1
|
Qadota H, Mayans O, Matsunaga Y, McMurry JL, Wilson KJ, Kwon GE, Stanford R, Deehan K, Tinley TL, Ngwa VM, Benian GM. The SH3 domain of UNC-89 (obscurin) interacts with paramyosin, a coiled-coil protein, in Caenorhabditis elegans muscle. Mol Biol Cell 2016; 27:1606-20. [PMID: 27009202 PMCID: PMC4865318 DOI: 10.1091/mbc.e15-09-0675] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 11/11/2022] Open
Abstract
UNC-89 is a giant polypeptide located at the sarcomeric M-line of Caenorhabditis elegans muscle. The human homologue is obscurin. To understand how UNC-89 is localized and functions, we have been identifying its binding partners. Screening a yeast two-hybrid library revealed that UNC-89 interacts with paramyosin. Paramyosin is an invertebrate-specific coiled-coil dimer protein that is homologous to the rod portion of myosin heavy chains and resides in thick filament cores. Minimally, this interaction requires UNC-89's SH3 domain and residues 294-376 of paramyosin and has a KD of ∼1.1 μM. In unc-89 loss-of-function mutants that lack the SH3 domain, paramyosin is found in accumulations. When the SH3 domain is overexpressed, paramyosin is mislocalized. SH3 domains usually interact with a proline-rich consensus sequence, but the region of paramyosin that interacts with UNC-89's SH3 is α-helical and lacks prolines. Homology modeling of UNC-89's SH3 suggests structural features that might be responsible for this interaction. The SH3-binding region of paramyosin contains a "skip residue," which is likely to locally unwind the coiled-coil and perhaps contributes to the binding specificity.
Collapse
Affiliation(s)
- Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Olga Mayans
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Yohei Matsunaga
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Jonathan L McMurry
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144
| | - Kristy J Wilson
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Grace E Kwon
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Rachel Stanford
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Kevin Deehan
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Tina L Tinley
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Verra M Ngwa
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144
| | - Guy M Benian
- Department of Pathology, Emory University, Atlanta, GA 30322
| |
Collapse
|
2
|
Abstract
Research on Caenorhabditis elegans has led to the discovery of the consequences of mutation in myosin, its associated proteins, and the extracellular matrix-membrane cytoskeleton complex. Key results include understanding thick filament structure and assembly, the regulation of sarcomeric protein turnover, and the organization of thick and thin filaments into ordered sarcomeres. These results are critical to studies of cardiovascular diseases such as the cardiomyopathies, congenital septal defects, aneurysms of the thoracic aorta, and cardiac remodeling in heart failure.
Collapse
|
3
|
Determination of the mobility of novel and established Caenorhabditis elegans sarcomeric proteins in vivo. Eur J Cell Biol 2010; 89:437-48. [PMID: 20226563 DOI: 10.1016/j.ejcb.2009.11.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/02/2009] [Accepted: 11/11/2009] [Indexed: 11/23/2022] Open
Abstract
A screen was instigated to identify novel protein components of the Caenorhabditis elegans sarcomere. The subcellular localisation of full-length GFP fusion proteins was examined, in transgenic animals, for 62 essentially uncharacterized genes thought to be expressed within bodywall muscle cells. Three genes, T03G6.3, C46G7.2 and K04A8.6, were identified for further study. K04A8.6::GFP only displayed a regular sarcomeric distribution sporadically. However, C46G7.2::GFP localised to the centre of A-bands and dense bodies and T03G6.3::GFP localised in the I-band, of the bodywall muscle sarcomeres, consistently. This success with such a small screen suggests that there are further minor components of the C. elegans sarcomere yet to be discovered. Fluorescence Recovery After Photobleaching (FRAP) was applied to live transgenic individuals to assess the mobility of T03G6.3 and C46G7.2 and other well-known constituents of the sarcomere in vivo. Proteins associated with the thin filaments showed dynamic exchange whilst those associated with thick filaments appeared more static. This is the first demonstration that there are sarcomeric proteins in C. elegans muscle cells in dynamic exchange and that the rates of exchange in vivo correspond in general terms with observations in other experimental systems.
Collapse
|
4
|
Hooper SL, Hobbs KH, Thuma JB. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle. Prog Neurobiol 2008; 86:72-127. [PMID: 18616971 PMCID: PMC2650078 DOI: 10.1016/j.pneurobio.2008.06.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 05/08/2008] [Accepted: 06/12/2008] [Indexed: 11/26/2022]
Abstract
This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vertebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca(++) binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved.
