1
|
Leschik J, Lutz B, Gentile A. Stress-Related Dysfunction of Adult Hippocampal Neurogenesis-An Attempt for Understanding Resilience? Int J Mol Sci 2021; 22:7339. [PMID: 34298958 PMCID: PMC8305135 DOI: 10.3390/ijms22147339] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Newborn neurons in the adult hippocampus are regulated by many intrinsic and extrinsic cues. It is well accepted that elevated glucocorticoid levels lead to downregulation of adult neurogenesis, which this review discusses as one reason why psychiatric diseases, such as major depression, develop after long-term stress exposure. In reverse, adult neurogenesis has been suggested to protect against stress-induced major depression, and hence, could serve as a resilience mechanism. In this review, we will summarize current knowledge about the functional relation of adult neurogenesis and stress in health and disease. A special focus will lie on the mechanisms underlying the cascades of events from prolonged high glucocorticoid concentrations to reduced numbers of newborn neurons. In addition to neurotransmitter and neurotrophic factor dysregulation, these mechanisms include immunomodulatory pathways, as well as microbiota changes influencing the gut-brain axis. Finally, we discuss recent findings delineating the role of adult neurogenesis in stress resilience.
Collapse
Affiliation(s)
- Julia Leschik
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy;
| |
Collapse
|
2
|
Abstract
The neurotrophic factor BDNF is an important regulator for the development of brain circuits, for synaptic and neuronal network plasticity, as well as for neuroregeneration and neuroprotection. Up- and downregulations of BDNF levels in human blood and tissue are associated with, e.g., neurodegenerative, neurological, or even cardiovascular diseases. The changes in BDNF concentration are caused by altered dynamics in BDNF expression and release. To understand the relevance of major variations of BDNF levels, detailed knowledge regarding physiological and pathophysiological stimuli affecting intra- and extracellular BDNF concentration is important. Most work addressing the molecular and cellular regulation of BDNF expression and release have been performed in neuronal preparations. Therefore, this review will summarize the stimuli inducing release of BDNF, as well as molecular mechanisms regulating the efficacy of BDNF release, with a focus on cells originating from the brain. Further, we will discuss the current knowledge about the distinct stimuli eliciting regulated release of BDNF under physiological conditions.
Collapse
Affiliation(s)
- Tanja Brigadski
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, D-66482, Zweibrücken, Germany.
| | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke University, D-39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
3
|
Abdo Qaid EY, Zulkipli NN, Zakaria R, Ahmad AH, Othman Z, Muthuraju S, Sasongko TH. The role of mTOR signalling pathway in hypoxia-induced cognitive impairment. Int J Neurosci 2020; 131:482-488. [PMID: 32202188 DOI: 10.1080/00207454.2020.1746308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypoxia has been associated with cognitive impairment. Many studies have investigated the role of mTOR signalling pathway in cognitive functions but its role in hypoxia-induced cognitive impairment remains controversial. This review aimed to elucidate the role of mTOR in the mechanisms of cognitive impairment that may pave the way towards the mechanistic understanding and therapeutic intervention of hypoxia-induced cognitive impairment. mTORC1 is normally regulated during mild or acute hypoxic exposure giving rise to neuroprotection, whereas it is overactivated during severe or chronic hypoxia giving rise to neuronal cells death. Thus, it is worth exploring the possibility of maintaining normal mTORC1 activity and thereby preventing cognitive impairment during severe or chronic hypoxia.
