1
|
Zimmermann EA, DeVet T, Cilla M, Albiol L, Kavaseri K, Andrea C, Julien C, Tiedemann K, Panahifar A, Alidokht SA, Chromik R, Komarova SV, Reinhardt DP, Zaslansky P, Willie BM. Tissue material properties, whole-bone morphology and mechanical behavior in the Fbn1 C1041G/+ mouse model of Marfan syndrome. Matrix Biol Plus 2024; 23:100155. [PMID: 39049903 PMCID: PMC11267061 DOI: 10.1016/j.mbplus.2024.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024] Open
Abstract
Marfan syndrome (MFS) is a connective tissue disorder caused by pathogenic mutations in FBN1. In bone, the protein fibrillin-1 is found in the extracellular matrix where it provides structural support of elastic fiber formation, stability for basement membrane, and regulates the bioavailability of growth factors. Individuals with MFS exhibit a range of skeletal complications including low bone mineral density and long bone overgrowth. However, it remains unknown if the bone phenotype is caused by alteration of fibrillin-1's structural function or distortion of its interactions with bone cells. To assess the structural effects of the fibrillin-1 mutation, we characterized bone curvature, microarchitecture, composition, porosity, and mechanical behavior in the Fbn1 C1041G/+ mouse model of MFS. Tibiae of 10, 26, and 52-week-old female Fbn1 C1041G/+ and littermate control (LC) mice were analyzed. Mechanical behavior was assessed via in vivo strain gauging, finite element analysis, ex vivo three-point bending, and nanoindentation. Tibial bone morphology and curvature were assessed with micro computed tomography (μCT). Bone composition was measured with Fourier transform infrared (FTIR) imaging. Vascular and osteocyte lacunar porosity were assessed by synchrotron computed tomography. Fbn1 C1041G/+ mice exhibited long bone overgrowth and osteopenia consistent with the MFS phenotype. Trabecular thickness was lower in Fbn1 C1041G/+ mice but cortical bone microarchitecture was similar in Fbn1 C1041G/+ and LC mice. Whole bone curvature was straighter below the tibio-fibular junction in the medial-lateral direction and more curved above in LC compared to Fbn1 C1041G/+ mice. The bone matrix crystallinity was 4 % lower in Fbn1 C1041G/+ mice compared to LC, implying that mineral platelets in LCs have greater crystal size and perfection than Fbn1 C1041G/+ mice. Structural and mechanical properties were similar between genotypes. Cortical diaphyseal lacunar porosity was lower in Fbn1 C1041G/+ mice compared to LC; this was a result of the average volume of an individual osteocyte lacunae being smaller. These data provide valuable insights into the bone phenotype and its contribution to fracture risk in this commonly used mouse model of MFS.
Collapse
Affiliation(s)
- Elizabeth A. Zimmermann
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Taylor DeVet
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
| | - Myriam Cilla
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Laia Albiol
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kyle Kavaseri
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Christine Andrea
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
| | - Catherine Julien
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Kerstin Tiedemann
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Arash Panahifar
- BioMedical Imaging and Therapy Beamline, Canadian Light Source, Saskatoon, Canada
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Canada
| | - Sima A. Alidokht
- Department of Mechanical Engineering, Memorial University of Newfoundland, St. John’s, Canada
- Department of Mining and Materials Engineering, McGill University, Montreal, Canada
| | - Richard Chromik
- Department of Mining and Materials Engineering, McGill University, Montreal, Canada
| | - Svetlana V. Komarova
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
- Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Dieter P. Reinhardt
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Paul Zaslansky
- Department for Operative, Preventive and Pediatric Dentistry, CC3 -Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina M. Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
2
|
Yu FF, Yu SY, Duan LZ, Yang S, Hou XB, Du YH, Gao MH, Zuo J, Sun L, Fu XL, Li ZY, Huang H, Zhou GY, Jia DL, Chen RQ, Ba Y. Proteomics Sequencing Reveals the Role of TGF-β Signaling Pathway in the Peripheral Blood of Offspring Rats Exposed to Fluoride. Biol Trace Elem Res 2024; 202:2100-2110. [PMID: 37582921 DOI: 10.1007/s12011-023-03805-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023]
Abstract
The underlying mechanism of fluorosis has not been fully elucidated. The purpose of this study was to explore the mechanism of fluorosis induced by sodium fluoride (NaF) using proteomics. Six offspring rats exposed to fluoride without dental fluorosis were defined as group A, 8 offspring rats without fluoride exposure were defined as control group B, and 6 offspring rats exposed to fluoride with dental fluorosis were defined as group C. Total proteins from the peripheral blood were extracted and then separated using liquid chromatography-tandem mass spectrometry. The identified criteria for differentially expressed proteins were fold change > 1.2 or < 0.83 and P < 0.05. Gene Ontology function annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the oeCloud tool. The 177 upregulated and 22 downregulated proteins were identified in the A + C vs. B group. KEGG pathway enrichment analysis revealed that transforming growth factor-β (TGF-β) signaling pathway significantly enriched. PPI network constructed using Cytoscape confirmed RhoA may play a crucial role. The KEGG results of genes associated with fluoride and genes associated with both fluoride and inflammation in the GeneCards database also showed that TGF-β signaling pathway was significantly enriched. The immunofluorescence in HPA database showed that the main expression sites of RhoA are plasma membrane and cytosol, while the main expression site of Fbn1 is the Golgi apparatus. In conclusion, long-term NaF intake may cause inflammatory response in the peripheral blood of rats by upregulating TGF-β signaling pathway, in which RhoA may play a key role.
