1
|
Lv L, Yang C, Zhang X, Chen T, Luo M, Yu G, Chen Q. Autophagy-related protein PlATG2 regulates the vegetative growth, sporangial cleavage, autophagosome formation, and pathogenicity of peronophythora litchii. Virulence 2024; 15:2322183. [PMID: 38438325 PMCID: PMC10913709 DOI: 10.1080/21505594.2024.2322183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/18/2024] [Indexed: 03/06/2024] Open
Abstract
Autophagy is an intracellular degradation process that is important for the development and pathogenicity of phytopathogenic fungi and for the defence response of plants. However, the molecular mechanisms underlying autophagy in the pathogenicity of the plant pathogenic oomycete Peronophythora litchii, the causal agent of litchi downy blight, have not been well characterized. In this study, the autophagy-related protein ATG2 homolog, PlATG2, was identified and characterized using a CRISPR/Cas9-mediated gene replacement strategy in P. litchii. A monodansylcadaverine (MDC) staining assay indicated that deletion of PlATG2 abolished autophagosome formation. Infection assays demonstrated that ΔPlatg2 mutants showed significantly impaired pathogenicity in litchi leaves and fruits. Further studies have revealed that PlATG2 participates in radial growth and asexual/sexual development of P. litchii. Moreover, zoospore release and cytoplasmic cleavage of sporangia were considerably lower in the ΔPlatg2 mutants than in the wild-type strain by FM4-64 staining. Taken together, our results revealed that PlATG2 plays a pivotal role in vegetative growth, sporangia and oospore production, zoospore release, sporangial cleavage, and plant infection of P. litchii. This study advances our understanding of the pathogenicity mechanisms of the phytopathogenic oomycete P. litchii and is conducive to the development of effective control strategies.
Collapse
Affiliation(s)
- Lin Lv
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Chengdong Yang
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xue Zhang
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Taixu Chen
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Manfei Luo
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Ge Yu
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Qinghe Chen
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
2
|
Chikhaoui A, Zayoud K, Kraoua I, Bouchoucha S, Tebourbi A, Turki I, Yacoub-Youssef H. Supplementation with nicotinamide limits accelerated aging in affected individuals with cockayne syndrome and restores antioxidant defenses. Aging (Albany NY) 2024; 16:13271-13287. [PMID: 39611850 DOI: 10.18632/aging.206160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
Cockayne syndrome (CS) is a segmental progeroid syndrome characterized by defects in the DNA excision repair pathway, predisposing to neurodegenerative manifestations. It is a rare genetic disorder and an interesting model for studying premature aging. Oxidative stress and autophagy play an important role in the aging process. The study of these two processes in a model of accelerated aging and the means to counteract them would lead to the identification of relevant biomarkers with therapeutic value for healthy aging. Here we investigated the gene expression profiles of several oxidative stress-related transcripts derived from CS-affected individuals and healthy elderly donors. We also explored the effect of nicotinamide supplementation on several genes related to inflammation and autophagy. Gene expression analysis revealed alterations in two main pathways. This involves the activation of arachidonic acid metabolism and the repression of the NRF2 pathway in affected individuals with CS. The supplementation with nicotinamide adjusted these abnormalities by enhancing autophagy and decreasing inflammation. Furthermore, CSA/CSB-dependent depletion of the mitochondrial DNA polymerase-γ catalytic subunit (POLG1) was restored following nicotinamide supplementation in CS-affected individuals' fibroblasts. This study reveals the link between oxidative stress and accelerated aging in affected individuals with CS and highlights new biomarkers of cellular senescence. However, further analyses are needed to confirm these results, which could not be carried out, mainly due to the unavailability of crucial samples of this rare disease.
Collapse
Affiliation(s)
- Asma Chikhaoui
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| | - Kouloud Zayoud
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| | - Ichraf Kraoua
- Department of Neuropediatrics, National Institute of Neurology Mongi Ben Hamida, Tunis 2092, Tunisia
| | - Sami Bouchoucha
- Orthopedics Department, Béchir Hamza Children’s Hospital, Tunis 2092, Tunisia
| | - Anis Tebourbi
- Orthopedic and Trauma Surgery Department, Mongi Slim Hospital, La Marsa 2046, Tunisia
| | - Ilhem Turki
- Department of Neuropediatrics, National Institute of Neurology Mongi Ben Hamida, Tunis 2092, Tunisia
| | - Houda Yacoub-Youssef
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| |
Collapse
|
3
|
Liu F, Zhao L, Wu T, Yu W, Li J, Wang W, Huang C, Diao Z, Xu Y. Targeting autophagy with natural products as a potential therapeutic approach for diabetic microangiopathy. Front Pharmacol 2024; 15:1364616. [PMID: 38659578 PMCID: PMC11039818 DOI: 10.3389/fphar.2024.1364616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
As the quality of life improves, the incidence of diabetes mellitus and its microvascular complications (DMC) continues to increase, posing a threat to people's health and wellbeing. Given the limitations of existing treatment, there is an urgent need for novel approaches to prevent and treat DMC. Autophagy, a pivotal mechanism governing metabolic regulation in organisms, facilitates the removal of dysfunctional proteins and organelles, thereby sustaining cellular homeostasis and energy generation. Anomalous states in pancreatic β-cells, podocytes, Müller cells, cardiomyocytes, and Schwann cells in DMC are closely linked to autophagic dysregulation. Natural products have the property of being multi-targeted and can affect autophagy and hence DMC progression in terms of nutrient perception, oxidative stress, endoplasmic reticulum stress, inflammation, and apoptosis. This review consolidates recent advancements in understanding DMC pathogenesis via autophagy and proposes novel perspectives on treating DMC by either stimulating or inhibiting autophagy using natural products.