Collapse
Affiliation(s)
| | - Ninie Nadia Zulkipli
- School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Malaysia
| | - Rahimah Zakaria
- School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Malaysia
| | - Asma Hayati Ahmad
- School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Malaysia
| | - Zahiruddin Othman
- School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Malaysia
| | - Sangu Muthuraju
- School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Malaysia
| | - Teguh Haryo Sasongko
- Perdana University-RCSI School of Medicine, Perdana University Center for Research Excellence, Jalan MAEPS Perdana, Serdang, Selangor, 43400, Malaysia
| |
Collapse
|
4
|
Seyedebrahimi R, Razavi S, Varshosaz J. Controlled Delivery of Brain Derived Neurotrophic Factor and Gold-Nanoparticles from Chitosan/TPP Nanoparticles for Tissue Engineering Applications. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01621-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Prominent Postsynaptic and Dendritic Exocytosis of Endogenous BDNF Vesicles in BDNF-GFP Knock-in Mice. Mol Neurobiol 2019; 56:6833-6855. [DOI: 10.1007/s12035-019-1551-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/13/2019] [Indexed: 12/23/2022]
|
6
|
Peng JJ, Sha R, Li MX, Chen LT, Han XH, Guo F, Chen H, Huang XL. Repetitive transcranial magnetic stimulation promotes functional recovery and differentiation of human neural stem cells in rats after ischemic stroke. Exp Neurol 2018; 313:1-9. [PMID: 30529277 DOI: 10.1016/j.expneurol.2018.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/22/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022]
Abstract
Stem cells hold great promise as a regenerative therapy for ischemic stroke by improving functional outcomes in animal models. However, there are some limitations regarding the cell transplantation, including low rate of survival and differentiation. Repetitive transcranial magnetic stimulation (rTMS) has been widely used in clinical trials as post-stroke rehabilitation in ischemic stroke and has shown to alleviate functional deficits following stroke. The present study was designed to evaluate the therapeutic effects and mechanisms of combined human neural stem cells (hNSCs) with rTMS in a middle cerebral artery occlusion (MCAO) rat model. The results showed that human embryonic stem cells (hESCs) were successfully differentiated into forebrain hNSCs for transplantation and hNSCs transplantation combined with rTMS could accelerate the functional recovery after ischemic stroke in rats. Furthermore, this combination not only significantly enhanced neurogenesis and the protein levels of brain-derived neurotrophic factor (BDNF), but also rTMS promoted the neural differentiation of hNSCs. Our findings are presented for the first time to evaluate therapeutic benefits of combined hNSCs and rTMS for functional recovery after ischemic stroke, and indicated that the combination of hNSCs with rTMS might be a potential novel therapeutic target for the treatment of stroke.
Collapse
Affiliation(s)
- Jiao-Jiao Peng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Rong Sha
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Ming-Xing Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Lu-Ting Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xiao-Hua Han
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Feng Guo
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Hong Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| | - Xiao-Lin Huang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
7
|
Zhuang J, Lu J, Wang X, Wang X, Hu W, Hong F, Zhao XX, Zheng YL. Purple sweet potato color protects against high-fat diet-induced cognitive deficits through AMPK-mediated autophagy in mouse hippocampus. J Nutr Biochem 2018; 65:35-45. [PMID: 30616064 DOI: 10.1016/j.jnutbio.2018.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/09/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022]
Abstract
Prevention of obesity-induced cognitive decline is an important public health goal. Purple sweet potato color (PSPC), a class of naturally occurring anthocyanins, has beneficial potentials including antioxidant and neuroprotective activity. Evidence shows that anthocyanins can activate AMP-activated protein kinase (AMPK), a critical mediator of autophagy induction. This study investigated whether PSPC could improve cognitive function through regulating AMPK/autophagy signaling in HFD-fed obese mice. Our results showed that PSPC significantly ameliorated obesity, peripheral insulin resistance and memory impairment in HFD-fed mice. Moreover, enhanced autophagy was observed, along with the decreased levels of protein carbonyls, malondialdehyde and reactive oxygen species (ROS) in the hippocampus of HFD-fed mice due to PSPC administration. PSPC also promoted hippocampal brain-derived neurotrophic factor (BDNF) expression and neuron survival in HFD-fed mouse. These improvements were mediated, at least in part, by the activation of AMPK, which was confirmed by metformin treatment. It is concluded that PSPC has great potential to improve cognitive function in HFD-fed mice via AMPK activation that restores autophagy and protects against hippocampal apoptosis.
