1
|
Mroczek K, Fernando S, Fisher PR, Annesley SJ. Interactions and Cytotoxicity of Human Neurodegeneration- Associated Proteins Tau and α-Synuclein in the Simple Model Dictyostelium discoideum. Front Cell Dev Biol 2021; 9:741662. [PMID: 34552934 PMCID: PMC8450459 DOI: 10.3389/fcell.2021.741662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022] Open
Abstract
The abnormal accumulation of the tau protein into aggregates is a hallmark in neurodegenerative diseases collectively known as tauopathies. In normal conditions, tau binds off and on microtubules aiding in their assembly and stability dependent on the phosphorylation state of the protein. In disease-affected neurons, hyperphosphorylation leads to the accumulation of the tau protein into aggregates, mainly neurofibrillary tangles (NFT) which have been seen to colocalise with other protein aggregates in neurodegeneration. One such protein is α-synuclein, the main constituent of Lewy bodies (LB), a hallmark of Parkinson's disease (PD). In many neurodegenerative diseases, including PD, the colocalisation of tau and α-synuclein has been observed, suggesting possible interactions between the two proteins. To explore the cytotoxicity and interactions between these two proteins, we expressed full length human tau and α-synuclein in Dictyostelium discoideum alone, and in combination. We show that tau is phosphorylated in D. discoideum and colocalises closely (within 40 nm) with tubulin throughout the cytoplasm of the cell as well as with α-synuclein at the cortex. Expressing wild type α-synuclein alone caused inhibited growth on bacterial lawns, phagocytosis and intracellular Legionella proliferation rates, but activated mitochondrial respiration and non-mitochondrial oxygen consumption. The expression of tau alone impaired multicellular morphogenesis, axenic growth and phototaxis, while enhancing intracellular Legionella proliferation. Direct respirometric assays showed that tau impairs mitochondrial ATP synthesis and increased the "proton leak," while having no impact on respiratory complex I or II function. In most cases depending on the phenotype, the coexpression of tau and α-synuclein exacerbated (phototaxis, fruiting body morphology), or reversed (phagocytosis, growth on plates, mitochondrial respiratory function, Legionella proliferation) the defects caused by either tau or α-synuclein expressed individually. Proteomics data revealed distinct patterns of dysregulation in strains ectopically expressing tau or α-synuclein or both, but down regulation of expression of cytoskeletal proteins was apparent in all three groups and most evident in the strain expressing both proteins. These results indicate that tau and α-synuclein exhibit different but overlapping patterns of intracellular localisation, that they individually exert distinct but overlapping patterns of cytotoxic effects and that they interact, probably physically in the cell cortex as well as directly or indirectly in affecting some phenotypes. The results show the efficacy of using D. discoideum as a model to study the interaction of proteins involved in neurodegeneration.
Collapse
Affiliation(s)
| | | | | | - Sarah J. Annesley
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
2
|
Filić V, Mijanović L, Putar D, Talajić A, Ćetković H, Weber I. Regulation of the Actin Cytoskeleton via Rho GTPase Signalling in Dictyostelium and Mammalian Cells: A Parallel Slalom. Cells 2021; 10:1592. [PMID: 34202767 PMCID: PMC8305917 DOI: 10.3390/cells10071592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023] Open
Abstract
Both Dictyostelium amoebae and mammalian cells are endowed with an elaborate actin cytoskeleton that enables them to perform a multitude of tasks essential for survival. Although these organisms diverged more than a billion years ago, their cells share the capability of chemotactic migration, large-scale endocytosis, binary division effected by actomyosin contraction, and various types of adhesions to other cells and to the extracellular environment. The composition and dynamics of the transient actin-based structures that are engaged in these processes are also astonishingly similar in these evolutionary distant organisms. The question arises whether this remarkable resemblance in the cellular motility hardware is accompanied by a similar correspondence in matching software, the signalling networks that govern the assembly of the actin cytoskeleton. Small GTPases from the Rho family play pivotal roles in the control of the actin cytoskeleton dynamics. Indicatively, Dictyostelium matches mammals in the number of these proteins. We give an overview of the Rho signalling pathways that regulate the actin dynamics in Dictyostelium and compare them with similar signalling networks in mammals. We also provide a phylogeny of Rho GTPases in Amoebozoa, which shows a variability of the Rho inventories across different clades found also in Metazoa.
Collapse
Affiliation(s)
- Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| | | | | | | | | | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| |
Collapse
|
3
|
Bhattarai UR, Li F, Katuwal Bhattarai M, Masoudi A, Wang D. Phototransduction and circadian entrainment are the key pathways in the signaling mechanism for the baculovirus induced tree-top disease in the lepidopteran larvae. Sci Rep 2018; 8:17528. [PMID: 30510155 PMCID: PMC6277413 DOI: 10.1038/s41598-018-35885-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/07/2018] [Indexed: 01/13/2023] Open
Abstract
The tree-top disease is an altered behavioral state, displayed by baculovirus-infected lepidopteran larvae, and characterized by climbing to an elevated position before death. The detailed molecular mechanism underlying this phenomenal behavior change has not been reported yet. Our study focused on the transcriptomic changes in the host larvae due to baculovirus infection from pre-symptomatic to tree-top disease stage. Enrichment map visualization of the gene sets grouped based on the functional annotation similarity revealed 34 enriched pathways in signaling mechanism cluster during LdMNPV induced tree-top disease in third instar Lymantria dispar asiatica larvae. Directed light bioassay demonstrated the positively phototactic larvae during tree-top disease and the gene expression analysis showed altered rhythmicity of the host’s core circadian genes (per and tim) during the course of infection emphasizing the role of Circadian entrainment and Phototransduction pathways in the process, which also showed maximum interactions (>50% shared genes with 24 and 23 pathways respectively) among other signaling pathways in the enrichment map. Our study provided valuable insights into different pathways and genes, their coordinated response and molecular regulation during baculovirus infection and also improved our understanding regarding signaling mechanisms in LdMNPV induced tree-top disease.
Collapse
Affiliation(s)
- Upendra Raj Bhattarai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Fengjiao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Mandira Katuwal Bhattarai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Abolfazl Masoudi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
| |
Collapse
|
4
|
Amaroli A, Gallus L, Ferrando S. Permethrin drastically affects the developmental cycle of the non-target slime mould Dictyostelium discoideum. CHEMOSPHERE 2018; 193:1-7. [PMID: 29121537 DOI: 10.1016/j.chemosphere.2017.10.127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
The use of pyrethroids has increased throughout the world over the past few decades, as organophosphate, carbamate and organochlorine insecticides are being phased out. Permethrin is widely used in the USA for crops treatment, at concentrations around 750 × 103 μg/L. In our study 3.6 μg/L permethrin decreases the fission-rate and the fruiting bodies formation of slime mould Dictyostelium discoideum. Whereas 3.6 × 104 μg/L kills the 100% of amoebae, showing a 24 h-LC50 = 96.6 μg/L. This concentration induces an increase in the pseudocholinesterase activity as well as in both butyrylcholinesterase and heat-shock-protein 70 presence. Our results highlight the high sensitivity of Dictyostelium to permethrin, at concentration of about 105 lesser than what used for agricultural pest control. If we match our results on 6 days of exposure, with the permethrin relatively slow permanence (30 days) in the aerobic soil, as well as the higher effect of permethrin than organophosphate, carbamate and organochlorine pesticides on D. discoideum, the damage on the dictyostelids community, by use of permethrin, is clear. Our data suggest that, if the sustainable agriculture implementation is a topic of the modern "industrial" farming, the permethrin cannot represent a reliable alternative to organochlorine, organophosphate or carbamate pesticides, in implementing Integrated Pest Management programmes.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Surgical Sciences and Integrated Diagnostic, University of Genoa, Largo R. Benzi 10, 16132, Genoa, Italy; Laboratory of Protistology, Department of Earth Science, Environment and Life, University of Genoa, Corso Europa 26, 16132, Genoa, Italy.
| | - Lorenzo Gallus
- Laboratory of New Model Organism (NeMo LAB), Department of Earth, Environmental and Life Sciences, University of Genoa, Corso Europa 26, 16132, Genoa, Italy
| | - Sara Ferrando
- Laboratory of New Model Organism (NeMo LAB), Department of Earth, Environmental and Life Sciences, University of Genoa, Corso Europa 26, 16132, Genoa, Italy
| |
Collapse
|
5
|
Shear force-based genetic screen reveals negative regulators of cell adhesion and protrusive activity. Proc Natl Acad Sci U S A 2017; 114:E7727-E7736. [PMID: 28847951 DOI: 10.1073/pnas.1616600114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The model organism Dictyostelium discoideum has greatly facilitated our understanding of the signal transduction and cytoskeletal pathways that govern cell motility. Cell-substrate adhesion is downstream of many migratory and chemotaxis signaling events. Dictyostelium cells lacking the tumor suppressor PTEN show strongly impaired migratory activity and adhere strongly to their substrates. We reasoned that other regulators of migration could be obtained through a screen for overly adhesive mutants. A screen of restriction enzyme-mediated integration mutagenized cells yielded numerous mutants with the desired phenotypes, and the insertion sites in 18 of the strains were mapped. These regulators of adhesion and motility mutants have increased adhesion and decreased motility. Characterization of seven strains demonstrated decreased directed migration, flatness, increased filamentous actin-based protrusions, and increased signal transduction network activity. Many of the genes share homology to human genes and demonstrate the diverse array of cellular networks that function in adhesion and migration.