Collapse
Affiliation(s)
- Fengzhao Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lijuan Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfei Yu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jixin Li
- Xi yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenru Wang
- Xi yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chengcheng Huang
- Department of Endocrinology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Zhihao Diao
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunsheng Xu
- Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Samare-Najaf M, Neisy A, Samareh A, Moghadam D, Jamali N, Zarei R, Zal F. The constructive and destructive impact of autophagy on both genders' reproducibility, a comprehensive review. Autophagy 2023; 19:3033-3061. [PMID: 37505071 PMCID: PMC10621263 DOI: 10.1080/15548627.2023.2238577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Reproduction is characterized by a series of massive renovations at molecular, cellular, and tissue levels. Recent studies have strongly tended to reveal the involvement of basic molecular pathways such as autophagy, a highly conserved eukaryotic cellular recycling, during reproductive processes. This review comprehensively describes the current knowledge, updated to September 2022, of autophagy contribution during reproductive processes in males including spermatogenesis, sperm motility and viability, and male sex hormones and females including germ cells and oocytes viability, ovulation, implantation, fertilization, and female sex hormones. Furthermore, the consequences of disruption in autophagic flux on the reproductive disorders including oligospermia, azoospermia, asthenozoospermia, teratozoospermia, globozoospermia, premature ovarian insufficiency, polycystic ovarian syndrome, endometriosis, and other disorders related to infertility are discussed as well.Abbreviations: AKT/protein kinase B: AKT serine/threonine kinase; AMPK: AMP-activated protein kinase; ATG: autophagy related; E2: estrogen; EDs: endocrine disruptors; ER: endoplasmic reticulum; FSH: follicle stimulating hormone; FOX: forkhead box; GCs: granulosa cells; HIF: hypoxia inducible factor; IVF: in vitro fertilization; IVM: in vitro maturation; LCs: Leydig cells; LDs: lipid droplets; LH: luteinizing hormone; LRWD1: leucine rich repeats and WD repeat domain containing 1; MAP1LC3: microtubule associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MTOR: mechanistic target of rapamycin kinase; NFKB/NF-kB: nuclear factor kappa B; P4: progesterone; PCOS: polycystic ovarian syndrome; PDLIM1: PDZ and LIM domain 1; PI3K: phosphoinositide 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns3K: class III phosphatidylinositol 3-kinase; POI: premature ovarian insufficiency; ROS: reactive oxygen species; SCs: Sertoli cells; SQSTM1/p62: sequestosome 1; TSGA10: testis specific 10; TST: testosterone; VCP: vasolin containing protein.
Collapse
Affiliation(s)
- Mohammad Samare-Najaf
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | - Asma Neisy
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Delaram Moghadam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Jamali
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Reza Zarei
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Zal
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Abdolvahabi Z, Ezzati-Mobaser S, Hesari Z. The route of autophagy regulation by osteopontin: a review on the linking mechanisms. J Recept Signal Transduct Res 2023; 43:102-108. [PMID: 38082480 DOI: 10.1080/10799893.2023.2291563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/15/2023] [Indexed: 01/23/2024]
Abstract
Autophagy is a dynamic intracellular process of protein degradation, which is mostly triggered by nutrient deprivation. This process initiates with the formation of autophagosomes, which they capture cytosolic material that is then degraded upon fusion with the lysosome. Several factors have been found to be associated with autophagy modulation, of which extracellular matrix (ECM) components has attracted the attention of recent studies. Osteopontin (OPN) is an important extracellular matrix component that has been detected in a wide range of tumor cells, and is involved in cancer cell invasion and metastasis. Recently, a number of studies have focused on the relationship of OPN with autophagy, by delineating the intracellular signaling pathways that connect OPN to the autophagy process. We will summarize signaling pathways and cell surface receptors, through which OPN regulates the process of autophagy.
