endoproteolytic cleavage is crucial for our understanding of cell death and other biological processes. Many caspase substrates are just cleaved as bystanders, because they happen to contain a caspase cleavage site in their sequence. Several targets, however, have a discrete function in propagation of the cell death process. Many structural and regulatory proteins are inactivated by caspases, while other substrates can be activated. In most cases, the consequences of this gain-of-function are poorly understood. Caspase substrates can regulate the key morphological changes in apoptosis. Several caspase substrates also act as transducers and amplifiers that determine the apoptotic threshold and cell fate. This review summarizes the known caspase substrates comprising a bewildering list of more than 280 different proteins. We highlight some recent aspects inferred by the cleavage of certain proteins in apoptosis. We also discuss emerging themes of caspase cleavage in other forms of cell death and, in particular, in apparently unrelated processes, such as cell cycle regulation and cellular differentiation.
Collapse
Affiliation(s)
- U Fischer
- Institute of Molecular Medicine, University of Düsseldorf, Germany
| | - R U Jänicke
- Institute of Molecular Medicine, University of Düsseldorf, Germany
| | | |
Collapse
|
24
|
Broers JLV, Bronnenberg NMHJ, Kuijpers HJH, Schutte B, Hutchison CJ, Ramaekers FCS. Partial cleavage of A-type lamins concurs with their total disintegration from the nuclear lamina during apoptosis. Eur J Cell Biol 2002; 81:677-91. [PMID: 12553668 DOI: 10.1078/0171-9335-00282] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although activated caspase 6 is capable of cleaving both A- and B-type lamins during apoptosis, the higher-order structure of the nuclear lamina may cause a differential breakdown of these two types of lamins. In order to obtain a better understanding of the dynamics and the consequences of the rapid, coordinated breakdown of the lamina complex, we applied the green fluorescent protein (GFP) technology in living cells, in which the fate of individual caspase cleavage fragments of A- and B-type lamins was examined. CHO-K1 cells were stably transfected with cDNA constructs encoding N-terminally GFP-labelled hybrids of lamin A, lamin Adelta10, lamin C or lamin B1. The course of the apoptotic process, induced by the kinase inhibitor staurosporine or by the proteasome inhibitor MG132, was monitored by digital imaging microscopy or confocal microscopy. Time-lapse recordings showed that parallel to DNA condensation N-terminally GFP-tagged A-type lamins became diffusely dispersed throughout the nucleoplasm and rapidly translocated to the cytoplasm. In contrast, the majority of GFP-lamin B1 signal remained localised at the nuclear periphery, even after extensive DNA condensation. Comparison of lamin B1-GFP signal with A-type lamin antibody staining in the same apoptotic cells confirmed the temporal differences between A- and B-type lamina dispersal. Immunoblotting revealed only a partial cleavage of A-type lamins and an almost complete cleavage of lamin B1 during apoptosis. In contrast to lamin B1 in normal cells, this cleaved lamin B1, which is apparently still associated with the nuclear membrane, can be completely extracted by methanol or ethanol. Fluorescence loss of intensity after photobleaching experiments showed that in apoptotic cells A-type lamin-GFP molecules diffuse almost freely in both nucleoplasm and cytoplasm, while the lamin B1-GFP fragments remain more stably associated with the nuclear membrane, which is confirmed by co-localisation immunofluorescence studies with a nucleoporin p62 antibody. Our results therefore clearly show a differential behaviour of A- and B-type lamins during apoptosis, suggesting not only distinct differences in the organisation of the lamina filaments, but also that caspase cleavage of only a small fraction of A-type lamins is needed for its complete disintegration.