Collapse
Affiliation(s)
- Scott L. Hooper
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Kevin H. Hobbs
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Jeffrey B. Thuma
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| |
Collapse
|
5
|
Miller RK, Qadota H, Mercer KB, Gernert KM, Benian GM. UNC-98 and UNC-96 interact with paramyosin to promote its incorporation into thick filaments of Caenorhabditis elegans. Mol Biol Cell 2008; 19:1529-39. [PMID: 18256289 DOI: 10.1091/mbc.e07-07-0723] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mutations in unc-96 or -98 cause reduced motility and a characteristic defect in muscle structure: by polarized light microscopy birefringent needles are found at the ends of muscle cells. Anti-paramyosin stains the needles in unc-96 and -98 mutant muscle. However there is no difference in the overall level of paramyosin in wild-type, unc-96, and -98 animals. Anti-UNC-98 and anti-paramyosin colocalize in the paramyosin accumulations of missense alleles of unc-15 (encodes paramyosin). Anti-UNC-96 and anti-UNC-98 have diffuse localization within muscles of unc-15 null mutants. By immunoblot, in the absence of paramyosin, UNC-98 is diminished, whereas in paramyosin missense mutants, UNC-98 is increased. unc-98 and -15 or unc-96 and -15 interact genetically either as double heterozygotes or as double homozygotes. By yeast two-hybrid assay and ELISAs using purified proteins, UNC-98 interacts with paramyosin residues 31-693, whereas UNC-96 interacts with a separate region of paramyosin, residues 699-798. The importance of surface charge of this 99 residue region for UNC-96 binding was shown. Paramyosin lacking the C-terminal UNC-96 binding region fails to localize throughout A-bands. We propose a model in which UNC-98 and -96 may act as chaperones to promote the incorporation of paramyosin into thick filaments.
Collapse
Affiliation(s)
- Rachel K Miller
- Department of Pathology, Graduate Division of Biological and Biomedical Sciences, and BIMCORE (Molecular Graphics), Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
6
|
Mercer KB, Miller RK, Tinley TL, Sheth S, Qadota H, Benian GM. Caenorhabditis elegans UNC-96 is a new component of M-lines that interacts with UNC-98 and paramyosin and is required in adult muscle for assembly and/or maintenance of thick filaments. Mol Biol Cell 2006; 17:3832-47. [PMID: 16790495 PMCID: PMC1593161 DOI: 10.1091/mbc.e06-02-0144] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To gain further insight into the molecular architecture, assembly, and maintenance of the sarcomere, we have carried out a molecular analysis of the UNC-96 protein in the muscle of Caenorhabditis elegans. By polarized light microscopy of body wall muscle, unc-96 mutants display reduced myofibrillar organization and characteristic birefringent "needles." By immunofluorescent staining of known myofibril components, unc-96 mutants show major defects in the organization of M-lines and in the localization of a major thick filament component, paramyosin. In unc-96 mutants, the birefringent needles, which contain both UNC-98 and paramyosin, can be suppressed by starvation or by exposure to reduced temperature. UNC-96 is a novel approximately 47-kDa polypeptide that has no recognizable domains. Antibodies generated to UNC-96 localize the protein to the M-line, a region of the sarcomere in which thick filaments are cross-linked. By genetic and biochemical criteria, UNC-96 interacts with UNC-98, a previously described component of M-lines, and paramyosin. Additionally, UNC-96 copurifies with native thick filaments. A model is presented in which UNC-96 is required in adult muscle to promote thick filament assembly and/or maintenance.
Collapse
Affiliation(s)
| | - Rachel K. Miller
- *Department of Pathology and
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| | - Tina L. Tinley
- *Department of Pathology and
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| | | | | | | |
Collapse
|
7
|
Abstract
This is the first of a projected series of canonic reviews covering all invertebrate muscle literature prior to 2005 and covers muscle genes and proteins except those involved in excitation-contraction coupling (e.g., the ryanodine receptor) and those forming ligand- and voltage-dependent channels. Two themes are of primary importance. The first is the evolutionary antiquity of muscle proteins. Actin, myosin, and tropomyosin (at least, the presence of other muscle proteins in these organisms has not been examined) exist in muscle-like cells in Radiata, and almost all muscle proteins are present across Bilateria, implying that the first Bilaterian had a complete, or near-complete, complement of present-day muscle proteins. The second is the extraordinary diversity of protein isoforms and genetic mechanisms for producing them. This rich diversity suggests that studying invertebrate muscle proteins and genes can be usefully applied to resolve phylogenetic relationships and to understand protein assembly coevolution. Fully achieving these goals, however, will require examination of a much broader range of species than has been heretofore performed.