Collapse
Affiliation(s)
- Juan Zhuang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, 111 Changjiang West Road, Huai'an, 223300, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, 111 Changjiang West Road, Huai'an, 223300, China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, 221116, Jiangsu Province, PR China
| | - Xin Wang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Jiangsu Xuzhou Sweetpotato Research Center, Xuzhou 221131, China
| | - Xinfeng Wang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, 111 Changjiang West Road, Huai'an, 223300, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, 111 Changjiang West Road, Huai'an, 223300, China
| | - Weicheng Hu
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, 111 Changjiang West Road, Huai'an, 223300, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, 111 Changjiang West Road, Huai'an, 223300, China
| | - Fashui Hong
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, 111 Changjiang West Road, Huai'an, 223300, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, 111 Changjiang West Road, Huai'an, 223300, China
| | - Xiang-Xiang Zhao
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, 111 Changjiang West Road, Huai'an, 223300, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences, Huaiyin Normal University, 111 Changjiang West Road, Huai'an, 223300, China.
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, 221116, Jiangsu Province, PR China.
| |
Collapse
|
8
|
Becke A, Müller P, Dordevic M, Lessmann V, Brigadski T, Müller NG. Daily Intermittent Normobaric Hypoxia Over 2 Weeks Reduces BDNF Plasma Levels in Young Adults - A Randomized Controlled Feasibility Study. Front Physiol 2018; 9:1337. [PMID: 30327610 PMCID: PMC6174219 DOI: 10.3389/fphys.2018.01337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
Background: The results from animal and human research indicate that acute intermittent hypoxia can enhance brain-derived neurotrophic factor (BDNF) plasma levels and gene expression. As BDNF is known to promote the differentiation of new neurons and the formation of synapses, it has been proposed to mediate adult neuroplasticity. Thus, the present study aimed to analyze the long-term effects of daily intermittent exposure to normobaric hypoxia (simulating high altitude exposure at approximately 4000–5000 m) over 2 weeks on BDNF levels in young adults. Methods: Twenty-eight young adults (age: 19–33 years) were randomized into a hypoxic intervention group (N = 14) or the control group (N = 14). Participants in the intervention group breathed intermittent normobaric hypoxic air at resting conditions (5 min intervals, 80–85% SpO2 measured via a finger pulse oximeter, 12 sessions for 60 min/day for 2 weeks) via a hypoxic generator. BDNF plasma and serum levels were determined at baseline and at 2 weeks after intervention using sandwich ELISAs. Results: After 2 weeks of daily intermittent hypoxic treatment (IHT), we found a significant group x time interaction effect for BDNF plasma levels based on a significant decrease in BDNF levels in the hypoxia group. Conclusion: Our results demonstrate that daily intermittent administration of hypoxic air has a significant effect on BDNF regulation in healthy young adults. Contrary to other results reporting an increase in BDNF levels under hypoxic conditions, the present data suggest that hypoxic treatment using intensive IHT can reduce BDNF plasma levels for at least 2 weeks. This finding indicates that the daily application of hypoxic air is too frequent for the aimed physiological response, namely, an increase in BDNF levels.
Collapse
Affiliation(s)
- Andreas Becke
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany.,Neuroprotection Laboratory, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Patrick Müller
- Neuroprotection Laboratory, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Milos Dordevic
- Neuroprotection Laboratory, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Volkmar Lessmann
- Institute of Physiology, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Tanja Brigadski
- Institute of Physiology, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany.,Informatics and Microsystem Technology, University of Applied Sciences, Kaiserslautern, Kaiserslautern, Germany
| | - Notger G Müller
- Neuroprotection Laboratory, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
9
|
Abstract
Huntington's disease (HD) is a fatal genetic disorder, which causes the
progressive breakdown of neurons in the human brain. HD deteriorates human
physical and mental abilities over time and has no cure. Stem cell-based
technologies are promising novel treatments, and in HD, they aim to replace lost
neurons and/or to prevent neural cell death. Herein we discuss the use of human
fetal tissue (hFT), neural stem cells (NSCs) of hFT origin or embryonic stem
cells (ESCs) and induced pluripotent stem cells (IPSCs), in clinical and
pre-clinical studies. The in vivo use of mesenchymal stem cells
(MSCs), which are derived from non-neural tissues, will also be discussed. All
these studies prove the potential of stem cells for transplantation therapy in
HD, demonstrating cell grafting and the ability to differentiate into mature
neurons, resulting in behavioral improvements. We claim that there are still
many problems to overcome before these technologies become available for HD
patient treatment, such as: a) safety regarding the use of NSCs and pluripotent stem cells, which
are potentially teratogenic; b) safety regarding the transplantation procedure itself, which
represents a risk and needs to be better studied; and finally c) technical and ethical issues regarding cells of fetal and
embryonic origin.