Collapse
|
6
|
Plattner H. Evolutionary Cell Biology of Proteins from Protists to Humans and Plants. J Eukaryot Microbiol 2017; 65:255-289. [PMID: 28719054 DOI: 10.1111/jeu.12449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 01/10/2023]
Abstract
During evolution, the cell as a fine-tuned machine had to undergo permanent adjustments to match changes in its environment, while "closed for repair work" was not possible. Evolution from protists (protozoa and unicellular algae) to multicellular organisms may have occurred in basically two lineages, Unikonta and Bikonta, culminating in mammals and angiosperms (flowering plants), respectively. Unicellular models for unikont evolution are myxamoebae (Dictyostelium) and increasingly also choanoflagellates, whereas for bikonts, ciliates are preferred models. Information accumulating from combined molecular database search and experimental verification allows new insights into evolutionary diversification and maintenance of genes/proteins from protozoa on, eventually with orthologs in bacteria. However, proteins have rarely been followed up systematically for maintenance or change of function or intracellular localization, acquirement of new domains, partial deletion (e.g. of subunits), and refunctionalization, etc. These aspects are discussed in this review, envisaging "evolutionary cell biology." Protozoan heritage is found for most important cellular structures and functions up to humans and flowering plants. Examples discussed include refunctionalization of voltage-dependent Ca2+ channels in cilia and replacement by other types during evolution. Altogether components serving Ca2+ signaling are very flexible throughout evolution, calmodulin being a most conservative example, in contrast to calcineurin whose catalytic subunit is lost in plants, whereas both subunits are maintained up to mammals for complex functions (immune defense and learning). Domain structure of R-type SNAREs differs in mono- and bikonta, as do Ca2+ -dependent protein kinases. Unprecedented selective expansion of the subunit a which connects multimeric base piece and head parts (V0, V1) of H+ -ATPase/pump may well reflect the intriguing vesicle trafficking system in ciliates, specifically in Paramecium. One of the most flexible proteins is centrin when its intracellular localization and function throughout evolution is traced. There are many more examples documenting evolutionary flexibility of translation products depending on requirements and potential for implantation within the actual cellular context at different levels of evolution. From estimates of gene and protein numbers per organism, it appears that much of the basic inventory of protozoan precursors could be transmitted to highest eukaryotic levels, with some losses and also with important additional "inventions."
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P. O. Box M625, Konstanz, 78457, Germany
| |
Collapse
|
7
|
Rodríguez-Ruiz A, Dondero F, Viarengo A, Marigómez I. Toxicity assessment of diesel- and metal-contaminated soils through elutriate and solid phase assays with the slime mold Dictyostelium discoideum. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1413-1421. [PMID: 26450765 DOI: 10.1002/etc.3276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/09/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023]
Abstract
A suite of organisms from different taxonomical and ecological positions is needed to assess environmentally relevant soil toxicity. A new bioassay based on Dictyostelium is presented that is aimed at integrating slime molds into such a testing framework. Toxicity tests on elutriates and the solid phase developmental cycle assay were successfully applied to a soil spiked with a mixture of Zn, Cd, and diesel fuel freshly prepared (recently contaminated) and after 2 yr of aging. The elutriates of both soils provoked toxic effects, but toxicity was markedly lower in the aged soil. In the D. discoideum developmental cycle assay, both soils affected amoeba viability and aggregation, with fewer multicellular units, smaller fruiting bodies and, overall, inhibition of fruiting body formation. This assay is quick and requires small amounts of test soil, which might facilitate its incorporation into a multispecies multiple-endpoint toxicity bioassay battery suitable for environmental risk assessment in soils. Environ Toxicol Chem 2016;35:1413-1421. © 2015 SETAC.
Collapse
Affiliation(s)
- Amaia Rodríguez-Ruiz
- Zoology & Animal Cell Biology Department, University of the Basque Country (UPV/EHU), Leioa-Bizkaia, Basque Country, Spain
| | - Francesco Dondero
- Department of Science and Technological Innovation (DISIT), University of Piemonte Orientale, Alessandria, Italy
| | - Aldo Viarengo
- Department of Science and Technological Innovation (DISIT), University of Piemonte Orientale, Alessandria, Italy
| | - Ionan Marigómez
- Zoology & Animal Cell Biology Department, University of the Basque Country (UPV/EHU), Leioa-Bizkaia, Basque Country, Spain
- Plentzia Marine Station, University of the Basque Country (PiE-UPV/EHU), Plentzia-Bizkaia, Basque Country, Spain
| |
Collapse
|
8
|
Marinović M, Šoštar M, Filić V, Antolović V, Weber I. Quantitative imaging of Rac1 activity in Dictyostelium cells with a fluorescently labelled GTPase-binding domain from DPAKa kinase. Histochem Cell Biol 2016; 146:267-79. [DOI: 10.1007/s00418-016-1440-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2016] [Indexed: 02/06/2023]
|
9
|
Plak K, Pots H, Van Haastert PJM, Kortholt A. Direct Interaction between TalinB and Rap1 is necessary for adhesion of Dictyostelium cells. BMC Cell Biol 2016; 17:1. [PMID: 26744136 PMCID: PMC4861126 DOI: 10.1186/s12860-015-0078-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 12/22/2015] [Indexed: 11/10/2022] Open
Abstract
Background The small G-protein Rap1 is an important regulator of cellular adhesion in Dictyostelium, however so far the downstream signalling pathways for cell adhesion are not completely characterized. In mammalian cells talin is crucial for adhesion and Rap1 was shown to be a key regulator of talin signalling. Results In a proteomic screen we identified TalinB as a potential Rap1 effector in Dictyostelium. In subsequent pull-down experiments we demonstrate that the Ras association (RA) domain of TalinB interacts specifically with active Rap1. Studies with a mutated RA domain revealed that the RA domain is essential for TalinB-Rap1 interaction, and that this interaction contributes to cell-substrate adhesion during single-celled growth and is crucial for cell-cell adhesion during multicellular development. Conclusions Dictyostelium Rap1 directly binds to TalinB via the conserved RA domain. This interaction is critical for adhesion, which becomes essential for high adhesive force demanding processes, like morphogenesis during multicellular development of Dictyostelium. In mammalian cells the established Rap1-talin interaction is indirect and acts through the scaffold protein - RIAM. Interestingly, direct binding of mouse Rap1 to the RA domain of Talin1 has recently been demonstrated. Electronic supplementary material The online version of this article (doi:10.1186/s12860-015-0078-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katarzyna Plak
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, Groningen, AG 9747, The Netherlands. .,Current address: BIOTEC center, Technical University Dresden, Tatzberg 47/49, 01307, Dresden, Germany.
| | - Henderikus Pots
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, Groningen, AG 9747, The Netherlands.
| | - Peter J M Van Haastert
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, Groningen, AG 9747, The Netherlands.
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, Groningen, AG 9747, The Netherlands.
| |
Collapse
|
10
|
Lin WC, Wang LC, Pang TL, Chen MY. Actin-binding protein G (AbpG) participates in modulating the actin cytoskeleton and cell migration in Dictyostelium discoideum. Mol Biol Cell 2015; 26:1084-97. [PMID: 25609090 PMCID: PMC4357508 DOI: 10.1091/mbc.e14-05-0972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dictyostelium cells lacking actin-binding protein G (AbpG) migrate at a reduced speed and display elevated F-actin levels. AbpG is enriched in the cortical/lamellipodial regions and colocalizes with F-actin. A novel protein domain in AbpG mediates the interaction with F-actin and is required for the cellular function of AbpG. Cell migration is involved in various physiological and pathogenic events, and the complex underlying molecular mechanisms have not been fully elucidated. The simple eukaryote Dictyostelium discoideum displays chemotactic locomotion in stages of its life cycle. By characterizing a Dictyostelium mutant defective in chemotactic responses, we identified a novel actin-binding protein serving to modulate cell migration and named it actin-binding protein G (AbpG); this 971–amino acid (aa) protein contains an N-terminal type 2 calponin homology (CH2) domain followed by two large coiled-coil regions. In chemoattractant gradients, abpG− cells display normal directional persistence but migrate significantly more slowly than wild-type cells; expressing Flag-AbpG in mutant cells eliminates the motility defect. AbpG is enriched in cortical/lamellipodial regions and colocalizes well with F-actin; aa 401–600 and aa 501–550 fragments of AbpG show the same distribution as full-length AbpG. The aa 501–550 region of AbpG, which is essential for AbpG to localize to lamellipodia and to rescue the phenotype of abpG− cells, is sufficient for binding to F-actin and represents a novel actin-binding protein domain. Compared with wild-type cells, abpG− cells have significantly higher F-actin levels. Collectively our results suggest that AbpG may participate in modulating actin dynamics to optimize cell locomotion.
Collapse
Affiliation(s)
- Wei-Chi Lin
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Liang-Chen Wang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Te-Ling Pang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Mei-Yu Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan Genome Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
11
|
Caspase-like proteins: Acanthamoeba castellanii metacaspase and Dictyostelium discoideum paracaspase, what are their functions? J Biosci 2014; 39:909-16. [DOI: 10.1007/s12038-014-9486-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Tosetti N, Croxatto A, Greub G. Amoebae as a tool to isolate new bacterial species, to discover new virulence factors and to study the host-pathogen interactions. Microb Pathog 2014; 77:125-30. [PMID: 25088032 DOI: 10.1016/j.micpath.2014.07.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/12/2014] [Accepted: 07/17/2014] [Indexed: 11/17/2022]
Abstract
Amoebae are unicellular protozoan present worldwide in several environments mainly feeding on bacteria. Some of them, the amoebae-resistant bacteria (ARBs), have evolved mechanisms to survive and replicate inside amoebal species. These mainly include legionella, mycobacteria and Chlamydia-related bacteria. Amoebae can provide a replicative niche, can act as reservoir for bacteria whereas the cystic form can protect the internalized bacteria. Moreover, the amoebae represent a Trojan horse for ARBs to infect animals. The long interaction between amoebae and bacteria has likely selected for bacterial virulence traits leading to the adaptation towards an intracellular lifestyle, and some ARBs have acquired the ability to infect mammals. This review intends to highlight the important uses of amoebae in several fields in microbiology by describing the main tools developed using amoebal cells. First, amoebae such as Acanthamoeba are used to isolate and discover new intracellular bacterial species by two main techniques: the amoebal co-culture and the amoebal enrichment. In the second part, taking Waddlia chondrophila as example, we summarize some important recent applications of amoebae to discover new bacterial virulence factors, in particular thanks to the amoebal plaque assay. Finally, the genetically tractable Dictyostelium discoideum is used as a model organism to study host-pathogen interactions, in particular with the development of several approaches to manipulate its genome that allowed the creation of a wide range of mutated strains largely shared within the Dictyostelium community.
Collapse
Affiliation(s)
- Nicolo Tosetti
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Antony Croxatto
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
13
|
Abstract
Most single animal cells have an internal vector that determines where recycling membrane is added to the cell's surface. Because of the specific molecular composition of this added membrane, a dynamic asymmetry is formed on the surface of the cell. The consequences of this dynamic asymmetry are discussed, together with what they imply for how cells move. The polarity of a single-celled embryo, such as that of the nematode Caenorhabditis elegans, is explored in a similar framework.