Collapse
Affiliation(s)
- Jos L V Broers
- Department of Molecular Cell Biology, Research Institute Growth & Development (GROW), University of Maastricht, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
25
|
Gerner C, Gotzmann J, Fröhwein U, Schamberger C, Ellinger A, Sauermann G. Proteome analysis of nuclear matrix proteins during apoptotic chromatin condensation. Cell Death Differ 2002; 9:671-81. [PMID: 12032676 DOI: 10.1038/sj.cdd.4401010] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2001] [Revised: 12/20/2001] [Accepted: 01/08/2002] [Indexed: 11/08/2022] Open
Abstract
The nuclear matrix (NM) is considered a proteinaceous scaffold spatially organizing the interphase nucleus, the integrity of which is affected during apoptosis. Caspase-mediated degradation of NM proteins, such as nuclear lamins, precedes apoptotic chromatin condensation (ACC). Nevertheless, other NM proteins remain unaffected, which most likely maintain a remaining nuclear structure devoid of chromatin. We, therefore, screened various types of apoptotic cells for changes of the nuclear matrix proteome during the process of apoptotic ACC. Expectedly, we observed fundamental alterations of known chromatin-associated proteins, comprising both degradation and translocation to the cytosol. Importantly, a consistent set of abundant NM proteins, some (e.g. hNMP 200) of which displaying structural features, remained unaffected during apoptosis and might therefore represent constituents of an elementary scaffold. In addition, proteins involved in DNA replication and DNA repair were found accumulated in the NM fraction before cells became irreversibly committed to ACC, a time point characterized in detail by inhibitor studies with orthovanadate. In general, protein alterations of a consistent set of NM proteins (67 of which were identified), were reproducibly detectable in Fas-induced Jurkat cells, in UV-light treated U937 cells and also in staurosporine-treated HeLa cells. Our data indicate that substantial alterations of proteins linking chromatin to an elementary nuclear protein scaffold might play an intriguing role for the process of ACC.
Collapse
Affiliation(s)
- C Gerner
- Institute of Cancer Research, University of Vienna, A-1090 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
26
|
Vlcek S, Korbei B, Foisner R. Distinct functions of the unique C terminus of LAP2alpha in cell proliferation and nuclear assembly. J Biol Chem 2002; 277:18898-907. [PMID: 11864981 DOI: 10.1074/jbc.m200048200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The non-membrane-bound lamina-associated polypeptide 2 isoform, LAP2alpha, forms nucleoskeletal structures with A-type lamins and interacts with chromosomes in a cell cycle-dependent manner. LAP2alpha contains a LEM (LAP2, emerin, and MAN1) domain in the constant N terminus that binds to chromosomal barrier-to-autointegration factor, and a C-terminal unique region that is essential for chromosome binding. Here we show that C-terminal LAP2alpha fragment efficiently bound to mitotic chromosomes and inhibited assembly of endogenous LAP2alpha, nuclear membranes, and lamins A/C in in vitro nuclear assembly assays. Full-length recombinant LAP2alpha, which bound to chromosomes, and N-terminal fragment, which did not bind, had no effect on assembly. This suggested an essential role for the LAP2alpha C terminus in chromosome association and for the N-terminal LEM domain in subsequent assembly stages. In vivo analysis upon transient expression of GFP-tagged LAP2alpha fragments confirmed that, unlike the N-terminal fragment, the C-terminal fragment was able to bind to chromosomes during mitosis, if expressed weakly. At higher expression levels, C-terminal LAP2alpha fragment and full-length protein led to cell cycle arrest in interphase and apoptosis, as shown by fluorescence-activated cell sorter analysis, time lapse microscopy, and BrdUrd incorporation assays. These data indicated distinct functions of LAP2alpha in cell cycle progression during interphase and in nuclear reassembly during mitosis.
Collapse
Affiliation(s)
- Sylvia Vlcek
- Department of Biochemistry and Molecular Cell Biology, Vienna Biocenter, University of Vienna, A-1030 Vienna, Austria
| | | | | |
Collapse
|
27
|
Tzur YB, Hersh BM, Horvitz HR, Gruenbaum Y. Fate of the nuclear lamina during Caenorhabditis elegans apoptosis. J Struct Biol 2002; 137:146-53. [PMID: 12064941 DOI: 10.1006/jsbi.2002.4452] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Invertebrates and in Drosophila, lamins and lamin-associated proteins are primary targets for cleavage by caspases. Eliminating mammalian lamins causes apoptosis, whereas expressing mutant lamins that cannot be cleaved by caspase-6 delay apoptosis. Caenorhabditis elegans has a single lamin protein, Ce-lamin, and a caspase, CED-3, that is responsible for most if not all somatic apoptosis. In this study we show that in C. elegans embryos induced to undergo apoptosis Ce-lamin is degraded surprisingly late. In such embryos CED-4 translocated to the nuclear envelope but the cytological localization of Ce-lamin remained similar to that in wild-type embryos. TUNEL labeling indicated that Ce-lamin was degraded only after DNA is fragmented. Ce-lamin, Ce-emerin, or Ce-MAN1 were not cleaved by recombinant CED-3, showing that these lamina proteins are not substrates for CED-3 cleavage. These results suggest that lamin cleavage probably is not essential for apoptosis in C. elegans.