Collapse
Affiliation(s)
- Mônica Santoro Haddad
- MD. Faculdade de Medicina da Universidade de São Paulo - Neurologia São Paulo, São Paulo, SP, Brazil
| | | | - Celine Pompeia
- MD. Instituto Butantan - Genética, São Paulo, SP, Brazil
| | - Irina Kerkis
- MD, PhD. Instituto Butantan - Genética, São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Pramanik S, Sulistio YA, Heese K. Neurotrophin Signaling and Stem Cells-Implications for Neurodegenerative Diseases and Stem Cell Therapy. Mol Neurobiol 2016; 54:7401-7459. [PMID: 27815842 DOI: 10.1007/s12035-016-0214-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
Neurotrophins (NTs) are members of a neuronal growth factor protein family whose action is mediated by the tropomyosin receptor kinase (TRK) receptor family receptors and the p75 NT receptor (p75NTR), a member of the tumor necrosis factor (TNF) receptor family. Although NTs were first discovered in neurons, recent studies have suggested that NTs and their receptors are expressed in various types of stem cells mediating pivotal signaling events in stem cell biology. The concept of stem cell therapy has already attracted much attention as a potential strategy for the treatment of neurodegenerative diseases (NDs). Strikingly, NTs, proNTs, and their receptors are gaining interest as key regulators of stem cells differentiation, survival, self-renewal, plasticity, and migration. In this review, we elaborate the recent progress in understanding of NTs and their action on various stem cells. First, we provide current knowledge of NTs, proNTs, and their receptor isoforms and signaling pathways. Subsequently, we describe recent advances in the understanding of NT activities in various stem cells and their role in NDs, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). Finally, we compile the implications of NTs and stem cells from a clinical perspective and discuss the challenges with regard to transplantation therapy for treatment of AD and PD.
Collapse
Affiliation(s)
- Subrata Pramanik
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Yanuar Alan Sulistio
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
11
|
Zimmermann T, Remmers F, Lutz B, Leschik J. ESC-Derived BDNF-Overexpressing Neural Progenitors Differentially Promote Recovery in Huntington's Disease Models by Enhanced Striatal Differentiation. Stem Cell Reports 2016; 7:693-706. [PMID: 27693427 PMCID: PMC5063570 DOI: 10.1016/j.stemcr.2016.08.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is characterized by fatal motoric failures induced by loss of striatal medium spiny neurons. Neuronal cell death has been linked to impaired expression and axonal transport of the neurotrophin BDNF (brain-derived neurotrophic factor). By transplanting embryonic stem cell-derived neural progenitors overexpressing BDNF, we combined cell replacement and BDNF supply as a potential HD therapy approach. Transplantation of purified neural progenitors was analyzed in a quinolinic acid (QA) chemical and two genetic HD mouse models (R6/2 and N171-82Q) on the basis of distinct behavioral parameters, including CatWalk gait analysis. Explicit rescue of motor function by BDNF neural progenitors was found in QA-lesioned mice, whereas genetic mouse models displayed only minor improvements. Tumor formation was absent, and regeneration was attributed to enhanced neuronal and striatal differentiation. In addition, adult neurogenesis was preserved in a BDNF-dependent manner. Our findings provide significant insight for establishing therapeutic strategies for HD to ameliorate neurodegenerative symptoms.