Collapse
Affiliation(s)
- Mark S Bretscher
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom;
| |
Collapse
|
14
|
Simon M, Plattner H. Unicellular Eukaryotes as Models in Cell and Molecular Biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:141-98. [DOI: 10.1016/b978-0-12-800255-1.00003-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
PakD, a putative p21-activated protein kinase in Dictyostelium discoideum, regulates actin. EUKARYOTIC CELL 2013; 13:119-26. [PMID: 24243792 DOI: 10.1128/ec.00216-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proper regulation of the actin cytoskeleton is essential for cell function and ultimately for survival. Tight control of actin dynamics is required for many cellular processes, including differentiation, proliferation, adhesion, chemotaxis, endocytosis, exocytosis, and multicellular development. Here we describe a putative p21-activated protein kinase, PakD, that regulates the actin cytoskeleton in Dictyostelium discoideum. We found that cells lacking pakD are unable to aggregate and thus unable to develop. Compared to the wild type, cells lacking PakD have decreased membrane extensions, suggesting defective regulation of the actin cytoskeleton. pakD(-) cells show poor chemotaxis toward cyclic AMP (cAMP) but normal chemotaxis toward folate, suggesting that PakD mediates some but not all chemotaxis responses. pakD(-) cells have decreased polarity when placed in a cAMP gradient, indicating that the chemotactic defects of the pakD(-) cells may be due to an impaired cytoskeletal response to cAMP. In addition, while wild-type cells polymerize actin in response to global stimulation by cAMP, pakD(-) cells exhibit F-actin depolymerization under the same conditions. Taken together, the results suggest that PakD is part of a pathway coordinating F-actin organization during development.
Collapse
|
16
|
Rodríguez-Ruiz A, Marigómez I, Boatti L, Viarengo A. Dictyostelium discoideum developmental cycle (DDDC) assay: a tool for Hg toxicity assessment and soil health screening. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 450-451:39-50. [PMID: 23454908 DOI: 10.1016/j.scitotenv.2013.01.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 01/19/2013] [Accepted: 01/19/2013] [Indexed: 06/01/2023]
Abstract
The social amoeba Dictyostelium discoideum has been proposed for assessing stress responses to pollutants in soil and it has already been successfully employed in the aquatic environment. Presently, we developed the DDDC assay (D. discoideum developmental cycle assay) for both soil toxicity assessment and soil health screening. The DDDC assay is primarily aimed at determining the capacity of D. discoideum to undergo its developmental programme forming a fruiting body, measured in terms of fruiting body formation inhibition and fruiting body size factor, which may be considered an indication of its ecological fitness (potential for spore dispersal). A second objective of the solid phase DDDC assay is to identify potential mechanisms of toxic action on the developmental cycle, for which three checkpoints are examined: (a) aggregation arrest, (b) migration arrest, and (c) culmination arrest. Presently, conditions for the DDDC assay such as soil texture, soil water content, soil pH, food availability and incubation time were investigated and optimized. In addition, both solid and liquid phase variants of the DDDC assay were applied to assess the toxicity of Hg, at regulatory concentrations. The developmental cycle and ecological fitness were affected from the exposure to 0.3 mg Hg/kg dry-wt soil onwards. The DDDC assay has been shown to be a high sensitivity test.
Collapse
Affiliation(s)
- Amaia Rodríguez-Ruiz
- Ekoiz-Berrilur Consortium, CBET Res. Grp. Zoology & Animal Cell Biology Dept., Science & Technol. Fac., University of the Basque Country (UPV/EHU), Sarriena 48940 Leioa-Bizkaia, Basque Country, Spain
| | | | | | | |
Collapse
|
17
|
Plak K, Veltman D, Fusetti F, Beeksma J, Rivero F, Van Haastert PJM, Kortholt A. GxcC connects Rap and Rac signaling during Dictyostelium development. BMC Cell Biol 2013; 14:6. [PMID: 23363311 PMCID: PMC3675359 DOI: 10.1186/1471-2121-14-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/25/2013] [Indexed: 11/13/2022] Open
Abstract
Background Rap proteins belong to the Ras family of small G-proteins. Dictyostelium RapA is essential and implicated in processes throughout the life cycle. In early development and chemotaxis competent cells RapA induces pseudopod formation by activating PI3K and it regulates substrate attachment and myosin disassembly via the serine/threonine kinase Phg2. RapA is also important in late development, however so far little is known about the downstream effectors of RapA that play a role in this process. Results Here we show that cells expressing constitutively active RapA exhibit a high level of Rac activation. With a pull-down screen coupled to mass spectrometry, we identified the Rac specific guanine nucleotide exchange factor, GxcC, as Rap binding partner. GxcC binds directly and specifically to active RapA and binds to a subset of Dictyostelium Rac proteins. Deletion studies revealed that this pathway is involved in regulating Dictyostelium development. Conclusions GxcC provides a novel link between Rap and Rac signalling and is one of the Rap effectors regulating the progression of multicellular development.
Collapse
Affiliation(s)
- Katarzyna Plak
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, Groningen, AG, 9747, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Much of our knowledge of molecular cellular functions is based on studies with a few number of model organisms that were established during the last 50 years. The social amoeba Dictyostelium discoideum is one such model, and has been particularly useful for the study of cell motility, chemotaxis, phagocytosis, endocytic vesicle traffic, cell adhesion, pattern formation, caspase-independent cell death, and, more recently, autophagy and social evolution. As nonmammalian model of human diseases D. discoideum is a newcomer, yet it has proven to be a powerful genetic and cellular model for investigating host-pathogen interactions and microbial infections, for mitochondrial diseases, and for pharmacogenetic studies. The D. discoideum genome harbors several homologs of human genes responsible for a variety of diseases, -including Chediak-Higashi syndrome, lissencephaly, mucolipidosis, Huntington disease, IBMPFD, and Shwachman-Diamond syndrome. A few genes have already been studied, providing new insights on the mechanism of action of the encoded proteins and in some cases on the defect underlying the disease. The opportunities offered by the organism and its place among the nonmammalian models for human diseases will be discussed.
Collapse
Affiliation(s)
- Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy.
| |
Collapse
|
19
|
Kelsey JS, Fastman NM, Noratel EF, Blumberg DD. Ndm, a coiled-coil domain protein that suppresses macropinocytosis and has effects on cell migration. Mol Biol Cell 2012; 23:3407-19. [PMID: 22809629 PMCID: PMC3431939 DOI: 10.1091/mbc.e12-05-0392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The ampA gene has a role in cell migration in Dictyostelium discoideum. Cells overexpressing AmpA show an increase in cell migration, forming large plaques on bacterial lawns. A second-site suppressor of this ampA-overexpressing phenotype identified a previously uncharacterized gene, ndm, which is described here. The Ndm protein is predicted to contain a coiled-coil BAR-like domain-a domain involved in endocytosis and membrane bending. ndm-knockout and Ndm-monomeric red fluorescent protein-expressing cell lines were used to establish a role for ndm in suppressing endocytosis. An increase in the rate of endocytosis and in the number of endosomes was detected in ndm(-) cells. During migration ndm(-) cells formed numerous endocytic cups instead of the broad lamellipodia structure characteristic of moving cells. A second lamellipodia-based function-cell spreading-was also defective in the ndm(-) cells. The increase in endocytosis and the defect in lamellipodia formation were associated with reduced chemotaxis in ndm(-) cells. Immunofluorescence results and glutathione S-transferase pull-down assays revealed an association of Ndm with coronin and F-actin. The results establish ndm as a gene important in regulating the balance between formation of endocytic cups and lamellipodia structures.
Collapse
Affiliation(s)
- Jessica S Kelsey
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | | | | | | |
Collapse
|
20
|
Evidence of an evolutionarily conserved LMBR1 domain-containing protein that associates with endocytic cups and plays a role in cell migration in dictyostelium discoideum. EUKARYOTIC CELL 2012; 11:401-16. [PMID: 22307974 DOI: 10.1128/ec.05186-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ampA gene plays a role in Dictyostelium discoideum cell migration. Loss of ampA function results in reduced ability of growing cells to migrate to folic acid and causes small plaques on bacterial lawns, while overexpression of AmpA results in a rapid-migration phenotype and correspondingly larger plaques than seen with wild-type cells. To help understand how the ampA gene functions, second-site suppressors were created by restriction enzyme-mediated integration (REMI) mutagenesis. These mutants were selected for their ability to reduce the large plaque size of the AmpA overexpresser strain. The lmbd2B gene was identified as a suppressor of an AmpA-overexpressing strain. The lmbd2B gene product belongs to the evolutionarily conserved LMBR1 protein family, some of whose known members are endocytic receptors associated with human diseases, such as anemia. In order to understand lmbd2B function, mRFP fusion proteins were created and lmbd2B knockout cell lines were established. Our findings indicate that the LMBD2B protein is found associated with endocytic cups. It colocalizes with proteins that play key roles in endocytic events and is localized to ruffles on the dorsal surfaces of growing cells. Vegetative lmbd2B-null cells display defects in cell migration. These cells have difficulty sensing the chemoattractant folic acid, as indicated by a decrease in their chemotactic index. lmbd2B-null cells also appear to have difficulty establishing a front/back orientation to facilitate migration. A role for lmbd2B in development is also suggested. Our research gives insight into the function of a previously uncharacterized branch of the LMBR1 family of proteins. We provide evidence of an LMBR1 family plasma membrane protein that associates with endocytic cups and plays a role in chemotaxis.
Collapse
|
21
|
Desalermos A, Fuchs BB, Mylonakis E. Selecting an invertebrate model host for the study of fungal pathogenesis. PLoS Pathog 2012; 8:e1002451. [PMID: 22319439 PMCID: PMC3271057 DOI: 10.1371/journal.ppat.1002451] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Athanasios Desalermos
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
Filić V, Marinović M, Faix J, Weber I. A dual role for Rac1 GTPases in the regulation of cell motility. J Cell Sci 2012; 125:387-98. [PMID: 22302991 DOI: 10.1242/jcs.089680] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rac proteins are the only canonical Rho family GTPases in Dictyostelium, where they act as key regulators of the actin cytoskeleton. To monitor the dynamics of activated Rac1 in Dictyostelium cells, a fluorescent probe was developed that specifically binds to the GTP-bound form of Rac1. The probe is based on the GTPase-binding domain (GBD) from PAK1 kinase, and was selected on the basis of yeast two-hybrid, GST pull-down and fluorescence resonance energy transfer assays. The PAK1 GBD localizes to leading edges of migrating cells and to endocytotic cups. Similarly to its role in vertebrates, activated Rac1 therefore appears to control de novo actin polymerization at protruding regions of the Dictyostelium cell. Additionally, we found that the IQGAP-related protein DGAP1, which sequesters active Rac1 into a quaternary complex with actin-binding proteins cortexillin I and cortexillin II, localizes to the trailing regions of migrating cells. Notably, PAK1 GBD and DGAP1, which both bind to Rac1-GTP, display mutually exclusive localizations in cell migration, phagocytosis and cytokinesis, and opposite dynamics of recruitment to the cell cortex upon stimulation with chemoattractants. Moreover, cortical localization of the PAK1 GBD depends on the integrity of the actin cytoskeleton, whereas cortical localization of DGAP1 does not. Taken together, these results imply that Rac1 GTPases play a dual role in regulation of cell motility and polarity in Dictyostelium.