Collapse
Affiliation(s)
- Fang-Fang Yu
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shui-Yuan Yu
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Lei-Zhen Duan
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Shuo Yang
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xiang-Bo Hou
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yu-Hui Du
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Ming-Hui Gao
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Juan Zuo
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Lei Sun
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xiao-Li Fu
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Zhi-Yuan Li
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Hui Huang
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Guo-Yu Zhou
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Dao-Li Jia
- Outpatient Department, Zhengyang County People's Hospital, Zhumadian, Henan, China
| | - Rui-Qin Chen
- Jinshui District Center for Disease Control and Prevention, Zhengzhou, Henan, China
| | - Yue Ba
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
3
|
Liu S, Lu Q, Wang M, Guo H, Wang Y, Nong J, Wang S, Xia H, Xia T, Sun H. S-nitrosoglutathione reductase-dependent p65 denitrosation promotes osteoclastogenesis by facilitating recruitment of p65 to NFATc1 promoter. Bone 2024; 181:117036. [PMID: 38311303 DOI: 10.1016/j.bone.2024.117036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/26/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Osteoclasts, the exclusive bone resorptive cells, are indispensable for bone remodeling. Hence, understanding novel signaling modulators regulating osteoclastogenesis is clinically important. Nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) is a master transcription factor in osteoclastogenesis, and binding of NF-κB p65 subunit to NFATc1 promoter is required for its expression. It is well-established that DNA binding activity of p65 can be regulated by various post-translational modifications, including S-nitrosation. Recent studies have demonstrated that S-nitrosoglutathione reductase (GSNOR)-mediated protein denitrosation participated in cell fate commitment by regulating gene transcription. However, the role of GSNOR in osteoclastogenesis remains unexplored and enigmatic. Here, we investigated the effect of GSNOR-mediated denitrosation of p65 on osteoclastogenesis. Our results revealed that GSNOR was up-regulated during osteoclastogenesis in vitro. Moreover, GSNOR inhibition with a chemical inhibitor impaired osteoclast differentiation, podosome belt formation, and bone resorption activity. Furthermore, GSNOR inhibition enhanced the S-nitrosation level of p65, precluded the binding of p65 to NFATc1 promoter, and suppressed NFATc1 expression. In addition, mouse model of lipopolysaccharides (LPS)-induced calvarial osteolysis was employed to evaluate the therapeutic effect of GSNOR inhibitor in vivo. Our results indicated that GSNOR inhibitor treatment alleviated the inflammatory bone loss by impairing osteoclast formation in mice. Taken together, these data have shown that GSNOR activity is required for osteoclastogenesis by facilitating binding of p65 to NFATc1 promoter via promoting p65 denitrosation, suggesting that GSNOR may be a potential therapeutic target in the treatment of osteolytic diseases.
Collapse
Affiliation(s)
- Shumin Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qian Lu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Min Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Huilin Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yiwen Wang
- School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jingwen Nong
- School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Shuo Wang
- School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Haibin Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ting Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Huifang Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Center for Prosthodontics and Implant Dentistry, Optics Valley Branch, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
4
|
Li L, Huang J, Liu Y. The extracellular matrix glycoprotein fibrillin-1 in health and disease. Front Cell Dev Biol 2024; 11:1302285. [PMID: 38269088 PMCID: PMC10806136 DOI: 10.3389/fcell.2023.1302285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Fibrillin-1 (FBN1) is a large, cysteine-rich, calcium binding extracellular matrix glycoprotein encoded by FBN1 gene. It serves as a structural component of microfibrils and provides force-bearing mechanical support in elastic and nonelastic connective tissue. As such, mutations in the FBN1 gene can cause a wide variety of genetic diseases such as Marfan syndrome, an autosomal dominant disorder characterized by ocular, skeletal and cardiovascular abnormalities. FBN1 also interacts with numerous microfibril-associated proteins, growth factors and cell membrane receptors, thereby mediating a wide range of biological processes such as cell survival, proliferation, migration and differentiation. Dysregulation of FBN1 is involved in the pathogenesis of many human diseases, such as cancers, cardiovascular disorders and kidney diseases. Paradoxically, both depletion and overexpression of FBN1 upregulate the bioavailability and signal transduction of TGF-β via distinct mechanisms in different settings. In this review, we summarize the structure and expression of FBN1 and present our current understanding of the functional role of FBN1 in various human diseases. This knowledge will allow to develop better strategies for therapeutic intervention of FBN1 related diseases.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Junxin Huang
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| |
Collapse
|
5
|
Li J, Zhang J, Xue Q, Liu B, Qin R, Li Y, Qiu Y, Wang R, Goltzman D, Miao D, Yang R. Pyrroloquinoline quinone alleviates natural aging-related osteoporosis via a novel MCM3-Keap1-Nrf2 axis-mediated stress response and Fbn1 upregulation. Aging Cell 2023; 22:e13912. [PMID: 37365714 PMCID: PMC10497824 DOI: 10.1111/acel.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Age-related osteoporosis is associated with increased oxidative stress and cellular senescence. Pyrroloquinoline quinone (PQQ) is a water-soluble vitamin-like compound that has strong antioxidant capacity; however, the effect and underlying mechanism of PQQ on aging-related osteoporosis remain unclear. The purpose of this study was to investigate whether dietary PQQ supplementation can prevent osteoporosis caused by natural aging, and the potential mechanism underlying PQQ antioxidant activity. Here, we found that when 6-month-old or 12-month-old wild-type mice were supplemented with PQQ for 12 months or 6 months, respectively, PQQ could prevent age-related osteoporosis in mice by inhibiting osteoclastic bone resorption and stimulating osteoblastic bone formation. Mechanistically, pharmmapper screening and molecular docking studies revealed that PQQ appears to bind to MCM3 and reduces its ubiquitination-mediated degradation; stabilized MCM3 then competes with Nrf2 for binding to Keap1, thus activating Nrf2-antioxidant response element (ARE) signaling. PQQ-induced Nrf2 activation inhibited bone resorption through increasing stress response capacity and transcriptionally upregulating fibrillin-1 (Fbn1), thus reducing Rankl production in osteoblast-lineage cells and decreasing osteoclast activation; as well, bone formation was stimulated by inhibiting osteoblastic DNA damage and osteocyte senescence. Furthermore, Nrf2 knockout significantly blunted the inhibitory effects of PQQ on oxidative stress, on increased osteoclast activity and on the development of aging-related osteoporosis. This study reveals the underlying mechanism of PQQ's strong antioxidant capacity and provides evidence for PQQ as a potential agent for clinical prevention and treatment of natural aging-induced osteoporosis.