Collapse
Affiliation(s)
- Zohreh Abdolvahabi
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Samira Ezzati-Mobaser
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Hesari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
6
|
Lee MJ, Park JS, Jo SB, Joe YA. Enhancing Anti-Cancer Therapy with Selective Autophagy Inhibitors by Targeting Protective Autophagy. Biomol Ther (Seoul) 2023; 31:1-15. [PMID: 36579459 PMCID: PMC9810440 DOI: 10.4062/biomolther.2022.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/30/2022] Open
Abstract
Autophagy is a process of eliminating damaged or unnecessary proteins and organelles, thereby maintaining intracellular homeostasis. Deregulation of autophagy is associated with several diseases including cancer. Contradictory dual roles of autophagy have been well established in cancer. Cytoprotective mechanism of autophagy has been extensively investigated for overcoming resistance to cancer therapies including radiotherapy, targeted therapy, immunotherapy, and chemotherapy. Selective autophagy inhibitors that directly target autophagic process have been developed for cancer treatment. Efficacies of autophagy inhibitors have been tested in various pre-clinical cancer animal models. Combination therapies of autophagy inhibitors with chemotherapeutics are being evaluated in clinal trials. In this review, we will focus on genetical and pharmacological perturbations of autophagy-related proteins in different steps of autophagic process and their therapeutic benefits. We will also summarize combination therapies of autophagy inhibitors with chemotherapies and their outcomes in pre-clinical and clinical studies. Understanding of current knowledge of development, progress, and application of cytoprotective autophagy inhibitors in combination therapies will open new possibilities for overcoming drug resistance and improving clinical outcomes.
Collapse
Affiliation(s)
- Min Ju Lee
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jae-Sung Park
- Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seong Bin Jo
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Young Ae Joe
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea,Corresponding Author E-mail: , Tel: +82-2-3147-8406, Fax: +82-2-593-2522
| |
Collapse
|
7
|
Chen A, Ding WX, Ni HM. Scramblases as Regulators of Autophagy and Lipid Homeostasis: Implications for NAFLD. AUTOPHAGY REPORTS 2022; 1:143-160. [PMID: 35509327 PMCID: PMC9066413 DOI: 10.1080/27694127.2022.2055724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Equilibration of phospholipids between the two monolayers of the lipid bilayer of cellular membranes is mediated by scramblases acting as phospholipid shuttling proteins that are critical for cellular function, particularly during inter-organelle contact. Recent work has identified several protein scramblases, including TMEM41B, VMP1 and ATG9 that are critical in autophagy. More recently, ATG9, TMEM41B, and VMP1 have also been discovered to be important regulators of cellular lipid homeostasis. In vivo mouse models involving ablation of TMEM41B in liver have shown that knockout of these proteins can lead to rapid development of non-alcoholic steatohepatitis (NASH) and systemic dyslipidemia, though this has not been explored yet with ATG9. The resulting phenotype is likely due to the combined effects of a severe lipid secretion defect caused by stalled neutral lipids export from the endoplasmic reticulum (ER) membrane bilayer coupled with increased lipogenesis. Here we briefly discuss recent exciting findings on the topic of scramblases in autophagy, their relevance to human non-alcoholic fatty liver disease (NAFLD)/NASH, as well as future directions in this research.
Collapse
Affiliation(s)
- Allen Chen
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
8
|
Pexophagy suppresses ROS-induced damage in leaf cells under high-intensity light. Nat Commun 2022; 13:7493. [PMID: 36470866 PMCID: PMC9722907 DOI: 10.1038/s41467-022-35138-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Although light is essential for photosynthesis, it has the potential to elevate intracellular levels of reactive oxygen species (ROS). Since high ROS levels are cytotoxic, plants must alleviate such damage. However, the cellular mechanism underlying ROS-induced leaf damage alleviation in peroxisomes was not fully explored. Here, we show that autophagy plays a pivotal role in the selective removal of ROS-generating peroxisomes, which protects plants from oxidative damage during photosynthesis. We present evidence that autophagy-deficient mutants show light intensity-dependent leaf damage and excess aggregation of ROS-accumulating peroxisomes. The peroxisome aggregates are specifically engulfed by pre-autophagosomal structures and vacuolar membranes in both leaf cells and isolated vacuoles, but they are not degraded in mutants. ATG18a-GFP and GFP-2×FYVE, which bind to phosphatidylinositol 3-phosphate, preferentially target the peroxisomal membranes and pre-autophagosomal structures near peroxisomes in ROS-accumulating cells under high-intensity light. Our findings provide deeper insights into the plant stress response caused by light irradiation.
Collapse
|
9
|
Intartaglia D, Giamundo G, Conte I. Autophagy in the retinal pigment epithelium: a new vision and future challenges. FEBS J 2022; 289:7199-7212. [PMID: 33993621 PMCID: PMC9786786 DOI: 10.1111/febs.16018] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/07/2021] [Accepted: 05/12/2021] [Indexed: 01/13/2023]
Abstract
The retinal pigment epithelium (RPE) is a highly specialized monolayer of polarized, pigmented epithelial cells that resides between the vessels of the choriocapillaris and the neural retina. The RPE is essential for the maintenance and survival of overlying light-sensitive photoreceptors, as it participates in the formation of the outer blood-retinal barrier, phagocytosis, degradation of photoreceptor outer segment (POS) tips, maintenance of the retinoid cycle, and protection against light and oxidative stress. Autophagy is an evolutionarily conserved 'self-eating' process, designed to maintain cellular homeostasis. The daily autophagy demands in the RPE require precise gene regulation for the digestion and recycling of intracellular and POS components in lysosomes in response to light and stress conditions. In this review, we discuss selective autophagy and focus on the recent advances in our understanding of the mechanism of cell clearance in the RPE for visual function. Understanding how this catabolic process is regulated by both transcriptional and post-transcriptional mechanisms in the RPE will promote the recognition of pathological pathways in genetic disease and shed light on potential therapeutic strategies to treat visual impairments in patients with retinal disorders associated with lysosomal dysfunction.