Collapse
Affiliation(s)
- Vedrana Filić
- Ruder Bošković Institute, Division of Molecular Biology, Bijenička 54, HR-10000 Zagreb, Croatia
| | | | | | | |
Collapse
|
23
|
Use of a Dictyostelium model for isolation of genetic loci associated with phagocytosis and virulence in Klebsiella pneumoniae. Infect Immun 2010; 79:997-1006. [PMID: 21173313 DOI: 10.1128/iai.00906-10] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Phagocytosis resistance is an important virulence factor in Klebsiella pneumoniae. Dictyostelium has been used to study the interaction between phagocytes and bacteria because of its similarity to mammalian macrophages. In this study, we used a Dictyostelium model to investigate genes for resistance to phagocytosis in NTUH-K2044, a strain of K. pneumoniae causing pyogenic liver abscess that is highly resistant to phagocytosis. A total of 2,500 transposon mutants were screened by plaque assay, and 29 of them permitted phagocytosis by Dictyostelium. In the 29 mutants, six loci were identified; three were capsular synthesis genes. Of the other three, one was related to carnitine metabolism, one encoded a subunit of protease (clpX), and one encoded a lipopolysaccharide O-antigen transporter (wzm). Deletion and complementation of these genes showed that only ΔclpX and Δwzm mutants became susceptible to Dictyostelium phagocytosis, and their complementation restored the phagocytosis resistance phenotype. These two mutants were also susceptible to phagocytosis by human neutrophils and revealed attenuated virulence in a mouse model, implying that they play important roles in the pathogenesis of K. pneumoniae. Furthermore, we demonstrated that clpP, which exists in an operon with clpX, was also involved in resistance to phagocytosis. The transcriptional profile of ΔclpX was examined by microarray analysis and revealed a 3-fold lower level of expression of capsular synthesis genes. Therefore, we have identified genes involved in resistance to phagocytosis in K. pneumoniae using Dictyostelium, and this model is useful to explore genes associated with resistance to phagocytosis in heavily encapsulated bacteria.
Collapse
|
24
|
Mondal S, Burgute B, Rieger D, Müller R, Rivero F, Faix J, Schleicher M, Noegel AA. Regulation of the actin cytoskeleton by an interaction of IQGAP related protein GAPA with filamin and cortexillin I. PLoS One 2010; 5:e15440. [PMID: 21085675 PMCID: PMC2978108 DOI: 10.1371/journal.pone.0015440] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/21/2010] [Indexed: 01/06/2023] Open
Abstract
Filamin and Cortexillin are F-actin crosslinking proteins in Dictyostelium discoideum allowing actin filaments to form three-dimensional networks. GAPA, an IQGAP related protein, is required for cytokinesis and localizes to the cleavage furrow during cytokinesis. Here we describe a novel interaction with Filamin which is required for cytokinesis and regulation of the F-actin content. The interaction occurs through the actin binding domain of Filamin and the GRD domain of GAPA. A similar interaction takes place with Cortexillin I. We further report that Filamin associates with Rac1a implying that filamin might act as a scaffold for small GTPases. Filamin and activated Rac associate with GAPA to regulate actin remodelling. Overexpression of filamin and GAPA in the various strains suggests that GAPA regulates the actin cytoskeleton through interaction with Filamin and that it controls cytokinesis through association with Filamin and Cortexillin.
Collapse
Affiliation(s)
- Subhanjan Mondal
- Medical Faculty, Institute of Biochemistry I, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Bhagyashri Burgute
- Medical Faculty, Institute of Biochemistry I, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Daniela Rieger
- Institute of Anatomy and Cell Biology and Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-University, München, Germany
| | - Rolf Müller
- Medical Faculty, Institute of Biochemistry I, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Francisco Rivero
- Medical Faculty, Institute of Biochemistry I, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
- Department of Biological Sciences, The Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Michael Schleicher
- Institute of Anatomy and Cell Biology and Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-University, München, Germany
| | - Angelika A. Noegel
- Medical Faculty, Institute of Biochemistry I, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
- * E-mail:
| |
Collapse
|
25
|
Buenemann M, Levine H, Rappel WJ, Sander LM. The role of cell contraction and adhesion in dictyostelium motility. Biophys J 2010; 99:50-8. [PMID: 20655832 DOI: 10.1016/j.bpj.2010.03.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 03/25/2010] [Accepted: 03/29/2010] [Indexed: 01/16/2023] Open
Abstract
The crawling motion of Dictyostelium discoideum on substrata involves a number of coordinated events including cell contractions and cell protrusions. The mechanical forces exerted on the substratum during these contractions have recently been quantified using traction force experiments. Based on the results from these experiments, we present a biomechanical model of the contraction phase of Dictyostelium discoideum motility with an emphasis on the adhesive properties of the cell-substratum contact. Our model assumes that the cell contracts at a constant rate and is bound to the substratum by adhesive bridges that are modeled as elastic springs. These bridges are established at a spatially uniform rate while detachment occurs at a spatially varying, load-dependent rate. Using Monte Carlo simulations and assuming a rigid substratum, we find that the cell speed depends only weakly on the detachment kinetics of the cell-substratum interface, in agreement with experimental data. By varying the parameters that control the adhesive and contractile properties of the cell, we are able to make testable predictions. We also extend our model to include a flexible substrate and show that our model is able to produce substratum deformations and force patterns that are quantitatively and qualitatively in agreement with experimental data.
Collapse
Affiliation(s)
- Mathias Buenemann
- Center for Theoretical Biological Physics, University of California, San Diego, La Jolla, California, USA
| | | | | | | |
Collapse
|
26
|
Zanchi R, Howard G, Bretscher MS, Kay RR. The exocytic gene secA is required for Dictyostelium cell motility and osmoregulation. J Cell Sci 2010; 123:3226-34. [PMID: 20807800 DOI: 10.1242/jcs.072876] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the link between cell movement and plasma membrane recycling using a fast-acting, temperature-sensitive mutant of the Dictyostelium SecA exocytic protein. Strikingly, most mutant cells become almost paralysed within minutes at the restrictive temperature. However, they can still sense cyclic-AMP (cAMP) gradients and polymerise actin up-gradient, but form only abortive pseudopodia, which cannot expand. They also relay a cAMP signal normally, suggesting that cAMP is released by a non-exocytic mechanism. To investigate why SecA is required for motility, we examined membrane trafficking in the mutant. Plasma membrane circulation is rapidly inhibited at the restrictive temperature and the cells acquire a prominent vesicle. Organelle-specific markers show that this is an undischarged contractile vacuole, and we found the cells are correspondingly osmo-sensitive. Electron microscopy shows that many smaller vesicles, probably originating from the plasma membrane, also accumulate at the restrictive temperature. Consistent with this, the surface area of mutant cells shrinks. We suggest that SecA mutant cells cannot move at the restrictive temperature because their block in exocytosis results in a net uptake of plasma membrane, reducing its area, and so restricting pseudopodial expansion. This demonstrates the importance of proper surface area regulation in cell movement.
Collapse
Affiliation(s)
- Roberto Zanchi
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| | | | | | | |
Collapse
|
27
|
Adiba S, Nizak C, van Baalen M, Denamur E, Depaulis F. From grazing resistance to pathogenesis: the coincidental evolution of virulence factors. PLoS One 2010; 5:e11882. [PMID: 20711443 PMCID: PMC2920306 DOI: 10.1371/journal.pone.0011882] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 07/09/2010] [Indexed: 11/29/2022] Open
Abstract
To many pathogenic bacteria, human hosts are an evolutionary dead end. This begs the question what evolutionary forces have shaped their virulence traits. Why are these bacteria so virulent? The coincidental evolution hypothesis suggests that such virulence factors result from adaptation to other ecological niches. In particular, virulence traits in bacteria might result from selective pressure exerted by protozoan predator. Thus, grazing resistance may be an evolutionarily exaptation for bacterial pathogenicity. This hypothesis was tested by subjecting a well characterized collection of 31 Escherichia coli strains (human commensal or extra-intestinal pathogenic) to grazing by the social haploid amoeba Dictyostelium discoideum. We then assessed how resistance to grazing correlates with some bacterial traits, such as the presence of virulence genes. Whatever the relative population size (bacteria/amoeba) for a non-pathogenic bacteria strain, D. discoideum was able to phagocytise, digest and grow. In contrast, a pathogenic bacterium strain killed D. discoideum above a certain bacteria/amoeba population size. A plating assay was then carried out using the E. coli collection faced to the grazing of D. discoideum. E. coli strains carrying virulence genes such as iroN, irp2, fyuA involved in iron uptake, belonging to the B2 phylogenetic group and being virulent in a mouse model of septicaemia were resistant to the grazing from D. discoideum. Experimental proof of the key role of the irp gene in the grazing resistance was evidenced with a mutant strain lacking this gene. Such determinant of virulence may well be originally selected and (or) further maintained for their role in natural habitat: resistance to digestion by free-living protozoa, rather than for virulence per se.
Collapse
Affiliation(s)
- Sandrine Adiba
- Laboratoire d'Ecologie, CNRS UMR7625, Université Pierre et Marie Curie, Paris Universitas, Paris, France.
| | | | | | | | | |
Collapse
|
28
|
Shu S, Liu X, Kriebel PW, Hong MS, Daniels MP, Parent CA, Korn ED. Expression of Y53A-actin in Dictyostelium disrupts the cytoskeleton and inhibits intracellular and intercellular chemotactic signaling. J Biol Chem 2010; 285:27713-25. [PMID: 20610381 DOI: 10.1074/jbc.m110.116277] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We showed previously that phosphorylation of Tyr(53), or its mutation to Ala, inhibits actin polymerization in vitro with formation of aggregates of short filaments, and that expression of Y53A-actin in Dictyostelium blocks differentiation and development at the mound stage (Liu, X., Shu, S., Hong, M. S., Levine, R. L., and Korn, E. D. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 13694-13699; Liu, X., Shu, S., Hong, M. S., Yu, B., and Korn, E. D. (2010) J. Biol. Chem. 285, 9729-9739). We now show that expression of Y53A-actin, which does not affect cell growth, phagocytosis, or pinocytosis, inhibits the formation of head-to-tail cell streams during cAMP-induced aggregation, although individual amoebae chemotax normally. We show that expression of Y53A-actin causes a 50% reduction of cell surface cAMP receptors, and inhibits cAMP-induced increases in adenylyl cyclase A activity, phosphorylation of ERK2, and actin polymerization. Trafficking of vesicles containing adenylyl cyclase A to the rear of the cell and secretion of the ACA vesicles are also inhibited. The actin cytoskeleton of cells expressing Y53A-actin is characterized by numerous short filaments, and bundled and aggregated filaments similar to the structures formed by copolymerization of purified Y53A-actin and wild-type actin in vitro. This disorganized actin cytoskeleton may be responsible for the inhibition of intracellular and intercellular cAMP signaling in cells expressing F-Y53A-actin.