Collapse
Affiliation(s)
- Jie Li
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Jing Zhang
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Qi Xue
- Department of Anatomy, Histology and Embryology, State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem CellsNanjing Medical UniversityNanjingChina
| | - Boyang Liu
- Department of Anatomy, Histology and Embryology, State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem CellsNanjing Medical UniversityNanjingChina
| | - Ran Qin
- Department of Anatomy, Histology and Embryology, State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem CellsNanjing Medical UniversityNanjingChina
| | - Yiping Li
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Yue Qiu
- Department of Anatomy, Histology and Embryology, State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem CellsNanjing Medical UniversityNanjingChina
| | - Rong Wang
- Department of Anatomy, Histology and Embryology, State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem CellsNanjing Medical UniversityNanjingChina
| | - David Goltzman
- Calcium Research LaboratoryMcGill University Health Centre and Department of Medicine, McGill UniversityMontrealQuebecCanada
| | - Dengshun Miao
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Renlei Yang
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| |
Collapse
|
6
|
Korcari A, Nichols AEC, Buckley MR, Loiselle AE. Scleraxis-lineage cells are required for tendon homeostasis and their depletion induces an accelerated extracellular matrix aging phenotype. eLife 2023; 12:e84194. [PMID: 36656751 PMCID: PMC9908079 DOI: 10.7554/elife.84194] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Aged tendons have disrupted homeostasis, increased injury risk, and impaired healing capacity. Understanding mechanisms of homeostatic disruption is crucial for developing therapeutics to retain tendon health through the lifespan. Here, we developed a novel model of accelerated tendon extracellular matrix (ECM) aging via depletion of Scleraxis-lineage cells in young mice (Scx-DTR). Scx-DTR recapitulates many aspects of tendon aging including comparable declines in cellularity, alterations in ECM structure, organization, and composition. Single-cell RNA sequencing demonstrated a conserved decline in tenocytes associated with ECM biosynthesis in aged and Scx-DTR tendons, identifying the requirement for Scleraxis-lineage cells during homeostasis. However, the remaining cells in aged and Scx-DTR tendons demonstrate functional divergence. Aged tenocytes become pro-inflammatory and lose proteostasis. In contrast, tenocytes from Scx-DTR tendons demonstrate enhanced remodeling capacity. Collectively, this study defines Scx-DTR as a novel model of accelerated tendon ECM aging and identifies novel biological intervention points to maintain tendon function through the lifespan.
Collapse
Affiliation(s)
- Antonion Korcari
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical CenterRochesterUnited States
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Anne EC Nichols
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical CenterRochesterUnited States
| | - Mark R Buckley
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical CenterRochesterUnited States
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical CenterRochesterUnited States
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| |
Collapse
|
7
|
Summers KM, Bush SJ, Davis MR, Hume DA, Keshvari S, West JA. Fibrillin-1 and asprosin, novel players in metabolic syndrome. Mol Genet Metab 2023; 138:106979. [PMID: 36630758 DOI: 10.1016/j.ymgme.2022.106979] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Fibrillin-1 is a major component of the extracellular microfibrils, where it interacts with other extracellular matrix proteins to provide elasticity to connective tissues, and regulates the bioavailability of TGFβ family members. A peptide consisting of the C-terminal 140 amino acids of fibrillin-1 has recently been identified as a glucogenic hormone, secreted from adipose tissue during fasting and targeting the liver to release glucose. This fragment, called asprosin, also signals in the hypothalamus to stimulate appetite. Asprosin levels are correlated with many of the pathologies indicative of metabolic syndrome, including insulin resistance and obesity. Previous studies and reviews have addressed the therapeutic potential of asprosin as a target in obesity, diabetes and related conditions without considering mechanisms underlying the relationship between generation of asprosin and expression of the much larger fibrillin-1 protein. Profibrillin-1 undergoes obligatory cleavage at the cell surface as part of its assembly into microfibrils, producing the asprosin peptide as well as mature fibrillin-1. Patterns of FBN1 mRNA expression are inconsistent with the necessity for regulated release of asprosin. The asprosin peptide may be protected from degradation in adipose tissue. We present evidence for an alternative possibility, that asprosin mRNA is generated independently from an internal promoter within the 3' end of the FBN1 gene, which would allow for regulation independent of fibrillin-synthesis and is more economical of cellular resources. The discovery of asprosin opened exciting possibilities for treatment of metabolic syndrome related conditions, but there is much to be understood before such therapies could be introduced into the clinic.
Collapse
Affiliation(s)
- Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, Queensland 4102, Australia.
| | - Stephen J Bush
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, United Kingdom.
| | - Margaret R Davis
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, Queensland 4102, Australia.