Collapse
Affiliation(s)
- Tina Zimmermann
- Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Floortje Remmers
- Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Julia Leschik
- Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
12
|
Chiocchetti AG, Haslinger D, Stein JL, de la Torre-Ubieta L, Cocchi E, Rothämel T, Lindlar S, Waltes R, Fulda S, Geschwind DH, Freitag CM. Transcriptomic signatures of neuronal differentiation and their association with risk genes for autism spectrum and related neuropsychiatric disorders. Transl Psychiatry 2016; 6:e864. [PMID: 27483382 PMCID: PMC5022076 DOI: 10.1038/tp.2016.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 02/02/2023] Open
Abstract
Genes for autism spectrum disorders (ASDs) are also implicated in fragile X syndrome (FXS), intellectual disabilities (ID) or schizophrenia (SCZ), and converge on neuronal function and differentiation. The SH-SY5Y neuroblastoma cell line, the most widely used system to study neurodevelopment, is currently discussed for its applicability to model cortical development. We implemented an optimal neuronal differentiation protocol of this system and evaluated neurodevelopment at the transcriptomic level using the CoNTeXT framework, a machine-learning algorithm based on human post-mortem brain data estimating developmental stage and regional identity of transcriptomic signatures. Our improved model in contrast to currently used SH-SY5Y models does capture early neurodevelopmental processes with high fidelity. We applied regression modelling, dynamic time warping analysis, parallel independent component analysis and weighted gene co-expression network analysis to identify activated gene sets and networks. Finally, we tested and compared these sets for enrichment of risk genes for neuropsychiatric disorders. We confirm a significant overlap of genes implicated in ASD with FXS, ID and SCZ. However, counterintuitive to this observation, we report that risk genes affect pathways specific for each disorder during early neurodevelopment. Genes implicated in ASD, ID, FXS and SCZ were enriched among the positive regulators, but only ID-implicated genes were also negative regulators of neuronal differentiation. ASD and ID genes were involved in dendritic branching modules, but only ASD risk genes were implicated in histone modification or axonal guidance. Only ID genes were over-represented among cell cycle modules. We conclude that the underlying signatures are disorder-specific and that the shared genetic architecture results in overlaps across disorders such as ID in ASD. Thus, adding developmental network context to genetic analyses will aid differentiating the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- A G Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| | - D Haslinger
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| | - J L Stein
- Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - L de la Torre-Ubieta
- Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - E Cocchi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - T Rothämel
- Institute of Legal Medicine, Hannover Medical School, Hannover, Germany
| | - S Lindlar
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| | - R Waltes
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| | - S Fulda
- Institute of Experimental Cancer Research in Pediatrics, Frankfurt am Main, Germany
| | - D H Geschwind
- Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - C M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
13
|
Butenschön J, Zimmermann T, Schmarowski N, Nitsch R, Fackelmeier B, Friedemann K, Radyushkin K, Baumgart J, Lutz B, Leschik J. PSA-NCAM positive neural progenitors stably expressing BDNF promote functional recovery in a mouse model of spinal cord injury. Stem Cell Res Ther 2016; 7:11. [PMID: 26762640 PMCID: PMC4712602 DOI: 10.1186/s13287-015-0268-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/07/2015] [Accepted: 12/18/2015] [Indexed: 12/13/2022] Open
Abstract
Background Neural stem cells for the treatment of spinal cord injury (SCI) are of particular interest for future therapeutic use. However, until now, stem cell therapies are often limited due to the inhibitory environment following the injury. Therefore, in this study, we aimed at testing a combinatorial approach with BDNF (brain-derived neurotrophic factor) overexpressing early neural progenitors derived from mouse embryonic stem cells. BDNF is a neurotrophin, which both facilitates neural differentiation of stem cells and favors regeneration of damaged axons. Methods Mouse embryonic stem cells, modified to stably express BDNF-GFP, were differentiated into PSA-NCAM positive progenitors, which were enriched, and SSEA1 depleted by a sequential procedure of magnetic-activated and fluorescence-activated cell sorting. Purified cells were injected into the lesion core seven days after contusion injury of the spinal cord in mice, and the Basso mouse scale (BMS) test to evaluate motor function was performed for 5 weeks after transplantation. To analyze axonal regeneration the anterograde tracer biotinylated dextran amine was injected into the sensorimotor cortex two weeks prior to tissue analysis. Cellular differentiation was analyzed by immunohistochemistry of spinal cord sections. Results Motor function was significantly improved in animals obtaining transplanted BDNF-GFP-overexpressing cells as compared to GFP-expressing cells and vehicle controls. Stem cell differentiation in vivo revealed an increase of neuronal and oligodendrocytic lineage differentiation by BDNF as evaluated by immunohistochemistry of the neuronal marker MAP2 (microtubule associated protein 2) and the oligodendrocytic markers ASPA (aspartoacylase) and Olig2 (oligodendrocyte transcription factor 2). Furthermore, axonal tracing showed a significant increase of biotin dextran amine positive corticospinal tract fibers in BDNF-GFP-cell transplanted animals caudally to the lesion site. Conclusions The combinatorial therapy approach by transplanting BDNF-overexpressing neural progenitors improved motor function in a mouse contusion model of SCI. Histologically, we observed enhanced neuronal and oligodendrocytic differentiation of progenitors as well as enhanced axonal regeneration. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0268-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer Butenschön
- Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.