Collapse
Affiliation(s)
- Yonatan B Tzur
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | | | | | | |
Collapse
|
28
|
Columbaro M, Mattioli E, Lattanzi G, Rutigliano C, Ognibene A, Maraldi NM, Squarzoni S. Staurosporine treatment and serum starvation promote the cleavage of emerin in cultured mouse myoblasts: involvement of a caspase-dependent mechanism. FEBS Lett 2001; 509:423-9. [PMID: 11749967 DOI: 10.1016/s0014-5793(01)03203-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Emerin is a nuclear membrane-anchored protein which is absent or mutated in patients affected by Emery-Dreifuss muscular dystrophy. In this study, we induced apoptosis in cultured mouse myoblasts to evaluate emerin fate during the nuclear destabilization involved in programmed cell death. Emerin proteolysis was observed in myocytes during the apoptotic process. Myoblast apoptosis and emerin degradation were associated with chromatin compaction and detachment from the nuclear lamina, as detected by electron microscopy. In vivo specific inhibition of caspase 3 or caspase 6 activity completely abolished emerin proteolysis. These results show that the process of programmed cell death in muscle cells leads to emerin proteolysis, which appears to be related to caspase 6 activation and to cleavage of other nuclear envelope proteins, that share sequence homologies or functional features with emerin.
Collapse
Affiliation(s)
- M Columbaro
- Laboratory of Neuromuscular Pathology, IOR, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Kihlmark M, Imreh G, Hallberg E. Sequential degradation of proteins from the nuclear envelope during apoptosis. J Cell Sci 2001; 114:3643-53. [PMID: 11707516 DOI: 10.1242/jcs.114.20.3643] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have produced new antibodies specific for the integral pore membrane protein POM121. Using these antibodies we show that during apoptosis POM121 becomes proteolytically degraded in a caspase-dependent manner. The POM121 antibodies and antibodies specific for other proteins of the nuclear envelope were used in a comparative study of nuclear apoptosis in staurosporine-treated buffalo rat liver cells. Nuclei from these cells were classified in three different stages of apoptotic progression: stage I, moderately condensed chromatin surrounded by a smooth nuclear periphery; stage II, compact patches of condensed chromatin collapsing against a smooth nuclear periphery; stage III, round compact chromatin bodies surrounded by grape-shaped nuclear periphery. We have performed double labeling immunofluorescence microscopy of individual apoptotic cells and quantitative immunoblotting analysis of total proteins from apoptotic cell cultures. The results showed that degradation of nuclear envelope marker proteins occurred in a specific order. POM121 degradation occurred surprisingly early and was initiated before nucleosomal DNA degradation could be detected using TUNEL assay and completed before clustering of the nuclear pores. POM121 was eliminated significantly more rapid compared with NUP153 (a peripheral protein located in the nucleoplasmic basket of the nuclear pore complex) and lamin B (a component of the nuclear lamina). Disappearance of NUP153 and lamin B was coincident with onset of DNA fragmentation and clustering of nuclear pores. By contrast, the peripheral NPC protein p62 was degraded much later. The results suggest that degradation of POM121 may be an important early step in propagation of nuclear apoptosis.
