1
|
Chen J, Li H, Wu Q, Yan Q, Sun J, Liang F, Liu Y, Wang H. Organization of Protein Tyrosine Kinase-7 on Cell Membranes Characterized by Aptamer Probe-Based STORM Imaging. Anal Chem 2020; 93:936-945. [PMID: 33301288 DOI: 10.1021/acs.analchem.0c03630] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein tyrosine kinase-7 (PTK7), as an important membrane receptor, regulates various cellular activities, including cell polarity, movement, migration, and invasion. Although lots of research studies focused on revealing its functions from the aspect of the expression of the gene and protein are present, the relationship between the spatial distribution at the single-molecule level and the function remains unclear. Through combining aptamer probe labeling and super-resolution imaging technology, after verifying the specificity and superiority of the aptamer probe, a more significant clustering distribution of PTK7 is found on the MCF10A cell basal membrane than on the apical membrane, which is thought to be related to their specific functions on different membranes. By exploring the relationship between the assembly of PTK7 and lipid rafts, actin cytoskeleton, and carbohydrate chains on the membrane, the unique distribution of PTK7 on disparate membranes is revealed to be probably because of the varied dominant position of these three factors. These findings present the detailed spatial information of PTK7 and the related potential organization mechanism on the cell membrane, which will facilitate a better understanding of the relationship between the molecular assembly and its function, as well as the overall structure of the cell membrane.
Collapse
Affiliation(s)
- Junling Chen
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.,State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - Hongru Li
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Qiang Wu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Qiuyan Yan
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - Jiayin Sun
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - Feng Liang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.,Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) & Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
2
|
Akin EJ, Solé L, Johnson B, Beheiry ME, Masson JB, Krapf D, Tamkun MM. Single-Molecule Imaging of Nav1.6 on the Surface of Hippocampal Neurons Reveals Somatic Nanoclusters. Biophys J 2017; 111:1235-1247. [PMID: 27653482 DOI: 10.1016/j.bpj.2016.08.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium (Nav) channels are responsible for the depolarizing phase of the action potential in most nerve cells, and Nav channel localization to the axon initial segment is vital to action potential initiation. Nav channels in the soma play a role in the transfer of axonal output information to the rest of the neuron and in synaptic plasticity, although little is known about Nav channel localization and dynamics within this neuronal compartment. This study uses single-particle tracking and photoactivation localization microscopy to analyze cell-surface Nav1.6 within the soma of cultured hippocampal neurons. Mean-square displacement analysis of individual trajectories indicated that half of the somatic Nav1.6 channels localized to stable nanoclusters ∼230 nm in diameter. Strikingly, these domains were stabilized at specific sites on the cell membrane for >30 min, notably via an ankyrin-independent mechanism, indicating that the means by which Nav1.6 nanoclusters are maintained in the soma is biologically different from axonal localization. Nonclustered Nav1.6 channels showed anomalous diffusion, as determined by mean-square-displacement analysis. High-density single-particle tracking of Nav channels labeled with photoactivatable fluorophores in combination with Bayesian inference analysis was employed to characterize the surface nanoclusters. A subpopulation of mobile Nav1.6 was observed to be transiently trapped in the nanoclusters. Somatic Nav1.6 nanoclusters represent a new, to our knowledge, type of Nav channel localization, and are hypothesized to be sites of localized channel regulation.
Collapse
Affiliation(s)
- Elizabeth J Akin
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado; Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Laura Solé
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Ben Johnson
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Mohamed El Beheiry
- Physico-Chimie Curie, Institut Curie, Paris Sciences Lettres, CNRS UMR 168, Université Pierre et Marie Curie, Paris, France
| | - Jean-Baptiste Masson
- Institut Pasteur, Decision and Bayesian Computation, Centre National de la Recherche Scientifique (CNRS) UMR 3525, Paris, France; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia
| | - Diego Krapf
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado; Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado.
| | - Michael M Tamkun
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado; Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado; Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado.
| |
Collapse
|