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, Queensland 4102, Australia.
| | - Jennifer A West
- Faculty of Medicine, The University of Queensland, Mayne Medical Building, 288 Herston Road, Herston, Queensland 4006, Australia.
| |
Collapse
|
8
|
García-Arnáez I, Romero-Gavilán F, Cerqueira A, Elortza F, Azkargorta M, Muñoz F, Mata M, de Llano JM, Suay J, Gurruchaga M, Goñi I. Correlation between biological responses in vitro and in vivo to Ca-doped sol-gel coatings assessed using proteomic analysis. Colloids Surf B Biointerfaces 2022; 220:112962. [DOI: 10.1016/j.colsurfb.2022.112962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022]
|
9
|
Pu X, Zhu P, Zhou X, He Y, Wu H, Du L, Gong H, Sun X, Chen T, Zhu J, Xu Q, Zhang H. CD34+ cell atlas of main organs implicates its impact on fibrosis. Cell Mol Life Sci 2022; 79:576. [DOI: 10.1007/s00018-022-04606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 11/03/2022]
|
10
|
Wu H, Yin G, Pu X, Wang J, Liao X, Huang Z. Coordination of Osteoblastogenesis and Osteoclastogenesis by the Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Matrix To Promote Bone Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:2913-2927. [DOI: 10.1021/acsabm.2c00264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Huan Wu
- College of Biomedical Engineering, Sichuan University, No.24, South 1st Section, 1st Ring Road, Chengdu 610064, P. R. China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, No.24, South 1st Section, 1st Ring Road, Chengdu 610064, P. R. China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, No.24, South 1st Section, 1st Ring Road, Chengdu 610064, P. R. China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, No.24, South 1st Section, 1st Ring Road, Chengdu 610064, P. R. China
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, No.24, South 1st Section, 1st Ring Road, Chengdu 610064, P. R. China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, No.24, South 1st Section, 1st Ring Road, Chengdu 610064, P. R. China
| |
Collapse
|
11
|
Muthu ML, Tiedemann K, Fradette J, Komarova S, Reinhardt DP. Fibrillin-1 regulates white adipose tissue development, homeostasis, and function. Matrix Biol 2022; 110:106-128. [DOI: 10.1016/j.matbio.2022.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 12/28/2022]
|
12
|
The Multiple Functions of Fibrillin-1 Microfibrils in Organismal Physiology. Int J Mol Sci 2022; 23:ijms23031892. [PMID: 35163812 PMCID: PMC8836826 DOI: 10.3390/ijms23031892] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 02/05/2023] Open
Abstract
Fibrillin-1 is the major structural component of the 10 nm-diameter microfibrils that confer key physical and mechanical properties to virtually every tissue, alone and together with elastin in the elastic fibers. Mutations in fibrillin-1 cause pleiotropic manifestations in Marfan syndrome (MFS), including dissecting thoracic aortic aneurysms, myocardial dysfunction, progressive bone loss, disproportionate skeletal growth, and the dislocation of the crystalline lens. The characterization of these MFS manifestations in mice, that replicate the human phenotype, have revealed that the underlying mechanisms are distinct and organ-specific. This brief review summarizes relevant findings supporting this conclusion.
Collapse
|
13
|
Shi Y, Ye L, Shen S, Qian T, Pan Y, Jiang Y, Lin J, Liu C, Wu Y, Wang X, Xu J, Jin H. Morin attenuates osteoclast formation and function by suppressing the NF-κB, MAPK and calcium signalling pathways. Phytother Res 2021; 35:5694-5707. [PMID: 34423505 DOI: 10.1002/ptr.7229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 06/23/2021] [Accepted: 07/15/2021] [Indexed: 11/11/2022]
Abstract
Morin is a natural compound isolated from moraceae family members and has been reported to possess a range of pharmacological activities. However, the effects of morin on bone-associated disorders and the potential mechanism remain unknown. In this study, we investigated the anti-osteoclastogenic effect of morin in vitro and the potential therapeutic effects on ovariectomy (OVX)-induced osteoporosis in vivo. In vitro, by using a bone marrow macrophage-derived osteoclast culture system, we determined that morin attenuated receptor activator of nuclear factor (NF)-κB ligand (RANKL)-induced osteoclast formation via the inhibition of the mitogen-activated protein kinase (MAPK), NF-κB and calcium pathways. In addition, the subsequent expression of nuclear factor of activated T cells c1 (NFATc1) and c-fos was significantly suppressed by morin. In addition, NFATc1 downregulation led to the reduced expression of osteoclastogenesis-related marker genes, such as V-ATPase-d2 and Integrin β3. In vivo, results provided that morin could effectively attenuate OVX-induced bone loss in C57BL/6 mice. In conclusion, our results demonstrated that morin suppressed RANKL-induced osteoclastogenesis via the NF-κB, MAPK and calcium pathways, in addition, its function of preventing OVX-induced bone loss in vivo, which suggested that morin may be a potential therapeutic agent for postmenopausal osteoporosis treatment.
Collapse
Affiliation(s)
- Yifeng Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Lin Ye
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shiwei Shen
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Tianchen Qian
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Youjin Pan
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuhan Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jinghao Lin
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chen Liu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
14
|
Bothrops moojeni Venom and Its Components Strongly Affect Osteoclasts' Maturation and Protein Patterns. Toxins (Basel) 2021; 13:toxins13070459. [PMID: 34208941 PMCID: PMC8310197 DOI: 10.3390/toxins13070459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Osteoclasts (OCs) are important for bone maintenance, calcium balance, and tissue regeneration regulation and are involved in different inflammatory diseases. Our study aimed to evaluate the effect of Bothrops moojeni's venom and its low and high molecular mass (HMM and LMM) fractions on human peripheral blood mononuclear cell (PBMC)-derived OCs' in vitro differentiation. Bothrops moojeni, a Brazilian lanced-head viper, presents a rich but not well-explored, venom composition. This venom is a potent inducer of inflammation, which can be used as a tool to investigate the inflammatory process. Human PBMCs were isolated and induced to OC differentiation following routine protocol. On the fourth day of differentiation, the venom was added at different concentrations (5, 0.5, and 0.05 µg/mL). We observed a significant reduction of TRAP+ (tartrate-resistant acid phosphatase) OCs at the concentration of 5 µg/mL. We evaluated the F-actin-rich OCs structure's integrity; disruption of its integrity reflects bone adsorption capacity. F-actin rings phalloidin staining demonstrated that venom provoked their disruption in treated OCs. HMM, fraction reduces TRAP+ OCs at a concentration of 5 µg/mL and LMM fraction at 1 µg/mL, respectively. Our results indicate morphological changes that the venom induced cause in OCs. We analyzed the pattern of soluble proteins found in the conditioned cell culture medium OCs treated with venom and its fractions using mass spectrometry (LC-MS/IT-Tof). The proteomic analyses indicate the possible pathways and molecular mechanisms involved in OC reduction after the treatment.