Collapse
Affiliation(s)
- M Kihlmark
- Södertörns Högskola (University College), Box 4101, 141 04 Huddinge, Sweden
| | | | | |
Collapse
|
30
|
Martelli AM, Zweyer M, Ochs RL, Tazzari PL, Tabellini G, Narducci P, Bortul R. Nuclear apoptotic changes: an overview. J Cell Biochem 2001; 82:634-46. [PMID: 11500941 DOI: 10.1002/jcb.1186] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apoptosis is a form of active cell death essential for morphogenesis, development, differentiation, and homeostasis of multicellular organisms. The activation of genetically controlled specific pathways that are highly conserved during evolution results in the characteristic morphological features of apoptosis that are mainly evident in the nucleus. These include chromatin condensation, nuclear shrinkage, and the formation of apoptotic bodies. The morphological changes are the result of molecular alterations, such as DNA and RNA cleavage, post-translational modifications of nuclear proteins, and proteolysis of several polypeptides residing in the nucleus. During the last five years our understanding of the process of apoptosis has dramatically increased. However, the mechanisms that lead to apoptotic changes in the nucleus have been only partially clarified. Here, we shall review the most recent findings that may explain why the nucleus displays these striking modifications. Moreover, we shall take into consideration the emerging evidence about apoptotic events as a trigger for the generation of autoantibodies to nuclear components.
Collapse
Affiliation(s)
- A M Martelli
- Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, Sezione di Anatomia Umana, Università di Bologna, School of Pharmacy, 40126 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
31
|
Scott ES, O'Hare P. Fate of the inner nuclear membrane protein lamin B receptor and nuclear lamins in herpes simplex virus type 1 infection. J Virol 2001; 75:8818-30. [PMID: 11507226 PMCID: PMC115126 DOI: 10.1128/jvi.75.18.8818-8830.2001] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2001] [Accepted: 06/11/2001] [Indexed: 11/20/2022] Open
Abstract
During herpesvirus egress, capsids bud through the inner nuclear membrane. Underlying this membrane is the nuclear lamina, a meshwork of intermediate filaments with which it is tightly associated. Details of alterations to the lamina and the inner nuclear membrane during infection and the mechanisms involved in capsid transport across these structures remain unclear. Here we describe the fate of key protein components of the nuclear envelope and lamina during herpes simplex virus type 1 (HSV-1) infection. We followed the distribution of the inner nuclear membrane protein lamin B receptor (LBR) and lamins A and B(2) tagged with green fluorescent protein (GFP) in live infected cells. Together with additional results from indirect immunofluorescence, our studies reveal major morphologic distortion of nuclear-rim LBR and lamins A/C, B(1), and B(2). By 8 h p.i., we also observed a significant redistribution of LBR-GFP to the endoplasmic reticulum, where it colocalized with a subpopulation of cytoplasmic glycoprotein B by immunofluorescence. In addition, analysis by fluorescence recovery after photobleaching reveals that LBR-GFP exhibited increased diffusional mobility within the nuclear membrane of infected cells. This is consistent with the disruption of interactions between LBR and the underlying lamina. In addition to studying stably expressed GFP-lamins by fluorescence microscopy, we studied endogenous A- and B-type lamins in infected cells by Western blotting. Both approaches reveal a loss of lamins associated with virus infection. These data indicate major disruption of the nuclear envelope and lamina of HSV-1-infected cells and are consistent with a virus-induced dismantling of the nuclear lamina, possibly in order to gain access to the inner nuclear membrane.
Collapse
Affiliation(s)
- E S Scott
- Marie Curie Research Institute, The Chart, Oxted, Surrey, RH8 0TL, United Kingdom
| | | |
Collapse
|
32
|
Cohen M, Lee KK, Wilson KL, Gruenbaum Y. Transcriptional repression, apoptosis, human disease and the functional evolution of the nuclear lamina. Trends Biochem Sci 2001; 26:41-7. [PMID: 11165516 DOI: 10.1016/s0968-0004(00)01727-8] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The number and complexity of genes encoding nuclear lamina proteins has increased during metazoan evolution. Emerging evidence reveals that transcriptional repressors such as the retinoblastoma protein, and apoptotic regulators such as CED-4, have functional and dynamic interactions with the lamina. The discovery that mutations in nuclear lamina proteins cause heritable tissue-specific diseases, including Emery-Dreifuss muscular dystrophy, is prompting a fresh look at the nuclear lamina to devise models that can account for its diverse functions and dynamics, and to understand its enigmatic structure.
Collapse
Affiliation(s)
- M Cohen
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | | | | | | |
Collapse
|