Collapse
Affiliation(s)
| | | | - Ivan Conte
- Telethon Institute of Genetics and MedicinePozzuoli (Naples)Italy,Department of BiologyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
10
|
Greer SU, Chen J, Ogmundsdottir MH, Ayala C, Lau BT, Delacruz RGC, Sandoval IT, Kristjansdottir S, Jones DA, Haslem DS, Romero R, Fulde G, Bell JM, Jonasson JG, Steingrimsson E, Ji HP, Nadauld LD. Germline variants of ATG7 in familial cholangiocarcinoma alter autophagy and p62. Sci Rep 2022; 12:10333. [PMID: 35725745 PMCID: PMC9209431 DOI: 10.1038/s41598-022-13569-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/25/2022] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a housekeeping mechanism tasked with eliminating misfolded proteins and damaged organelles to maintain cellular homeostasis. Autophagy deficiency results in increased oxidative stress, DNA damage and chronic cellular injury. Among the core genes in the autophagy machinery, ATG7 is required for autophagy initiation and autophagosome formation. Based on the analysis of an extended pedigree of familial cholangiocarcinoma, we determined that all affected family members had a novel germline mutation (c.2000C>T p.Arg659* (p.R659*)) in ATG7. Somatic deletions of ATG7 were identified in the tumors of affected individuals. We applied linked-read sequencing to one tumor sample and demonstrated that the ATG7 somatic deletion and germline mutation were located on distinct alleles, resulting in two hits to ATG7. From a parallel population genetic study, we identified a germline polymorphism of ATG7 (c.1591C>G p.Asp522Glu (p.D522E)) associated with increased risk of cholangiocarcinoma. To characterize the impact of these germline ATG7 variants on autophagy activity, we developed an ATG7-null cell line derived from the human bile duct. The mutant p.R659* ATG7 protein lacked the ability to lipidate its LC3 substrate, leading to complete loss of autophagy and increased p62 levels. Our findings indicate that germline ATG7 variants have the potential to impact autophagy function with implications for cholangiocarcinoma development.
Collapse
Affiliation(s)
- Stephanie U Greer
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jiamin Chen
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Margret H Ogmundsdottir
- Department of Anatomy, Faculty of Medicine, BioMedical Center, University of Iceland, Sturlugata 8, 101, Reykjavik, Iceland
| | - Carlos Ayala
- Division of General Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Billy T Lau
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Richard Glenn C Delacruz
- Intermountain Precision Genomics Program, Intermountain Healthcare, Saint George, UT, 84790, USA
- Oklahoma Medical Research Foundation, Oklahoma University, Oklahoma City, OK, 73104, USA
| | - Imelda T Sandoval
- Intermountain Precision Genomics Program, Intermountain Healthcare, Saint George, UT, 84790, USA
- Oklahoma Medical Research Foundation, Oklahoma University, Oklahoma City, OK, 73104, USA
| | | | - David A Jones
- Intermountain Precision Genomics Program, Intermountain Healthcare, Saint George, UT, 84790, USA
- Oklahoma Medical Research Foundation, Oklahoma University, Oklahoma City, OK, 73104, USA
| | - Derrick S Haslem
- Intermountain Precision Genomics Program, Intermountain Healthcare, Saint George, UT, 84790, USA
| | - Robin Romero
- Intermountain Precision Genomics Program, Intermountain Healthcare, Saint George, UT, 84790, USA
| | - Gail Fulde
- Intermountain Precision Genomics Program, Intermountain Healthcare, Saint George, UT, 84790, USA
| | - John M Bell
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, 94304, USA
| | - Jon G Jonasson
- Department of Pathology, Landspítali-University Hospital, 101, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Sturlugata 8, 101, Reykjavik, Iceland
| | - Eirikur Steingrimsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Sturlugata 8, 101, Reykjavik, Iceland
| | - Hanlee P Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, 94304, USA.
| | - Lincoln D Nadauld
- Intermountain Precision Genomics Program, Intermountain Healthcare, Saint George, UT, 84790, USA.
| |
Collapse
|
11
|
Gallo GL, López N, Loureiro ME. The Virus–Host Interplay in Junín Mammarenavirus Infection. Viruses 2022; 14:v14061134. [PMID: 35746604 PMCID: PMC9228484 DOI: 10.3390/v14061134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Junín virus (JUNV) belongs to the Arenaviridae family and is the causative agent of Argentine hemorrhagic fever (AHF), a severe human disease endemic to agricultural areas in Argentina. At this moment, there are no effective antiviral therapeutics to battle pathogenic arenaviruses. Cumulative reports from recent years have widely provided information on cellular factors playing key roles during JUNV infection. In this review, we summarize research on host molecular determinants that intervene in the different stages of the viral life cycle: viral entry, replication, assembly and budding. Alongside, we describe JUNV tight interplay with the innate immune system. We also review the development of different reverse genetics systems and their use as tools to study JUNV biology and its close teamwork with the host. Elucidating relevant interactions of the virus with the host cell machinery is highly necessary to better understand the mechanistic basis beyond virus multiplication, disease pathogenesis and viral subversion of the immune response. Altogether, this knowledge becomes essential for identifying potential targets for the rational design of novel antiviral treatments to combat JUNV as well as other pathogenic arenaviruses.