Collapse
|
15
|
Negri S, Wang Y, Sono T, Lee S, Hsu GC, Xu J, Meyers CA, Qin Q, Broderick K, Witwer KW, Peault B, James AW. Human perivascular stem cells prevent bone graft resorption in osteoporotic contexts by inhibiting osteoclast formation. Stem Cells Transl Med 2020; 9:1617-1630. [PMID: 32697440 PMCID: PMC7695633 DOI: 10.1002/sctm.20-0152] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/24/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
The vascular wall stores mesenchymal progenitor cells which are able to induce bone regeneration, via direct and paracrine mechanisms. Although much is known regarding perivascular cell regulation of osteoblasts, their regulation of osteoclasts, and by extension utility in states of high bone resorption, is not known. Here, human perivascular stem cells (PSCs) were used as a means to prevent autograft resorption in a gonadectomy-induced osteoporotic spine fusion model. Furthermore, the paracrine regulation by PSCs of osteoclast formation was evaluated, using coculture, conditioned medium, and purified extracellular vesicles. Results showed that PSCs when mixed with autograft bone induce an increase in osteoblast:osteoclast ratio, promote bone matrix formation, and prevent bone graft resorption. The confluence of these factors resulted in high rates of fusion in an ovariectomized rat lumbar spine fusion model. Application of PSCs was superior across metrics to either the use of unpurified, culture-defined adipose-derived stromal cells or autograft bone alone. Under coculture conditions, PSCs negatively regulated osteoclast formation and did so via secreted, nonvesicular paracrine factors. Total RNA sequencing identified secreted factors overexpressed by PSCs which may explain their negative regulation of graft resorption. In summary, PSCs reduce osteoclast formation and prevent bone graft resorption in high turnover states such as gonadectomy-induced osteoporosis.
Collapse
Affiliation(s)
- Stefano Negri
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
- Orthopaedic and Trauma Surgery Unit, Department of Surgery, DentistryPaediatrics and Gynaecology of the University of VeronaVeronaItaly
| | - Yiyun Wang
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Takashi Sono
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Seungyong Lee
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Jiajia Xu
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Qizhi Qin
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Kristen Broderick
- Department of Plastic SurgeryJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Kenneth W. Witwer
- Departments of Molecular and Comparative Pathobiology and NeurologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research CenterLos AngelesCaliforniaUSA
- Center for Cardiovascular Science and MRC Center for Regenerative MedicineUniversity of EdinburghEdinburghUK
| | - Aaron W. James
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
16
|
Nasoori A. Formation, structure, and function of extra-skeletal bones in mammals. Biol Rev Camb Philos Soc 2020; 95:986-1019. [PMID: 32338826 DOI: 10.1111/brv.12597] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 03/07/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
This review describes the formation, structure, and function of bony compartments in antlers, horns, ossicones, osteoderm and the os penis/os clitoris (collectively referred to herein as AHOOO structures) in extant mammals. AHOOOs are extra-skeletal bones that originate from subcutaneous (dermal) tissues in a wide variety of mammals, and this review elaborates on the co-development of the bone and skin in these structures. During foetal stages, primordial cells for the bony compartments arise in subcutaneous tissues. The epithelial-mesenchymal transition is assumed to play a key role in the differentiation of bone, cartilage, skin and other tissues in AHOOO structures. AHOOO ossification takes place after skeletal bone formation, and may depend on sexual maturity. Skin keratinization occurs in tandem with ossification and may be under the control of androgens. Both endochondral and intramembranous ossification participate in bony compartment formation. There is variation in gradients of density in different AHOOO structures. These gradients, which vary according to function and species, primarily reduce mechanical stress. Anchorage of AHOOOs to their surrounding tissues fortifies these structures and is accomplished by bone-bone fusion and Sharpey fibres. The presence of the integument is essential for the protection and function of the bony compartments. Three major functions can be attributed to AHOOOs: mechanical, visual, and thermoregulatory. This review provides the first extensive comparative description of the skeletal and integumentary systems of AHOOOs in a variety of mammals.