Collapse
Affiliation(s)
- Scott L Hooper
- Neuroscience Program, Department of Biological Sciences, Irvine Hall, Ohio University, Athens, Ohio 45701, USA.
| | | |
Collapse
|
8
|
Qiu F, Brendel S, Cunha PMF, Astola N, Song B, Furlong EEM, Leonard KR, Bullard B. Myofilin, a protein in the thick filaments of insect muscle. J Cell Sci 2005; 118:1527-36. [PMID: 15769842 DOI: 10.1242/jcs.02281] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thick filaments in striated muscle are myosin polymers with a length and diameter that depend on the fibre type. In invertebrates, the length of the thick filaments varies widely in different muscles and additional proteins control filament assembly. Thick filaments in asynchronous insect flight muscle have an extremely regular structure, which is likely to be essential for the oscillatory contraction of these muscles. The factors controlling the assembly of thick filaments in insect flight muscle are not known. We previously identified a thick filament core protein, zeelin 1, in Lethocerus flight and non-flight muscles. This has been sequenced, and the corresponding proteins in Drosophila and Anopheles have been identified. The protein has been re-named myofilin. Zeelin 2, which is on the outside of Lethocerus flight muscle thick filaments, has been sequenced and because of the similarity to Drosophila flightin, is re-named flightin. In Drosophila flight muscle, myofilin has a molecular weight of 20 kDa and is one of five isoforms produced from a single gene. In situ hybridisation of Drosophila embryos showed that myofilin RNA is first expressed late in embryogenesis at stage 15, a little later than myosin. Antibody to myofilin labelled the entire A-band, except for the H-zone, in cryosections of flight and non-flight muscle. The periodicity of myofilin in Drosophila flight muscle thick filaments was found to be 30 nm by measuring the spacing of gold particles in labelled cryosections; this is about twice the 14.5 nm spacing of myosin molecules. The molar ratio of myofilin to myosin in indirect flight muscle is 1:2, which is the same as that of flightin. We propose a model for the association of these proteins in thick filaments, which is consistent with the periodicity and stoichiometry. Myofilin is probably needed for filament assembly in all muscles, and flightin for stability of flight muscle thick filaments in adult flies.
Collapse
Affiliation(s)
- Feng Qiu
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Liu H, Mardahl-Dumesnil M, Sweeney ST, O'Kane CJ, Bernstein SI. Drosophila paramyosin is important for myoblast fusion and essential for myofibril formation. J Cell Biol 2003; 160:899-908. [PMID: 12642615 PMCID: PMC2173770 DOI: 10.1083/jcb.200208180] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Paramyosin is a major structural protein of thick filaments in invertebrate muscles. Coiled-coil dimers of paramyosin form a paracrystalline core of these filaments, and the motor protein myosin is arranged on the core surface. To investigate the function of paramyosin in myofibril assembly and muscle contraction, we functionally disrupted the Drosophila melanogaster paramyosin gene by mobilizing a P element located in its promoter region. Homozygous paramyosin mutants die at the late embryo stage. Mutants display defects in both myoblast fusion and in myofibril assembly in embryonic body wall muscles. Mutant embryos have an abnormal body wall muscle fiber pattern arising from defects in myoblast fusion. In addition, sarcomeric units do not assemble properly and muscle contractility is impaired. We confirmed that these defects are paramyosin-specific by rescuing the homozygous paramyosin mutant to adulthood with a paramyosin transgene. Antibody analysis of normal embryos demonstrated that paramyosin accumulates as a cytoplasmic protein in early embryo development before assembling into thick filaments. We conclude that paramyosin plays an unexpected role in myoblast fusion and is important for myofibril assembly and muscle contraction.
Collapse
Affiliation(s)
- Hongjun Liu
- Dept. of Biology, San Diego State University, 5500 Campanile Dr., Life Sciences 371, San Diego, CA 92182-4614, USA.
| | | | | | | | | |
Collapse
|
10
|
Müller SA, Häner M, Ortiz I, Aebi U, Epstein HF. STEM Analysis of Caenorhabditis elegans muscle thick filaments: evidence for microdifferentiated substructures. J Mol Biol 2001; 305:1035-44. [PMID: 11162112 DOI: 10.1006/jmbi.2000.4363] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the thick filaments of body muscle in Caenorhabditis elegans, myosin A and myosin B isoforms and a subpopulation of paramyosin, a homologue of myosin heavy chain rods, are organized about a tubular core. As determined by scanning transmission electron microscopy, the thick filaments show a continuous decrease in mass-per-length (MPL) from their central zones to their polar regions. This is consistent with previously reported morphological studies and suggests that both their content and structural organization are microdifferentiated as a function of position. The cores are composed of a second distinct subpopulation of paramyosin in association with the alpha, beta, and gamma-filagenins. MPL measurements suggest that cores are formed from seven subfilaments containing four strands of paramyosin molecules, rather than the two originally proposed. The periodic locations of the filagenins within different regions and the presence of a central zone where myosin A is located, implies that the cores are also microdifferentiated with respect to molecular content and structure. This differentiation may result from a novel "induced strain" assembly mechanism based upon the interaction of the filagenins, paramyosin and myosin A. The cores may then serve as "differentiated templates" for the assembly of myosin B and paramyosin in the tapering, microdifferentiated polar regions of the thick filaments.
Collapse
Affiliation(s)
- S A Müller
- Maurice E. Müller Institute Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|