Collapse
|
12
|
The Interplay between Autophagy and Redox Signaling in Cardiovascular Diseases. Cells 2022; 11:cells11071203. [PMID: 35406767 PMCID: PMC8997791 DOI: 10.3390/cells11071203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen and nitrogen species produced at low levels under normal cellular metabolism act as important signal molecules. However, at increased production, they cause damage associated with oxidative stress, which can lead to the development of many diseases, such as cardiovascular, metabolic, neurodegenerative, diabetes, and cancer. The defense systems used to maintain normal redox homeostasis plays an important role in cellular responses to oxidative stress. The key players here are Nrf2-regulated redox signaling and autophagy. A tight interface has been described between these two processes under stress conditions and their role in oxidative stress-induced diseases progression. In this review, we focus on the role of Nrf2 as a key player in redox regulation in cell response to oxidative stress. We also summarize the current knowledge about the autophagy regulation and the role of redox signaling in this process. In line with the focus of our review, we describe in more detail information about the interplay between Nrf2 and autophagy pathways in myocardium and the role of these processes in cardiovascular disease development.
Collapse
|
13
|
Liu X, Zhao T, Wei X, Zhang D, Lv W, Luo Z. Dietary Phosphorus Reduced Hepatic Lipid Deposition by Activating Ampk Pathway and Beclin1 Phosphorylation Levels to Activate Lipophagy in Tilapia Oreochromis niloticus. Front Nutr 2022; 9:841187. [PMID: 35369063 PMCID: PMC8969567 DOI: 10.3389/fnut.2022.841187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/18/2022] [Indexed: 12/31/2022] Open
Abstract
High-phosphorus diet (HPD) reduces lipid deposition and significantly influences lipid metabolism. However, the relevant mechanism is unknown. Herein, using widely-cultured teleost tilapia Oreochromis niloticus as the experimental animals, we found that HPD and Pi incubation reduced triglyceride (TG) content (P ≤ 0.05), suppressed lipogenesis, activated AMP-activated protein kinase (AMPK) pathway and autophagy (P ≤ 0.05), and increased fatty acid β-oxidation and lipolysis in tilapia liver and hepatocytes (P ≤ 0.05). Our further investigation indicated that Pi treatments activated the lipophagy and facilitated mitochondrial fatty acid β-oxidation, and according reduced TG deposition (P ≤ 0.05). Mechanistically, phosphorus increased the AMPKα1 phosphorylation level at S496 and Beclin1 phosphorylation at S90, and Beclin1 phosphorylation by AMPKα1 was required for phosphorus-induced lipophagy and lipolysis. Our study revealed a mechanism for Beclin1 regulation and autophagy induction in response to high-phosphorus diet, and provided novel evidences for the link between dietary phosphorus addition and lipolytic metabolism via the AMPK/Beclin1 pathway. Our results also suggested that AMPK should be the potential target for the prevention and control of lipid metabolic disorders. Overall, these results suggested that HPD reduced hepatic lipid deposition by activating AMPK pathway and Beclin1 phosphorylation levels to activate lipophagy, which provided potential targets for the prevention and control of fatty liver in fish.
Collapse
|
14
|
Chen GH, Song CC, Zhao T, Hogstrand C, Wei XL, Lv WH, Song YF, Luo Z. Mitochondria-Dependent Oxidative Stress Mediates ZnO Nanoparticle (ZnO NP)-Induced Mitophagy and Lipotoxicity in Freshwater Teleost Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2407-2420. [PMID: 35107266 DOI: 10.1021/acs.est.1c07198] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Due to many special characteristics, zinc oxide nanoparticles (ZnO NPs) are widely used all over the world, leading to their wide distribution in the environment. However, the toxicities and mechanisms of environmental ZnO NP-induced changes of physiological processes and metabolism remain largely unknown. Here, we found that addition of dietary ZnO NPs disturbed hepatic Zn metabolism, increased hepatic Zn and lipid accumulation, downregulated lipolysis, induced oxidative stress, and activated mitophagy; N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN, Zn2+ ions chelator) alleviated high ZnO NP-induced Zn and lipid accumulation, oxidative stress, and mitophagy. Mechanistically, the suppression of mitochondrial oxidative stress attenuated ZnO NP-activated mitophagy and ZnO NP-induced lipotoxicity. Taken together, our study elucidated that mitochondrial oxidative stress mediated ZnO NP-induced mitophagy and lipotoxicity; ZnO NPs could be dissociated to free Zn2+ ions, which partially contributed to ZnO NP-induced changes in oxidative stress, mitophagy, and lipid metabolism. Our study provides novel insights into the impacts and mechanism of ZnO NPs as harmful substances inducing lipotoxicity of aquatic organisms, and accordingly, metabolism-relevant parameters will be useful for the risk assessment of nanoparticle materials in the environment.