Collapse
Affiliation(s)
- Alireza Nasoori
- School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| |
Collapse
|
17
|
Fibrillin-1 and fibrillin-1-derived asprosin in adipose tissue function and metabolic disorders. J Cell Commun Signal 2020; 14:159-173. [PMID: 32279186 DOI: 10.1007/s12079-020-00566-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix microenvironment of adipose tissue is of critical importance for the differentiation, remodeling and function of adipocytes. Fibrillin-1 is one of the main components of microfibrils and a key player in this process. Furin processing of profibrillin-1 results in mature fibrillin-1 and releases the C-terminal propeptide as a circulating hunger hormone, asprosin. Mutations in the fibrillin-1 gene lead to adipose tissue dysfunction and causes Marfan syndrome, marfanoid progeroid lipodystrophy syndrome, and neonatal progeroid syndrome. Increased TGF-β signaling, altered mechanical properties and impaired adipogenesis are potential causes of adipose tissue dysfunction, mediated through deficient microfibrils. Circulating asprosin on the other hand is secreted primarily by white adipose tissue under fasting conditions and in obesity. It increases hepatic glucose production and drives insulin secretion and appetite stimulation through inter-organ cross talk. This review discusses the metabolic consequences of fibrillin-1 and fibrillin-1-derived asprosin in pathological conditions. Understanding the dynamic role of fibrillin-1 in the adipose tissue milieu and of circulating asprosin in the body can provide novel mechanistic insights into how fibrillin-1 may contribute to metabolic syndrome. This could lead to new management regimens of patients with metabolic disease.
Collapse
|
18
|
Boraschi-Diaz I, Mort JS, Brömme D, Senis YA, Mazharian A, Komarova SV. Collagen type I degradation fragments act through the collagen receptor LAIR-1 to provide a negative feedback for osteoclast formation. Bone 2018; 117:23-30. [PMID: 30217615 DOI: 10.1016/j.bone.2018.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/09/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022]
Abstract
The major organic component of bone is collagen type I. Osteoclasts are terminally differentiated multinucleated cells of hematopoietic origin that are essential for physiological development of bone and teeth. We examined if osteoclast differentiation from murine bone marrow precursors is affected by collagen type I, or by its degradation products produced by human recombinant cathepsin K. Osteoclasts formation was dose-dependently inhibited in the presence of full length collagen type I or its 30-75 kDa degradation products added to the osteoclast differentiation media for the duration of an experiment. Collagen degradation fragments signaled through SH-2 phosphatases, inhibiting calcium signaling and NFATc1 translocation in osteoclast precursors. Osteoclasts and their precursors expressed a collagen receptor of leukocyte receptor complex family, LAIR-1. Importantly, collagen fragments failed to inhibit osteoclast formation from LAIR-1 deficient murine osteoclast precursors. This study demonstrates that collagen degradation fragments inhibit osteoclast formation acting through LAIR-1, providing a novel mechanism for the physiologically-relevant negative control of osteoclastogenesis.
Collapse
Affiliation(s)
- Iris Boraschi-Diaz
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; Shriners Hospital for Children-Canada, Montreal, Quebec H3G 1A6, Canada
| | - John S Mort
- Shriners Hospital for Children-Canada, Montreal, Quebec H3G 1A6, Canada
| | - Dieter Brömme
- Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yotis A Senis
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Alexandra Mazharian
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Svetlana V Komarova
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; Shriners Hospital for Children-Canada, Montreal, Quebec H3G 1A6, Canada.
| |
Collapse
|
19
|
Sun H, Kaartinen MT. Transglutaminase activity regulates differentiation, migration and fusion of osteoclasts via affecting actin dynamics. J Cell Physiol 2018; 233:7497-7513. [PMID: 29663380 DOI: 10.1002/jcp.26603] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/16/2018] [Indexed: 12/18/2022]
Abstract
Osteoclasts, bone resorbing cells, derive from monocyte/macrophage cell lineage. Increased osteoclast activity is responsible for bone destruction in diseases such as osteoporosis, periodontitis and rheumatoid arthritis. Transglutaminases (TGs), protein crosslinking enzymes, were recently found involved in osteoclastogenesis in vivo, however their mechanisms of action have remained unknown. In this study, we have investigated the role of TG activity in osteoclastogenesis in vitro using four TG inhibitors, NC9, Z006, T101, and monodansyl cadaverine. Our results showed that all TG inhibitors were capable of blocking the entire osteoclastogenesis process. The most potent of the inhibitors, NC9 when added to cultures at different phases of osteoclastogenesis, inhibited differentiation, migration, and fusion of pre-osteoclasts as well as resorption activity of mature osteoclasts. Further investigation into the mechanisms revealed that NC9 increased RhoA levels and blocked podosome belt formation suggesting that TG activity regulates actin dynamics in pre-osteoclasts. The inhibitory effect of NC9 on osteoclastogenesis as well as podosome belt formation was completely reversed with a Rho-family inhibitor Exoenzyme C3. Microtubule architecture, acetylation, and detyrosination of α-tubulin were not affected. Finally, we demonstrated that macrophages and osteoclasts expressed mRNA of three TGs:TG1, TG2, and Factor XIII-A which were all differentially regulated in these cells during differentiation. Immunofluoresence microscopic analysis showed that all three enzymes co-localized to podosomes in osteoclasts. Taken together, our data suggests that TG activity regulates differentiation, migration and fusion of osteoclasts via affecting actin dynamics and that this may involve contribution from all three TG enzymes.