Collapse
Affiliation(s)
- Shi Shu
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Tung SM, Ünal C, Ley A, Peña C, Tunggal B, Noegel AA, Krut O, Steinert M, Eichinger L. Loss of Dictyostelium ATG9 results in a pleiotropic phenotype affecting growth, development, phagocytosis and clearance and replication of Legionella pneumophila. Cell Microbiol 2010; 12:765-80. [DOI: 10.1111/j.1462-5822.2010.01432.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Annesley SJ, Fisher PR. Dictyostelium discoideum--a model for many reasons. Mol Cell Biochem 2009; 329:73-91. [PMID: 19387798 DOI: 10.1007/s11010-009-0111-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/02/2009] [Indexed: 10/25/2022]
Abstract
The social amoeba or cellular slime mould Dictyostelium discoideum is a "professional" phagocyte that has long been recognized for its value as a biomedical model organism, particularly in studying the actomyosin cytoskeleton and chemotactic motility in non-muscle cells. The complete genome sequence of D. discoideum is known, it is genetically tractable, readily grown clonally as a eukaryotic microorganism and is highly accessible for biochemical, cell biological and physiological studies. These are the properties it shares with other microbial model organisms. However, Dictyostelium combines these with a unique life style, with motile unicellular and multicellular stages, and multiple cell types that offer for study an unparalleled variety of phenotypes and associated signalling pathways. These advantages have led to its recent emergence as a valuable model organism for studying the molecular pathogenesis and treatment of human disease, including a variety of infectious diseases caused by bacterial and fungal pathogens. Perhaps surprisingly, this organism, without neurons or brain, has begun to yield novel insights into the cytopathology of mitochondrial diseases as well as other genetic and idiopathic disorders affecting the central nervous system. Dictyostelium has also contributed significantly to our understanding of NDP kinase, as it was the Dictyostelium enzyme whose structure was first determined and related to enzymatic activity. The phenotypic richness and tractability of Dictyostelium should provide a fertile arena for future exploration of NDPK's cellular roles.
Collapse
Affiliation(s)
- Sarah J Annesley
- Department of Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | | |
Collapse
|
31
|
Jang W, Gomer RH. Combining experiments and modelling to understand size regulation in Dictyostelium discoideum. J R Soc Interface 2008; 5 Suppl 1:S49-58. [PMID: 18426773 DOI: 10.1098/rsif.2008.0067.focus] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Little is known about how the sizes of specific organs and tissues are regulated. To try to understand these mechanisms, we have been using a combination of modelling and experiments to study the simple system Dictyostelium discoideum, which forms approximately 20000 cell groups. We found that cells secrete a factor, and as the number of cells increases, the concentration of the factor increases. Diffusion calculations indicated that this lets cells sense the local cell density. Computer simulations predicted, and experiments then showed, that this factor decreases cell-cell adhesion and increases random cell motility. In a group, adhesion forces keep cells together, while random motility forces cause cells to pull apart and separate from each other. As the group size increases above a threshold, the factor concentration goes above a threshold and the cells switch from an adhered state to a separated state. This causes excessively large groups to break apart and/or dissipate, creating an upper limit to group size. In this review, we focus on how computer simulations made testable predictions that led the way to understanding the size regulation mechanism mediated by this factor.
Collapse
Affiliation(s)
- Wonhee Jang
- Department of Life Science, Dongguk University, Chung-Gu, Seoul, Korea.
| | | |
Collapse
|
32
|
Sillo A, Bloomfield G, Balest A, Balbo A, Pergolizzi B, Peracino B, Skelton J, Ivens A, Bozzaro S. Genome-wide transcriptional changes induced by phagocytosis or growth on bacteria in Dictyostelium. BMC Genomics 2008; 9:291. [PMID: 18559084 PMCID: PMC2443395 DOI: 10.1186/1471-2164-9-291] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 06/17/2008] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Phagocytosis plays a major role in the defense of higher organisms against microbial infection and provides also the basis for antigen processing in the immune response. Cells of the model organism Dictyostelium are professional phagocytes that exploit phagocytosis of bacteria as the preferred way to ingest food, besides killing pathogens. We have investigated Dictyostelium differential gene expression during phagocytosis of non-pathogenic bacteria, using DNA microarrays, in order to identify molecular functions and novel genes involved in phagocytosis. RESULTS The gene expression profiles of cells incubated for a brief time with bacteria were compared with cells either incubated in axenic medium or growing on bacteria. Transcriptional changes during exponential growth in axenic medium or on bacteria were also compared. We recognized 443 and 59 genes that are differentially regulated by phagocytosis or by the different growth conditions (growth on bacteria vs. axenic medium), respectively, and 102 genes regulated by both processes. Roughly one third of the genes are up-regulated compared to macropinocytosis and axenic growth. Functional annotation of differentially regulated genes with different tools revealed that phagocytosis induces profound changes in carbohydrate, amino acid and lipid metabolism, and in cytoskeletal components. Genes regulating translation and mitochondrial biogenesis are mostly up-regulated. Genes involved in sterol biosynthesis are selectively up-regulated, suggesting a shift in membrane lipid composition linked to phagocytosis. Very few changes were detected in genes required for vesicle fission/fusion, indicating that the intracellular traffic machinery is mostly in common between phagocytosis and macropinocytosis. A few putative receptors, including GPCR family 3 proteins, scaffolding and adhesion proteins, components of signal transduction and transcription factors have been identified, which could be part of a signalling complex regulating phagocytosis and adaptational downstream responses. CONCLUSION The results highlight differences between phagocytosis and macropinocytosis, and provide the basis for targeted functional analysis of new candidate genes and for comparison studies with transcriptomes during infection with pathogenic bacteria.
Collapse
Affiliation(s)
- Alessio Sillo
- Department of Clinical and Biological Sciences, University of Turin, Ospedale S, Luigi, 10043 Orbassano, Torino, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cosson P, Soldati T. Eat, kill or die: when amoeba meets bacteria. Curr Opin Microbiol 2008; 11:271-6. [DOI: 10.1016/j.mib.2008.05.005] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 04/23/2008] [Accepted: 05/07/2008] [Indexed: 01/11/2023]
|
34
|
Phagocytosis and host-pathogen interactions in Dictyostelium with a look at macrophages. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 271:253-300. [PMID: 19081545 DOI: 10.1016/s1937-6448(08)01206-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Research into phagocytosis and host-pathogen interactions in the lower eukaryote Dictyostelium discoideum has flourished in recent years. This chapter presents a glimpse of where this research stands, with emphasis on the cell biology of the phagocytic process and on the wealth of molecular genetic data that have been gathered. The basic mechanistic machinery and most of the underlying genes appear to be evolutionarily conserved, reflecting the fact that phagocytosis arose as an efficient way to ingest food in single protozoan cells devoid of a rigid cell wall. In spite of some differences, the signal transduction pathways regulating phagosome biogenesis are also emerging as ultimately similar between Dictyostelium and macrophages. Both cell types are hosts for many pathogenic invasive bacteria, which exploit phagocytosis to grow intracellularly. We present an overwiew, based on the analysis of mutants, on how Dictyostelium contributes as a genetic model system to decipher the complexity of host-pathogen interactions.
Collapse
|
35
|
Bretscher MS, Clotworthy M. Using single loxP sites to enhance homologous recombination: ts mutants in Sec1 of Dictyostelium discoideum. PLoS One 2007; 2:e724. [PMID: 17684569 PMCID: PMC1933600 DOI: 10.1371/journal.pone.0000724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 07/13/2007] [Indexed: 11/19/2022] Open
Abstract
Background Dictyostelium discoideum amoebae are haploid and, as they share many features with animal cells, should be an ideal creature for studying basic processes such as cell locomotion. Isolation of mutants in this amoeba has largely been limited to non-essential genes: nsfA—the gene for NEM-sensitive factor—remains the only essential gene for which conditional (ts) mutants exist. These ts mutants were generated by gene replacement using a library of mutagenised nsfA containing a selectable marker: transformants were then screened for temperature sensitivity. The success of this approach depended on the high level of homologous recombination prevailing at this locus: ∼95% of selected clones were homologous recombinants. This is unusually high for Dictyostelium: homologous recombination at other loci is usually much less, usually between 0–30%, making the isolation of ts mutants much more tedious. Methodology/Principal Findings In trying to make ts mutants in sec1A, homologous recombination was found to be only ∼25%. A new approach, involving single loxP sites, was investigated. LoxP sites are 34 bp sequences recognised by Cre recombinase and between which this enzyme catalyses recombination. A Dictyostelium line containing a single loxP site adjacent to the 3′ end of the sec1A gene was engineered. A sec1A replacement DNA also containing a single loxP site in a homologous position was then introduced into this cell line. In the presence of CRE recombinase, homologous recombination increased to ∼80% at this locus, presumably largely driven by intermolecular recombination between the two single loxP sites. Conclusions/Significance A route to increase the rate of homologous recombination at a specific locus, sec1A, is described which enabled the isolation of 30 ts mutants in sec1A. One of these, sec1Ats1,has been studied and found to cease moving at the restrictive temperature. The approach described here may be valuable for enhancing homologous recombination at specified loci and thus for introducing mutations into specific genes in Dictyostelium and other creatures.