Collapse
Affiliation(s)
- Guang-Hui Chen
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Chang-Chun Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London WC2R 2LS, U.K
| | - Xiao-Lei Wei
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Wu-Hong Lv
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Feng Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
15
|
Croxford M, Elbaum M, Arigovindan M, Kam Z, Agard D, Villa E, Sedat J. Entropy-regularized deconvolution of cellular cryotransmission electron tomograms. Proc Natl Acad Sci U S A 2021; 118:e2108738118. [PMID: 34876518 PMCID: PMC8685678 DOI: 10.1073/pnas.2108738118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 12/01/2022] Open
Abstract
Cryo-electron tomography (cryo-ET) allows for the high-resolution visualization of biological macromolecules. However, the technique is limited by a low signal-to-noise ratio (SNR) and variance in contrast at different frequencies, as well as reduced Z resolution. Here, we applied entropy-regularized deconvolution (ER-DC) to cryo-ET data generated from transmission electron microscopy (TEM) and reconstructed using weighted back projection (WBP). We applied deconvolution to several in situ cryo-ET datasets and assessed the results by Fourier analysis and subtomogram analysis (STA).
Collapse
Affiliation(s)
- Matthew Croxford
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Michael Elbaum
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 760001, Israel
| | - Muthuvel Arigovindan
- Department of Electrical Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Zvi Kam
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 760001, Israel
| | - David Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| | - Elizabeth Villa
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093;
- HHMI, University of California San Diego, La Jolla, CA 92093
| | - John Sedat
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158;
| |
Collapse
|
16
|
Al-Luhaibi ZII, Dernovics Á, Seprényi G, Ayaydin F, Boldogkői Z, Veréb Z, Megyeri K. IL-36α and Lipopolysaccharide Cooperatively Induce Autophagy by Triggering Pro-Autophagic Biased Signaling. Biomedicines 2021; 9:1541. [PMID: 34829770 PMCID: PMC8615041 DOI: 10.3390/biomedicines9111541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an intracellular catabolic process that controls infections both directly and indirectly via its multifaceted effects on the innate and adaptive immune responses. It has been reported that LPS stimulates this cellular process, whereas the effect of IL-36α on autophagy remains largely unknown. We therefore investigated how IL-36α modulates the endogenous and LPS-induced autophagy in THP-1 cells. The levels of LC3B-II and autophagic flux were determined by Western blotting. The intracellular localization of LC3B was measured by immunofluorescence assay. The activation levels of signaling pathways implicated in autophagy regulation were evaluated by using a phosphokinase array. Our results showed that combined IL-36α and LPS treatment cooperatively increased the levels of LC3B-II and Beclin-1, stimulated the autophagic flux, facilitated intracellular redistribution of LC3B, and increased the average number of autophagosomes per cell. The IL36α/LPS combined treatment increased phosphorylation of STAT5a/b, had minimal effect on the Akt/PRAS40/mTOR pathway, and reduced the levels of phospho-Yes, phospho-FAK, and phospho-WNK1. Thus, this cytokine/PAMP combination triggers pro-autophagic biased signaling by several mechanisms and thus cooperatively stimulates the autophagic cascade. An increased autophagic activity of innate immune cells simultaneously exposed to IL-36α and LPS may play an important role in the pathogenesis of Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Zaid I. I. Al-Luhaibi
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary; (Z.I.I.A.-L.); (Á.D.)
| | - Áron Dernovics
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary; (Z.I.I.A.-L.); (Á.D.)
| | - György Seprényi
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Kossuth L. sgt. 40, H-6724 Szeged, Hungary;
| | - Ferhan Ayaydin
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM) Nonprofit Ltd., Római krt. 21, H-6723 Szeged, Hungary;
- Biological Research Centre, Laboratory of Cellular Imaging, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Zsolt Boldogkői
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi Béla u. 4, H-6720 Szeged, Hungary;
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Laboratory, Albert Szent-Györgyi Medical School, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary;
| | - Klára Megyeri
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary; (Z.I.I.A.-L.); (Á.D.)