Collapse
Affiliation(s)
- Huifang Sun
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Mari T Kaartinen
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.,Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Li M, Chen X, Yan J, Zhou L, Wang Y, He F, Lin J, Zhu C, Pan G, Yu J, Pei M, Yang H, Liu T. Inhibition of osteoclastogenesis by stem cell-derived extracellular matrix through modulation of intracellular reactive oxygen species. Acta Biomater 2018. [PMID: 29526830 DOI: 10.1016/j.actbio.2018.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Decellularized extracellular matrix (ECM) derived from stem cells has been shown as a promising biomaterial for bone regeneration because of the promotion effect on osteogenesis in mesenchymal stem cells (MSCs). However, bone regeneration is also influenced by bone resorption and little is known about the effect of cell-derived ECM on osteoclast differentiation. In this study, ECM was deposited by MSCs and, after decellularization, the effect of ECM on osteoclastogenesis of bone marrow monocytes (BMMs) was investigated in comparison to standard tissue culture polystyrene. Our results showed that cell-derived ECM improved BMM proliferation but potently inhibited osteoclast differentiation, evidenced by down-regulation of multinucleated tartrate-resistant acid phosphatase (TRAP)-positive cells, areas of actin rings, and osteoclast-specific gene expression. ECM-mediated attenuation of intracellular reactive oxygen species (ROS) was suggested to play a rival role in the inhibition of osteoclastogenesis, because exogenous hydrogen peroxide supplementation partially rescued the ECM-inhibited osteoclastogenesis. Furthermore, rather than collagen type I, fibronectin in the ECM contributed to ECM-mediated anti-osteoclastogenesis. In conclusion, stem cell-derived decellularized ECM significantly suppressed osteoclastogenesis via the attenuation of intracellular ROS. The anti-osteoclastogenic property of cell-derived ECM may benefit its clinical use for modulating bone remodeling and promoting bone tissue engineering. STATEMENT OF SIGNIFICANCE Decellularized extracellular matrix (ECM) derived from stem cells has been shown as a promising biomaterial for bone regeneration; however, bone remodeling is influenced by bone resorption and little is known about the effect of cell-derived ECM on osteoclast differentiation. Cell-derived ECM improved BMM proliferation but potently inhibited osteoclast differentiation. ECM-mediated attenuation of intracellular reactive oxygen species was suggested to play a rival role in osteoclastogenesis. Fibronectin in cell-derived ECM also contributed to ECM-mediated anti-osteoclastogenesis. The anti-osteoclastogenic property of cell-derived ECM may benefit clinically for modulating bone remodeling and promoting bone tissue engineering.
Collapse
|
21
|
Ramirez F, Caescu C, Wondimu E, Galatioto J. Marfan syndrome; A connective tissue disease at the crossroads of mechanotransduction, TGFβ signaling and cell stemness. Matrix Biol 2017; 71-72:82-89. [PMID: 28782645 DOI: 10.1016/j.matbio.2017.07.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 12/16/2022]
Abstract
Mutations in fibrillin-1 cause Marfan syndrome (MFS), the most common heritable disorder of connective tissue. Fibrillin-1 assemblies (microfibrils and elastic fibers) represent a unique dual-function component of the architectural matrix. The first role is structural for they endow tissues with tensile strength and elasticity, transmit forces across them and demarcate functionally discrete areas within them. The second role is instructive in that these macroaggregates modulate a large variety of sub-cellular processes by interacting with mechanosensors, and integrin and syndecan receptors, and by modulating the bioavailability of local TGFβ signals. The multifunctional, tissue-specific nature of fibrillin-1 assemblies is reflected in the variety of clinical manifestations and disease mechanisms associated with the MFS phenotype. Characterization of mice with ubiquitous or cell type-restricted fibrillin-1 deficiency has unraveled some pathophysiological mechanisms associated with the MFS phenotype, such as altered mechanotransduction in the heart, dysregulated TGFβ signaling in the ascending aorta and perturbed stem cell fate in the bone marrow. In each case, potential druggable targets have also been identified. However, the finding that distinct disease mechanisms underlie different organ abnormalities strongly argues for developing multi-drug strategies to mitigate or even prevent both life-threatening and morbid manifestations in pediatric and adult MFS patients.
Collapse
Affiliation(s)
- Francesco Ramirez
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Cristina Caescu
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Elisabeth Wondimu
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Josephine Galatioto
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| |
Collapse
|
22
|
Sondag GR, Mbimba TS, Moussa FM, Novak K, Yu B, Jaber FA, Abdelmagid SM, Geldenhuys WJ, Safadi FF. Osteoactivin inhibition of osteoclastogenesis is mediated through CD44-ERK signaling. Exp Mol Med 2016; 48:e257. [PMID: 27585719 PMCID: PMC5050297 DOI: 10.1038/emm.2016.78] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/24/2016] [Accepted: 04/14/2016] [Indexed: 12/17/2022] Open
Abstract
Osteoactivin is a heavily glycosylated protein shown to have a role in bone remodeling. Previous studies from our lab have shown that mutation in Osteoactivin enhances osteoclast differentiation but inhibits their function. To date, a classical receptor and a signaling pathway for Osteoactivin-mediated osteoclast inhibition has not yet been characterized. In this study, we examined the role of Osteoactivin treatment on osteoclastogenesis using bone marrow-derived osteoclast progenitor cells and identify a signaling pathway relating to Osteoactivin function. We reveal that recombinant Osteoactivin treatment inhibited osteoclast differentiation in a dose-dependent manner shown by qPCR, TRAP staining, activity and count. Using several approaches, we show that Osteoactivin binds CD44 in osteoclasts. Furthermore, recombinant Osteoactivin treatment inhibited ERK phosphorylation in a CD44-dependent manner. Finally, we examined the role of Osteoactivin on receptor activator of nuclear factor-κ B ligand (RANKL)-induced osteolysis in vivo. Our data indicate that recombinant Osteoactivin inhibits RANKL-induced osteolysis in vivo and this effect is CD44-dependent. Overall, our data indicate that Osteoactivin is a negative regulator of osteoclastogenesis in vitro and in vivo and that this process is regulated through CD44 and ERK activation.