| | - Tina Zimmermann
- Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.
| | - Nikolai Schmarowski
- Institute of Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Robert Nitsch
- Institute of Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Barbara Fackelmeier
- Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.
| | - Kevin Friedemann
- Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany. .,Institute of Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany. .,Mouse Behavior Outcome Unit, Focus Program Translational Neurosciences (FTN), Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 19, 55128, Mainz, Germany.
| | - Konstantin Radyushkin
- Mouse Behavior Outcome Unit, Focus Program Translational Neurosciences (FTN), Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 19, 55128, Mainz, Germany.
| | - Jan Baumgart
- Institute of Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany. .,Translational Animal Research Center (TARC), University Medical Center, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 19, 55128, Mainz, Germany.
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.
| | - Julia Leschik
- Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.
| |
Collapse
|
14
|
Lee BG, Anastasia A, Hempstead BL, Lee FS, Blendy JA. Effects of the BDNF Val66Met Polymorphism on Anxiety-Like Behavior Following Nicotine Withdrawal in Mice. Nicotine Tob Res 2015; 17:1428-35. [PMID: 25744957 DOI: 10.1093/ntr/ntv047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 02/16/2015] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Nicotine withdrawal is characterized by both affective and cognitive symptoms. Identifying genetic polymorphisms that could affect the symptoms associated with nicotine withdrawal are important in predicting withdrawal sensitivity and identifying personalized cessation therapies. In the current study we used a mouse model of a non-synonymous single nucleotide polymorphism in the translated region of the brain-derived neurotrophic factor (BDNF) gene that substitutes a valine (Val) for a methionine (Met) amino acid (Val66Met) to examine the relationship between the Val66Met single nucleotide polymorphism and nicotine dependence. METHODS This study measured proBDNF and the BDNF prodomain levels following nicotine and nicotine withdrawal and examined a mouse model of a common polymorphism in this protein (BDNF(Met/Met)) in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test. RESULTS Using the BDNF knock-in mouse containing the BDNF Val66Met polymorphism we found: (1) blunted anxiety-like behavior in BDNF(Met/Met) mice following withdrawal in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test; (2) the anxiolytic effects of chronic nicotine are absent in BDNF(Met/Met) mice; and (3) an increase in BDNF prodomain in BDNF(Met/Met) mice following nicotine withdrawal. CONCLUSIONS Our study is the first to examine the effect of the BDNF Val66Met polymorphism on the affective symptoms of withdrawal from nicotine in mice. In these mice, a single-nucleotide polymorphism in the translated region of the BDNF gene can result in a blunted withdrawal, as measured by decreased anxiety-like behavior. The significant increase in the BDNF prodomain in BDNF(Met/Met) mice following nicotine cessation suggests a possible role of this ligand in the circuitry remodeling after withdrawal.
Collapse
Affiliation(s)
- Bridgin G Lee
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Agustin Anastasia
- Department of Medicine, Weill Cornell Medical College of Cornell University, New York, NY
| | - Barbara L Hempstead
- Department of Medicine, Weill Cornell Medical College of Cornell University, New York, NY
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, New York, NY
| | - Julie A Blendy
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA;
| |
Collapse
|
15
|
Guo Y, Liu S, Zhang X, Wang L, Zhang X, Hao A, Han A, Yang J. Sox11 promotes endogenous neurogenesis and locomotor recovery in mice spinal cord injury. Biochem Biophys Res Commun 2014; 446:830-5. [DOI: 10.1016/j.bbrc.2014.02.103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 02/21/2014] [Indexed: 12/24/2022]
|
16
|
Leschik J, Eckenstaler R, Nieweg K, Lichtenecker P, Brigadski T, Gottmann K, Lessmann V, Lutz B. Embryonic stem cells stably expressing BDNF–GFP exhibit a BDNF-release-dependent enhancement of neuronal differentiation. Development 2013. [DOI: 10.1242/dev.105643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|