Collapse
Affiliation(s)
- Mark S Bretscher
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom.
| | | |
Collapse
|
36
|
Replacement of the essential Dictyostelium Arp2 gene by its Entamoeba homologue using parasexual genetics. BMC Genet 2007; 8:28. [PMID: 17553170 PMCID: PMC1904233 DOI: 10.1186/1471-2156-8-28] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 06/06/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cell motility is an essential feature of the pathogenesis and morbidity of amoebiasis caused by Entamoeba histolytica. As motility depends on cytoskeletal organisation and regulation, a study of the molecular components involved is key to a better understanding of amoebic pathogenesis. However, little is known about the physiological roles, interactions and regulation of the proteins of the Entamoeba cytoskeleton. RESULTS We have established a genetic strategy that uses parasexual genetics to allow essential Dictyostelium discoideum genes to be manipulated and replaced with modified or tagged homologues. Our results show that actin related protein 2 (Arp2) is essential for survival, but that the Dictyostelium protein can be complemented by E. histolytica Arp2, despite the presence of an insertion of 16 amino acids in an otherwise highly conserved protein. Replacement of endogenous Arp2 with myc-tagged Entamoeba or Dictyostelium Arp2 has no obvious effects on growth and the protein incorporates effectively into the Arp2/3 complex. CONCLUSION We have established an effective two-step method for replacing genes that are required for survival. Our protocol will allow such genes to be studied far more easily, and also allows an unambiguous demonstration that particular genes are truly essential. In addition, cells in which the Dictyostelium Arp2 has been replaced by the Entamoeba protein are potential targets for drug screens.
Collapse
|
37
|
Caracino D, Jones C, Compton M, Saxe CL. The N-terminus of Dictyostelium Scar interacts with Abi and HSPC300 and is essential for proper regulation and function. Mol Biol Cell 2007; 18:1609-20. [PMID: 17314411 PMCID: PMC1855017 DOI: 10.1091/mbc.e06-06-0518] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Scar/WAVE proteins, members of the conserved Wiskott-Aldrich syndrome (WAS) family, promote actin polymerization by activating the Arp2/3 complex. A number of proteins, including a complex containing Nap1, PIR121, Abi1/2, and HSPC300, interact with Scar/WAVE, though the role of this complex in regulating Scar function remains unclear. Here we identify a short N-terminal region of Dictyostelium Scar that is necessary and sufficient for interaction with HSPC300 and Abi in vitro. Cells expressing Scar lacking this N-terminal region show abnormalities in F-actin distribution, cell morphology, movement, and cytokinesis. This is true even in the presence of wild-type Scar. The data suggest that the first 96 amino acids of Scar are necessary for participation in a large-molecular-weight protein complex, and that this Scar-containing complex is responsible for the proper localization and regulation of Scar. The presence of mis-regulated or unregulated Scar has significant deleterious effects on cells and may explain the need to keep Scar activity tightly controlled in vivo either by assembly in a complex or by rapid degradation.
Collapse
Affiliation(s)
- Diana Caracino
- *Department of Cell Biology and
- Graduate Program in Microbiology and Molecular Genetics, Emory University School of Medicine, Atlanta, GA 30322; and
| | | | - Mark Compton
- Department of Poultry Science, School of Agriculture, University of Georgia, Athens, GA 30602
| | - Charles L. Saxe
- *Department of Cell Biology and
- Graduate Program in Microbiology and Molecular Genetics, Emory University School of Medicine, Atlanta, GA 30322; and
| |
Collapse
|
38
|
Sato MJ, Ueda M, Takagi H, Watanabe TM, Yanagida T, Ueda M. Input-output relationship in galvanotactic response of Dictyostelium cells. Biosystems 2006; 88:261-72. [PMID: 17184899 DOI: 10.1016/j.biosystems.2006.06.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 06/30/2006] [Indexed: 11/25/2022]
Abstract
Under a direct current electric field, Dictyostelium cells exhibit migration towards the cathode. To determine the input-output relationship of the cell's galvanotactic response, we developed an experimental instrument in which electric signals applied to the cells are highly reproducible and the motile response are analyzed quantitatively. With no electric field, the cells moved randomly in all directions. Upon applying an electric field, cell migration speeds became about 1.3 times faster than those in the absence of an electric field. Such kinetic effects of electric fields on the migration were observed for cells stimulated between 0.25 and 10 V/cm of the field strength. The directions of cell migrations were biased toward the cathode in a positive manner with field strength, showing galvanotactic response in a dose-dependent manner. Quantitative analysis of the relationship between field strengths and directional movements revealed that the biased movements of the cells depend on the square of electric field strength, which can be described by one simple phenomenological equation. The threshold strength for the galvanotaxis was between 0.25 and 1 V/cm. Galvanotactic efficiency reached to half-maximum at 2.6 V/cm, which corresponds to an approximate 8 mV voltage difference between the cathode and anode direction of 10 microm wide, round cells. Based on these results, possible mechanisms of galvanotaxis in Dictyostelium cells were discussed. This development of experimental system, together with its good microscopic accessibility for intracellular signaling molecules, makes Dictyostelium cells attractive as a model organism for elucidating stochastic processes in the signaling systems responsible for cell motility and its regulations.
Collapse
Affiliation(s)
- Masayuki J Sato
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Hofer TPJ, Frankenberger M, Staples KJ, Ziegler-Heitbrock L. Expression of p57-Kip2 in monocytes and macrophages. Immunobiology 2006; 211:455-62. [PMID: 16920485 DOI: 10.1016/j.imbio.2006.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 05/24/2006] [Indexed: 01/07/2023]
Abstract
The p57-Kip2 gene encodes a cyclin-dependent kinase inhibitor and hence this gene has received much attention in the study of malignancy. We have analysed expression of this gene in human monocytes and macrophages. In comparison to CD14++ monocytes, p57-Kip2 expression was higher in both CD14+16+ monocytes and alveolar macrophages. p57-Kip2 expression decreased in CD14++ monocytes after stimulation with lipopolysaccharide but increased after incubation with methylprednisolone. The results indicate that p57-Kip2 may be involved in regulating the inflammatory response of monocytic cells.
Collapse
Affiliation(s)
- Thomas P J Hofer
- Clinical Cooperation Group Inflammatory Lung Diseases, GSF National Research Center for Environment and Health, GSF-Institute for Inhalation Biology and Asklepios Fachkliniken Muenchen-Gauting, Robert-Koch-Allee 29, D-82131 Gauting, Germany.
| | | | | | | |
Collapse
|
40
|
Arasada R, Son H, Ramalingam N, Eichinger L, Schleicher M, Rohlfs M. Characterization of the Ste20-like kinase Krs1 of Dictyostelium discoideum. Eur J Cell Biol 2006; 85:1059-68. [PMID: 16842885 DOI: 10.1016/j.ejcb.2006.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Ste20-like kinases constitute a ubiquitous and expanding group of serine/threonine kinases, homologous to Ste20 in Saccharomyces cerevisiae. The social amoeba Dictyostelium discoideum contains at least 17 members of this kinase family, 13 from the germinal center kinase (GCK) subgroup and 4 p21-activated kinases (PAK). Here, we describe the kinase Krs1 which is encoded by the gene krsA, and phylogenetic analysis groups it into subfamily GCK-II together with human MST2 and MST1 or Hippo from Drosophila melanogaster. Significant similarities are found especially in the catalytic domain and in a short regulatory region (SARAH) which is thought to be important for protein/protein interactions. Northern blot analysis showed a single krsA transcript throughout development with an upregulation at 12h after the onset of starvation. The protein levels as detected with anti-Krs1 polyclonal antibodies revealed a similar pattern. Gel filtration experiments suggested that AX2 wild-type cells harbored multimeric forms of Krs1. In vitro phosphorylation assays with recombinant protein showed that the kinase exhibits autophosphorylation and accepts myelin basic protein and D. discoideum severin as substrates. A series of C-terminal deletions of Krs1 indicated that the regulatory domain in the C-terminal half contains inhibitory elements, and highlighted the importance of two predicted alpha-helices following subdomain XI of the classical catalytic domain. GFP-Krs1-overexpressing wild-type cells showed an enrichment of the kinase in the cortex, and motility of these cells during aggregation was reduced. Krs1 knockout strains exhibited only subtle differences to wild-type cells which suggests a certain redundancy among Ste20-like kinases in D. discoideum.
Collapse
Affiliation(s)
- Rajesh Arasada
- Adolf-Butenandt-Institut/Zellbiologie, Ludwig-Maximilians-Universität, Schillerstr. 42, D-80336 München, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Pollitt AY, Blagg SL, Ibarra N, Insall RH. Cell motility and SCAR localisation in axenically growing Dictyostelium cells. Eur J Cell Biol 2006; 85:1091-8. [PMID: 16822579 DOI: 10.1016/j.ejcb.2006.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Dictyostelium is a popular experimental organism, in particular for studies of actin dynamics, cell motility and chemotaxis. We find that the motility of axenic cells is unexpectedly different from other strains during growth. In particular, vegetative AX3 cells do not show detectable localisation of SCAR and its regulatory complex to actin-rich protrusions such as filopodia and pseudopodia. Similarly, a range of different mutations, in particular knockouts of members of the SCAR complex and Ras proteins, cause different phenotypes during vegetative growth in different parental strains. Development reverses this unusual behaviour; aggregation-competent AX3 cells localise SCAR in the same way as cells of other strains and species. Studies on cell motility using vegetative cells should therefore be interpreted with caution.
Collapse
Affiliation(s)
- Alice Y Pollitt
- School of Biosciences, Birmingham University, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
42
|
Fuchs BB, Mylonakis E. Using non-mammalian hosts to study fungal virulence and host defense. Curr Opin Microbiol 2006; 9:346-51. [PMID: 16814595 DOI: 10.1016/j.mib.2006.06.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 06/16/2006] [Indexed: 12/21/2022]
Abstract
Non-mammalian hosts have been used to study host-fungal interactions. Hosts such as Drosophila melanogaster, Caenorhabditis elegans, Acathamoeba castellanii, Dictyostelium discoideum, and Galleria mellonella have provided means to examine the physical barriers, cellular mechanisms and molecular elements of the host response. The Drosophila host-response to fungi is mediated through the Toll pathway, whereas in C. elegans the host-response is TIR-1-dependent. Virulence traits that are involved in mammalian infection are important for the interaction of fungi with these hosts. Screening of fungal virulence traits using mutagenized fungi to determine changes in fungal infectivity of non-mammalian hosts has been used to identify novel virulence proteins used to infect C. elegans such as Kin1 (a serine/threonine protein kinase) and Rom2 (a Rho1 guanyl-nucleotide exchange factor) from Cryptococcus neoformans. These heterologous non-mammalian hosts highlight the similarities and differences between different hosts in fungal pathogenesis and they complement studies in mammalian systems and those using other genetic approaches.