Collapse
Affiliation(s)
- Gregory R Sondag
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Thomas S Mbimba
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Fouad M Moussa
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Kimberly Novak
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,Department of Pharmaceutical Sciences, Northeast Ohio Medical University (NEOMED), College of Pharmacy, Rootstown, OH, USA
| | - Bing Yu
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Fatima A Jaber
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA.,Department of Biology, King Abdulaziz University, Jeddah, KSA
| | - Samir M Abdelmagid
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA.,Department of Pharmaceutical Sciences, Northeast Ohio Medical University (NEOMED), College of Pharmacy, Rootstown, OH, USA.,Department of Orthopedics, Summa Health Systems, Akron, OH, USA
| |
Collapse
|
23
|
Smaldone S, Ramirez F. Fibrillin microfibrils in bone physiology. Matrix Biol 2015; 52-54:191-197. [PMID: 26408953 DOI: 10.1016/j.matbio.2015.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 09/18/2015] [Accepted: 09/19/2015] [Indexed: 02/02/2023]
Abstract
The severe skeletal abnormalities associated with Marfan syndrome (MFS) and congenital contractural arachnodactyly (CCA) underscore the notion that fibrillin assemblies (microfibrils and elastic fibers) play a critical role in bone formation and function in spite of representing a low abundance component of skeletal matrices. Studies of MFS and CCA mice have correlated the skeletal phenotypes of these mutant animals with distinct pathophysiological mechanisms that reflect the contextual contribution of fibrillin-1 and -2 scaffolds to TGFβ and BMP signaling during bone patterning, growth and metabolism. Illustrative examples include the unique role of fibrillin-2 in regulating BMP-dependent limb patterning and the distinct impact of the two fibrillin proteins on the commitment and differentiation of marrow mesenchymal stem cells. Collectively, these findings have important implication for our understanding of the pathophysiological mechanisms that drive age- and injury-related processes of bone degeneration.
Collapse
Affiliation(s)
- Silvia Smaldone
- Department of Pharmacology and Systems Therapeutics, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Francesco Ramirez
- Department of Pharmacology and Systems Therapeutics, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
24
|
Lee SM, Chiang SH, Wang HY, Wu PS, Lin CC. Curcumin enhances the production of major structural components of elastic fibers, elastin, and fibrillin-1, in normal human fibroblast cells. Biosci Biotechnol Biochem 2015; 79:247-52. [DOI: 10.1080/09168451.2014.972324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Curcumin is the major component of the yellow extract derived from the rhizome of the Curcuma longa, which is also a main bioactive polyphenol and has been generally used as a spice, food additive, and herbal medicine. In this presented study, we found that curcumin can enhance the production of major structural components of elastic fibers, elastin, and fibrillin-1, in normal human fibroblast cells via increasing ELN and FBN1 promoters’ activities. With 2 μM curcumin treatment, the enhanced tropoelastin and fibrillin-1 protein amounts in Detroit 551 cells were approximately 134 and 130% of control, respectively. Therefore, our results demonstrated that curcumin may be used as a functional compound and applied to drugs, foods, and cosmetics in the future.
Collapse
Affiliation(s)
- Shu-Mei Lee
- Department of Cosmetic Science and Management, Mackay Medicine, Nursing and Management College, Taipei, Taiwan, ROC
| | - Shu-Hua Chiang
- Department of Food and Beverage Management, Taiwan Hospitality and Tourism College, Hualien, Taiwan, ROC
| | | | - Pey-Shiuan Wu
- Department of Cosmetic Science, Providence University, Taichung, Taiwan, ROC
| | - Chih-Chien Lin
- Department of Cosmetic Science, Providence University, Taichung, Taiwan, ROC
| |
Collapse
|
25
|
Boraschi-Diaz I, Komarova SV. The protocol for the isolation and cryopreservation of osteoclast precursors from mouse bone marrow and spleen. Cytotechnology 2014; 68:105-114. [PMID: 25245056 DOI: 10.1007/s10616-014-9759-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/14/2014] [Indexed: 11/28/2022] Open
Abstract
Osteoclasts are responsible for physiological bone remodeling as well as pathological bone destruction in osteoporosis, periodontitis and rheumatoid arthritis, and thus represent a pharmacological target for drug development. We aimed to characterize and compare the cytokine-induced osteoclastogenesis of bone marrow and spleen precursors. Established protocols used to generate osteoclasts from bone marrow were modified to examine osteoclastogenesis of the spleen cells of healthy mice. Osteoclast formation was successfully induced from spleen precursors using receptor activator of nuclear factor κB ligand (50 ng/ml) and macrophage colony stimulating factor (50 ng/ml). Compared to bone marrow cultures, differentiation from spleen required a longer cultivation time (9 days for spleen, as compared to 5 days for marrow cultures) and a higher plating density of non-adherent cells (75,000/cm(2) for spleen, as compared to 50,000/cm(2) for bone marrow). Osteoclasts generated from spleen precursors expressed osteoclast marker genes calcitonin receptor, cathepsin K and matrix metalloproteinase 9 and were capable of resorbing hydroxyapatite. The differentiation capacity of spleen and bone marrow precursors was comparable for BALB/c, C57BL/6 and FVB mice. We also developed and tested a cryopreservation protocol for the osteoclast precursors. While 70-80 % of cells were lost during the first week of freezing, during the subsequent 5 weeks the losses were within 2-5 % per week. Osteoclastogenesis from the recovered bone marrow precursors was successful up to 5 weeks after freezing. Spleen precursors retained their osteoclastogenic capacity for 1 week after freezing, but not thereafter. The described protocol is useful for the studies of genetically modified animals as well as for screening new osteoclast-targeting therapeutics.
Collapse
Affiliation(s)
- Iris Boraschi-Diaz
- Faculty of Dentistry, Shriners Hospital for Children-Canada, McGill University, 1529 Cedar Avenue, Room 300, Montreal, QC, H3G 1A6, Canada
| | - Svetlana V Komarova
- Faculty of Dentistry, Shriners Hospital for Children-Canada, McGill University, 1529 Cedar Avenue, Room 300, Montreal, QC, H3G 1A6, Canada.
| |
Collapse
|