| |
Collapse
|
17
|
Targeting Lysosomes to Reverse Hydroquinone-Induced Autophagy Defects and Oxidative Damage in Human Retinal Pigment Epithelial Cells. Int J Mol Sci 2021; 22:ijms22169042. [PMID: 34445748 PMCID: PMC8396439 DOI: 10.3390/ijms22169042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 01/09/2023] Open
Abstract
In age-related macular degeneration (AMD), hydroquinone (HQ)-induced oxidative damage in retinal pigment epithelium (RPE) is believed to be an early event contributing to dysregulation of inflammatory cytokines and vascular endothelial growth factor (VEGF) homeostasis. However, the roles of antioxidant mechanisms, such as autophagy and the ubiquitin-proteasome system, in modulating HQ-induced oxidative damage in RPE is not well-understood. This study utilized an in-vitro AMD model involving the incubation of human RPE cells (ARPE-19) with HQ. In comparison to hydrogen peroxide (H2O2), HQ induced fewer reactive oxygen species (ROS) but more oxidative damage as characterized by protein carbonyl levels, mitochondrial dysfunction, and the loss of cell viability. HQ blocked the autophagy flux and increased proteasome activity, whereas H2O2 did the opposite. Moreover, the lysosomal membrane-stabilizing protein LAMP2 and cathepsin D levels declined with HQ exposure, suggesting loss of lysosomal membrane integrity and function. Accordingly, HQ induced lysosomal alkalization, thereby compromising the acidic pH needed for optimal lysosomal degradation. Pretreatment with MG132, a proteasome inhibitor and lysosomal stabilizer, upregulated LAMP2 and autophagy and prevented HQ-induced oxidative damage in wildtype RPE cells but not cells transfected with shRNA against ATG5. This study demonstrated that lysosomal dysfunction underlies autophagy defects and oxidative damage induced by HQ in human RPE cells and supports lysosomal stabilization with the proteasome inhibitor MG132 as a potential remedy for oxidative damage in RPE and AMD.
Collapse
|
18
|
Saffari-Chaleshtori J, Asadi-Samani M, Rasouli M, Shafiee SM. Autophagy and Ubiquitination as Two Major Players in Colorectal Cancer: A Review on Recent Patents. Recent Pat Anticancer Drug Discov 2021; 15:143-153. [PMID: 32603286 DOI: 10.2174/1574892815666200630103626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND As one of the most commonly diagnosed cancers among men and women, Colorectal Cancer (CRC) leads to high rates of morbidity and mortality across the globe. Recent anti- CRC therapies are now targeting specific signaling pathways involved in colorectal carcinogenesis. Ubiquitin Proteasome System (UPS) and autophagy are two main protein quality control systems, which play major roles in the carcinogenesis of colorectal cancer. A balanced function of these two pathways is necessary for the regulation of cell proliferation and cell death. OBJECTIVE In this systematic review, we discuss the available evidence regarding the roles of autophagy and ubiquitination in progression and inhibition of CRC. METHODS The search terms "colorectal cancer" or "colon cancer" or "colorectal carcinoma" or "colon carcinoma" in combination with "ubiquitin proteasome" and "autophagy" were searched in PubMed, Web of Science, and Scopus databases, and also Google Patents (https://patents.google .com) from January 2000 to Feb 2020. RESULTS The most important factors involved in UPS and autophagy have been investigated. There are many important factors involved in UPS and autophagy but this systematic review shows the studies that have mostly focused on the role of ATG, 20s proteasome and mTOR in CRC, and the more important factors such as ATG8, FIP200, and TIGAR factors that are effective in the regulation of autophagy in CRC cells have not been yet investigated. CONCLUSION The most important factors involved in UPS and autophagy such as ATG, 20s proteasome and mTOR, ATG8, FIP200, and TIGAR can be considered in drug therapy for controlling or activating autophagy.
Collapse
Affiliation(s)
- Javad Saffari-Chaleshtori
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Majid Asadi-Samani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Rasouli
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayed Mohammad Shafiee
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Tomaipitinca L, Petrungaro S, D'Acunzo P, Facchiano A, Dubey A, Rizza S, Giulitti F, Gaudio E, Filippini A, Ziparo E, Cecconi F, Giampietri C. c-FLIP regulates autophagy by interacting with Beclin-1 and influencing its stability. Cell Death Dis 2021; 12:686. [PMID: 34238932 PMCID: PMC8266807 DOI: 10.1038/s41419-021-03957-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/18/2023]
Abstract
c-FLIP (cellular FLICE-like inhibitory protein) protein is mostly known as an apoptosis modulator. However, increasing data underline that c-FLIP plays multiple roles in cellular homoeostasis, influencing differently the same pathways depending on its expression level and isoform predominance. Few and controversial data are available regarding c-FLIP function in autophagy. Here we show that autophagic flux is less effective in c-FLIP−/− than in WT MEFs (mouse embryonic fibroblasts). Indeed, we show that the absence of c-FLIP compromises the expression levels of pivotal factors in the generation of autophagosomes. In line with the role of c-FLIP as a scaffold protein, we found that c-FLIPL interacts with Beclin-1 (BECN1: coiled-coil, moesin-like BCL2-interacting protein), which is required for autophagosome nucleation. By a combination of bioinformatics tools and biochemistry assays, we demonstrate that c-FLIPL interaction with Beclin-1 is important to prevent Beclin-1 ubiquitination and degradation through the proteasomal pathway. Taken together, our data describe a novel molecular mechanism through which c-FLIPL positively regulates autophagy, by enhancing Beclin-1 protein stability.