Collapse
Affiliation(s)
- Beth Burgwyn Fuchs
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | | |
Collapse
|
43
|
Misty R, Martinez R, Ali H, Steimle PA. Naringenin is a novel inhibitor of Dictyostelium cell proliferation and cell migration. Biochem Biophys Res Commun 2006; 345:516-22. [PMID: 16682000 DOI: 10.1016/j.bbrc.2006.04.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 04/15/2006] [Indexed: 11/17/2022]
Abstract
Naringenin is a flavanone compound that alters critical cellular processes such as cell multiplication, glucose uptake, and mitochondrial activity. In this study, we used the social amoeba, Dictyostelium discoideum, as a model system for examining the cellular processes and signaling pathways affected by naringenin. We found that naringenin inhibited Dictyostelium cell division in a dose-dependent manner (IC(50) approximately 20 microM). Assays of Dictyostelium chemotaxis and multicellular development revealed that naringenin possesses a previously unrecognized ability to suppress amoeboid cell motility. We also found that naringenin, which is known to inhibit phosphatidylinositol 3-kinase activity, had no apparent effect on phosphatidylinositol 3,4,5-trisphosphate synthesis in live Dictyostelium cells; suggesting that this compound suppresses cell growth and migration via alternative signaling pathways. In another context, the discoveries described here highlight the value of using the Dictyostelium model system for identifying and characterizing the mechanisms by which naringenin, and related compounds, exert their effects on eukaryotic cells.
Collapse
Affiliation(s)
- Russ Misty
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | | | | | | |
Collapse
|
44
|
Farbrother P, Wagner C, Na J, Tunggal B, Morio T, Urushihara H, Tanaka Y, Schleicher M, Steinert M, Eichinger L. Dictyostelium transcriptional host cell response upon infection with Legionella. Cell Microbiol 2006; 8:438-56. [PMID: 16469056 DOI: 10.1111/j.1462-5822.2005.00633.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Differential gene expression of Dictyostelium discoideum after infection with Legionella pneumophila was investigated using DNA microarrays. Investigation of a 48 h time course of infection revealed several clusters of co-regulated genes, an enrichment of preferentially up- or downregulated genes in distinct functional categories and also showed that most of the transcriptional changes occurred 24 h after infection. A detailed analysis of the 24 h time point post infection was performed in comparison to three controls, uninfected cells and co-incubation with Legionella hackeliae and L. pneumophilaDeltadotA. One hundred and thirty-one differentially expressed D. discoideum genes were identified as common to all three experiments and are thought to be involved in the pathogenic response. Functional annotation of the differentially regulated genes revealed that apart from triggering a stress response Legionella apparently not only interferes with intracellular vesicle fusion and destination but also profoundly influences and exploits the metabolism of its host. For some of the identified genes, e.g. rtoA involvement in the host response has been demonstrated in a recent study, for others such a role appears plausible. The results provide the basis for a better understanding of the complex host-pathogen interactions and for further studies on the Dictyostelium response to Legionella infection.
Collapse
Affiliation(s)
- Patrick Farbrother
- Institut für Biochemie I, Medizinische Fakultät, Universität zu Köln, Joseph-Stelzmann-Str. 52, D-50931 Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Russ M, Croft D, Ali O, Martinez R, Steimle P. Myosin heavy-chain kinase A from Dictyostelium possesses a novel actin-binding domain that cross-links actin filaments. Biochem J 2006; 395:373-83. [PMID: 16372899 PMCID: PMC1422765 DOI: 10.1042/bj20051376] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Myosin heavy-chain kinase A (MHCK A) catalyses the disassembly of myosin II filaments in Dictyostelium cells via myosin II heavy-chain phosphorylation. MHCK A possesses a 'coiled-coil'-enriched domain that mediates the oligomerization, cellular localization and actin-binding activities of the kinase. F-actin (filamentous actin) binding by the coiled-coil domain leads to a 40-fold increase in MHCK A activity. In the present study we examined the actin-binding characteristics of the coiled-coil domain as a means of identifying mechanisms by which MHCK A-mediated disassembly of myosin II filaments can be regulated in the cell. Co-sedimentation assays revealed that the coiled-coil domain of MHCK A binds co-operatively to F-actin with an apparent K(D) of approx. 0.5 muM and a stoichiometry of approx. 5:1 [actin/C(1-498)]. Further analyses indicate that the coiled-coil domain binds along the length of the actin filament and possesses at least two actin-binding regions. Quite surprisingly, we found that the coiled-coil domain cross-links actin filaments into bundles, indicating that MHCK A can affect the cytoskeleton in two important ways: (1) by driving myosin II-filament disassembly via myosin II heavy-chain phosphorylation, and (2) by cross-linking/bundling actin filaments. This discovery, along with other supporting data, suggests a model in which MHCK A-mediated bundling of actin filaments plays a central role in the recruitment and activation of the kinase at specific sites in the cell. Ultimately this provides a means for achieving the robust and highly localized disruption of myosin II filaments that facilitates polarized changes in cell shape during processes such as chemotaxis, cytokinesis and multicellular development.
Collapse
Affiliation(s)
- Misty Russ
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, U.S.A
| | - Daniel Croft
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, U.S.A
| | - Omar Ali
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, U.S.A
| | - Raquel Martinez
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, U.S.A
| | - Paul A. Steimle
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
46
|
Steffen A, Faix J, Resch GP, Linkner J, Wehland J, Small JV, Rottner K, Stradal TE. Filopodia formation in the absence of functional WAVE- and Arp2/3-complexes. Mol Biol Cell 2006; 17:2581-91. [PMID: 16597702 PMCID: PMC1474932 DOI: 10.1091/mbc.e05-11-1088] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cell migration is initiated by plasma membrane protrusions, in the form of lamellipodia and filopodia. The latter rod-like projections may exert sensory functions and are found in organisms as distant in evolution as mammals and amoeba such as Dictyostelium discoideum. In mammals, lamellipodia protrusion downstream of the small GTPase Rac1 requires a multimeric protein assembly, the WAVE-complex, which activates Arp2/3-mediated actin filament nucleation and actin network assembly. A current model of filopodia formation postulates that these structures arise from a dendritic network of lamellipodial actin filaments by selective elongation and bundling. Here, we have analyzed filopodia formation in mammalian cells abrogated in expression of essential components of the lamellipodial actin polymerization machinery. Cells depleted of the WAVE-complex component Nck-associated protein 1 (Nap1), and, in consequence, of lamellipodia, exhibited normal filopodia protrusion. Likewise, the Arp2/3-complex, which is essential for lamellipodia protrusion, is dispensable for filopodia formation. Moreover, genetic disruption of nap1 or the WAVE-orthologue suppressor of cAMP receptor (scar) in Dictyostelium was also ineffective in preventing filopodia protrusion. These data suggest that the molecular mechanism of filopodia formation is conserved throughout evolution from Dictyostelium to mammals and show that lamellipodia and filopodia formation are functionally separable.
Collapse
Affiliation(s)
| | - Jan Faix
- Institute of Biophysical Chemistry, Hannover Medical School, D-30623 Hannover, Germany; and
| | - Guenter P. Resch
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, A-1030 Vienna, Austria
| | - Joern Linkner
- Institute of Biophysical Chemistry, Hannover Medical School, D-30623 Hannover, Germany; and
| | - Juergen Wehland
- Department of Cell Biology, German Research Centre for Biotechnology, D-38124 Braunschweig, Germany
| | - J. Victor Small
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, A-1030 Vienna, Austria
| | | | | |
Collapse
|
47
|
Eichinger L, Noegel AA. Comparative genomics of Dictyostelium discoideum and Entamoeba histolytica. Curr Opin Microbiol 2006; 8:606-11. [PMID: 16125444 DOI: 10.1016/j.mib.2005.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Accepted: 08/15/2005] [Indexed: 11/18/2022]
Abstract
Amoebozoa represent one of the earliest branches from the last common ancestor of all eukaryotes and contain some of the most dangerous human pathogens. Two amoebozoan genomes -- from the model organism Dictyostelium discoideum and the human pathogen Entamoeba histolytica -- have been published this year. Owing to their high A+T content, both genomes were difficult to sequence. In addition to nine amoebozoan expressed sequence tag projects, efforts are underway for comparative sequencing of four additional Entamoeba species. The completed genome sequences of D. discoideum and E. histolytica revealed unusual telomere structures, a high percentage of repetitive elements and a remarkably high gene content that is close to the one of Drosophila melanogaster. Finally, both organisms are brilliant examples of the influence of the lifestyle of an organism on its genome.
Collapse
Affiliation(s)
- Ludwig Eichinger
- Centre for Biochemistry, Medical Faculty, University of Cologne, 50931 Köln, Germany
| | | |
Collapse
|
48
|
Pikzack C, Prassler J, Furukawa R, Fechheimer M, Rivero F. Role of calcium-dependent actin-bundling proteins: characterization of Dictyostelium mutants lacking fimbrin and the 34-kilodalton protein. ACTA ACUST UNITED AC 2006; 62:210-31. [PMID: 16265631 DOI: 10.1002/cm.20098] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Actin-bundling proteins organize actin filaments into densely packed bundles. In Dictyostelium discoideum two abundant proteins display calcium-regulated bundling activity, fimbrin and the 34-kDa protein (ABP34). Using a GFP fusion we observed transient localization of fimbrin at the phagocytic cup and macropinosomes. The distribution of truncated constructs encompassing the EF hands and the first actin-binding domain (EA1) or both actin-binding domains devoid of EF hands (A1A2) was indistinguishable from that of the full length protein. The role of fimbrin and a possible functional overlap with ABP34 was investigated in fim- and double 34-/fim- mutants. Except for a moderate cell size defect, fim- mutants did not show defects in growth, endocytosis, exocytosis, and chemotaxis. Double mutants were characterized by a small cell size and a defect in morphogenesis resulting in small fruiting bodies and a low spore yield. The cell size defect could not be overcome by expression of fimbrin fragments EA1 or A1A2, suggesting that both bundling activity and regulation by calcium are important. Induction of filopod formation in 34-/fim- cells was not impaired, indicating that both proteins are dispensable for this process. We searched in the Dictyostelium genome database for fimbrin-like proteins that could compensate for the fimbrin defect and identified three unconventional fimbrins and two more proteins with actin-binding domains of the type present in fimbrins.
Collapse
Affiliation(s)
- Claudia Pikzack
- Zentrum für Biochemie, Medizinische Fakultät, Universität zu Köln, Köln, Germany
| | | | | | | | | |
Collapse
|
49
|
Oku T, Itoh S, Ishii R, Suzuki K, Nauseef W, Toyoshima S, Tsuji T. Homotypic dimerization of the actin-binding protein p57/coronin-1 mediated by a leucine zipper motif in the C-terminal region. Biochem J 2005; 387:325-31. [PMID: 15601263 PMCID: PMC1134960 DOI: 10.1042/bj20041020] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The actin-binding protein p57/coronin-1, a member of the coronin protein family, is selectively expressed in immune cells, and has been implicated in leucocyte migration and phagocytosis by virtue of its interaction with F-actin (filamentous actin). We previously identified two sites in the N-terminal region of p57/coronin-1 by which it binds actin, and in the present study we examine the role of the leucine zipper motif located in the C-terminal coiled-coil domain in mediating the homotypic association of p57/coronin-1. Recombinant p57/coronin-1 protein in solution formed a homodimer, as analysed by Superose 12 column chromatography and by sucrose density gradient centrifugation. In vivo, a truncated form consisting of the C-terminal coiled-coil domain co-precipitated with full-length p57/coronin-1 when both were co-expressed in COS-1 cells. A chimaeric construct composed of the C-terminal domain of p57/coronin-1 (which lacks the actin-binding sites) fused with green fluorescent protein co-localized with cortical F-actin-rich regions in COS-1 cells only when full-length p57/coronin-1 was expressed simultaneously in the cells, suggesting that the C-terminal region is required for the homotypic association of p57/coronin-1. Furthermore, p57LZ, a polypeptide consisting of the C-terminal 90 amino acid residues of p57/coronin-1, was sufficient for dimerization. When two leucine residues out of the four that constitute the leucine zipper structure in p57LZ or full-length p57 were replaced with alanine residues, the mutants failed to form homodimers. Taken together, these results demonstrate that p57/coronin-1 forms homodimers, that the association is mediated by the leucine zipper structure in the C-terminal region, and that it plays a role in the cross-linking of F-actin in the cell.
Collapse
Affiliation(s)
- Teruaki Oku
- *Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Saotomo Itoh
- *Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Rie Ishii
- *Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Kensuke Suzuki
- †Pharmaceutical Frontier Research Laboratories, Japan Tobacco Inc., 1-13-2 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - William M. Nauseef
- ‡The Inflammation Program and Department of Medicine, University of Iowa and Veterans Affairs Medical Center, Iowa City, IA 52242, U.S.A
| | - Satoshi Toyoshima
- §Pharmaceutical and Medical Device Evaluation Center, National Institute of Health Science, 3-8-21 Toranomon, Minato-ku, Tokyo 105-8409, Japan
| | - Tsutomu Tsuji
- *Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
50
|
Eichinger L, Pachebat J, Glöckner G, Rajandream MA, Sucgang R, Berriman M, Song J, Olsen R, Szafranski K, Xu Q, Tunggal B, Kummerfeld S, Madera M, Konfortov BA, Rivero F, Bankier AT, Lehmann R, Hamlin N, Davies R, Gaudet P, Fey P, Pilcher K, Chen G, Saunders D, Sodergren E, Davis P, Kerhornou A, Nie X, Hall N, Anjard C, Hemphill L, Bason N, Farbrother P, Desany B, Just E, Morio T, Rost R, Churcher C, Cooper J, Haydock S, van Driessche N, Cronin A, Goodhead I, Muzny D, Mourier T, Pain A, Lu M, Harper D, Lindsay R, Hauser H, James K, Quiles M, Babu MM, Saito T, Buchrieser C, Wardroper A, Felder M, Thangavelu M, Johnson D, Knights A, Loulseged H, Mungall K, Oliver K, Price C, Quail M, Urushihara H, Hernandez J, Rabbinowitsch E, Steffen D, Sanders M, Ma J, Kohara Y, Sharp S, Simmonds M, Spiegler S, Tivey A, Sugano S, White B, Walker D, Woodward J, Winckler T, Tanaka Y, Shaulsky G, Schleicher M, Weinstock G, Rosenthal A, Cox E, Chisholm RL, Gibbs R, Loomis WF, Platzer M, Kay RR, Williams J, Dear PH, Noegel AA, Barrell B, Kuspa A. The genome of the social amoeba Dictyostelium discoideum. Nature 2005; 435:43-57. [PMID: 15875012 PMCID: PMC1352341 DOI: 10.1038/nature03481] [Citation(s) in RCA: 967] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 02/17/2005] [Indexed: 02/07/2023]
Abstract
The social amoebae are exceptional in their ability to alternate between unicellular and multicellular forms. Here we describe the genome of the best-studied member of this group, Dictyostelium discoideum. The gene-dense chromosomes of this organism encode approximately 12,500 predicted proteins, a high proportion of which have long, repetitive amino acid tracts. There are many genes for polyketide synthases and ABC transporters, suggesting an extensive secondary metabolism for producing and exporting small molecules. The genome is rich in complex repeats, one class of which is clustered and may serve as centromeres. Partial copies of the extrachromosomal ribosomal DNA (rDNA) element are found at the ends of each chromosome, suggesting a novel telomere structure and the use of a common mechanism to maintain both the rDNA and chromosomal termini. A proteome-based phylogeny shows that the amoebozoa diverged from the animal-fungal lineage after the plant-animal split, but Dictyostelium seems to have retained more of the diversity of the ancestral genome than have plants, animals or fungi.
Collapse
Affiliation(s)
- L. Eichinger
- Center for Biochemistry and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - J.A. Pachebat
- Center for Biochemistry and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
- Laboratory of Molecular Biology, MRC Centre, Cambridge CB2 2QH, UK
| | - G. Glöckner
- Genome Analysis, Institute for Molecular Biotechnology, Beutenbergstr. 11, D-07745 Jena, Germany
| | - M.-A. Rajandream
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - R. Sucgang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030, USA
| | - M. Berriman
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - J. Song
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030, USA
| | - R. Olsen
- Section of Cell and Developmental Biology, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - K. Szafranski
- Genome Analysis, Institute for Molecular Biotechnology, Beutenbergstr. 11, D-07745 Jena, Germany
| | - Q. Xu
- Dept. of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston TX 77030, USA
| | - B. Tunggal
- Center for Biochemistry and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - S. Kummerfeld
- Laboratory of Molecular Biology, MRC Centre, Cambridge CB2 2QH, UK
| | - M. Madera
- Laboratory of Molecular Biology, MRC Centre, Cambridge CB2 2QH, UK
| | - B. A. Konfortov
- Laboratory of Molecular Biology, MRC Centre, Cambridge CB2 2QH, UK
| | - F. Rivero
- Center for Biochemistry and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - A. T. Bankier
- Laboratory of Molecular Biology, MRC Centre, Cambridge CB2 2QH, UK
| | - R. Lehmann
- Genome Analysis, Institute for Molecular Biotechnology, Beutenbergstr. 11, D-07745 Jena, Germany
| | - N. Hamlin
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - R. Davies
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - P. Gaudet
- dictyBase, Center for Genetic Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - P. Fey
- dictyBase, Center for Genetic Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - K. Pilcher
- dictyBase, Center for Genetic Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - G. Chen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030, USA
| | - D. Saunders
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - E. Sodergren
- Dept. of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - P. Davis
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - A. Kerhornou
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - X. Nie
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030, USA
| | - N. Hall
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - C. Anjard
- Section of Cell and Developmental Biology, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - L. Hemphill
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030, USA
| | - N. Bason
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - P. Farbrother
- Center for Biochemistry and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - B. Desany
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030, USA
| | - E. Just
- dictyBase, Center for Genetic Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - T. Morio
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - R. Rost
- Adolf-Butenandt-Institute/Cell Biology, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - C. Churcher
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - J. Cooper
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - S. Haydock
- Biochemistry Department, University of Cambridge, Cambridge CB2 1QW, UK
| | - N. van Driessche
- Dept. of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - A. Cronin
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - I. Goodhead
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - D. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - T. Mourier
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - A. Pain
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - M. Lu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030, USA
| | - D. Harper
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - R. Lindsay
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030, USA
| | - H. Hauser
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - K. James
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - M. Quiles
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - M. Madan Babu
- Laboratory of Molecular Biology, MRC Centre, Cambridge CB2 2QH, UK
| | - T. Saito
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810 Japan
| | - C. Buchrieser
- Unité de Genomique des Microorganismes Pathogenes, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - A. Wardroper
- Laboratory of Molecular Biology, MRC Centre, Cambridge CB2 2QH, UK
- Department of Biology, University of York, York YO10 5YW, UK
| | - M. Felder
- Genome Analysis, Institute for Molecular Biotechnology, Beutenbergstr. 11, D-07745 Jena, Germany
| | - M. Thangavelu
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, UK
| | - D. Johnson
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - A. Knights
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - H. Loulseged
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - K. Mungall
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - K. Oliver
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - C. Price
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - M.A. Quail
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - H. Urushihara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - J. Hernandez
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - E. Rabbinowitsch
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - D. Steffen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - M. Sanders
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - J. Ma
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Y. Kohara
- Centre for Genetic Resource Information, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - S. Sharp
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - M. Simmonds
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - S. Spiegler
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - A. Tivey
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - S. Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - B. White
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - D. Walker
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - J. Woodward
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - T. Winckler
- Institut für Pharmazeutische Biologie, Universität Frankfurt (Biozentrum), Frankfurt am Main, 60439, Germany
| | - Y. Tanaka
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - G. Shaulsky
- Dept. of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston TX 77030, USA
| | - M. Schleicher
- Adolf-Butenandt-Institute/Cell Biology, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - G. Weinstock
- Dept. of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - A. Rosenthal
- Genome Analysis, Institute for Molecular Biotechnology, Beutenbergstr. 11, D-07745 Jena, Germany
| | - E.C. Cox
- Department of Molecular Biology, Princeton University, Princeton, NJ08544-1003, USA
| | - R. L. Chisholm
- dictyBase, Center for Genetic Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - R. Gibbs
- Dept. of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - W. F. Loomis
- Section of Cell and Developmental Biology, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - M. Platzer
- Genome Analysis, Institute for Molecular Biotechnology, Beutenbergstr. 11, D-07745 Jena, Germany
| | - R. R. Kay
- Laboratory of Molecular Biology, MRC Centre, Cambridge CB2 2QH, UK
| | - J. Williams
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - P. H. Dear
- Laboratory of Molecular Biology, MRC Centre, Cambridge CB2 2QH, UK
| | - A. A. Noegel
- Center for Biochemistry and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - B. Barrell
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - A. Kuspa
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030, USA
- Dept. of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|