Collapse
Affiliation(s)
- Luana Tomaipitinca
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy.,Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, 2100, Denmark
| | - Simonetta Petrungaro
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Pasquale D'Acunzo
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA.,Department of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA
| | | | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus Pvt Ltd, Kushinagar, 274203, India.,Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Salvatore Rizza
- Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, Copenhagen, 2100, Denmark
| | - Federico Giulitti
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy.
| | - Elio Ziparo
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Francesco Cecconi
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, 2100, Denmark.,Department of Pediatric Hemato-Oncology and Cell and Gene therapy, IRCCS Bambino Gesù Children's Hospital, Rome, 00143, Italy.,Department of Biology, University of Tor Vergata, Rome, 00133, Italy
| | - Claudia Giampietri
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
20
|
Li L, Tong M, Fu Y, Chen F, Zhang S, Chen H, Ma X, Li D, Liu X, Zhong Q. Lipids and membrane-associated proteins in autophagy. Protein Cell 2021; 12:520-544. [PMID: 33151516 PMCID: PMC8225772 DOI: 10.1007/s13238-020-00793-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022] Open
Abstract
Autophagy is essential for the maintenance of cellular homeostasis and its dysfunction has been linked to various diseases. Autophagy is a membrane driven process and tightly regulated by membrane-associated proteins. Here, we summarized membrane lipid composition, and membrane-associated proteins relevant to autophagy from a spatiotemporal perspective. In particular, we focused on three important membrane remodeling processes in autophagy, lipid transfer for phagophore elongation, membrane scission for phagophore closure, and autophagosome-lysosome membrane fusion. We discussed the significance of the discoveries in this field and possible avenues to follow for future studies. Finally, we summarized the membrane-associated biochemical techniques and assays used to study membrane properties, with a discussion of their applications in autophagy.
Collapse
Affiliation(s)
- Linsen Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mindan Tong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuhui Fu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fang Chen
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shen Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hanmo Chen
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Defa Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Xiaoxia Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
21
|
Demirbağ-Sarikaya S, Çakir H, Gözüaçik D, Akkoç Y. Crosstalk between autophagy and DNA repair systems. ACTA ACUST UNITED AC 2021; 45:235-252. [PMID: 34377049 PMCID: PMC8313936 DOI: 10.3906/biy-2103-51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022]
Abstract
Autophagy and DNA repair are two essential biological mechanisms that maintain cellular homeostasis. Impairment of these mechanisms was associated with several pathologies such as premature aging, neurodegenerative diseases, and cancer. Intrinsic or extrinsic stress stimuli (e.g., reactive oxygen species or ionizing radiation) cause DNA damage. As a biological stress response, autophagy is activated following insults that threaten DNA integrity. Hence, in collaboration with DNA damage repair and response mechanisms, autophagy contributes to the maintenance of genomic stability and integrity. Yet, connections and interactions between these two systems are not fully understood. In this review article, current status of the associations and crosstalk between autophagy and DNA repair systems is documented and discussed.
Collapse
Affiliation(s)
| | - Hatice Çakir
- SUNUM Nanotechnology Research and Application Center, İstanbul Turkey
| | - Devrim Gözüaçik
- SUNUM Nanotechnology Research and Application Center, İstanbul Turkey.,Koç University School of Medicine, İstanbul Turkey.,Koç University Research Center for Translational Medicine (KUTTAM), İstanbul Turkey
| | - Yunus Akkoç
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul Turkey
| |
Collapse
|
22
|
Ruano D. Proteostasis Dysfunction in Aged Mammalian Cells. The Stressful Role of Inflammation. Front Mol Biosci 2021; 8:658742. [PMID: 34222330 PMCID: PMC8245766 DOI: 10.3389/fmolb.2021.658742] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Aging is a biological and multifactorial process characterized by a progressive and irreversible deterioration of the physiological functions leading to a progressive increase in morbidity. In the next decades, the world population is expected to reach ten billion, and globally, elderly people over 80 are projected to triple in 2050. Consequently, it is also expected an increase in the incidence of age-related pathologies such as cancer, diabetes, or neurodegenerative disorders. Disturbance of cellular protein homeostasis (proteostasis) is a hallmark of normal aging that increases cell vulnerability and might be involved in the etiology of several age-related diseases. This review will focus on the molecular alterations occurring during normal aging in the most relevant protein quality control systems such as molecular chaperones, the UPS, and the ALS. Also, alterations in their functional cooperation will be analyzed. Finally, the role of inflammation, as a synergistic negative factor of the protein quality control systems during normal aging, will also be addressed. A better comprehension of the age-dependent modifications affecting the cellular proteostasis, as well as the knowledge of the mechanisms underlying these alterations, might be very helpful to identify relevant risk factors that could be responsible for or contribute to cell deterioration, a fundamental question still pending in biomedicine.
Collapse
Affiliation(s)
- Diego Ruano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
23
|
Li Y, Wang X, Li M, Yang C, Wang X. M05B5.4 (Lysosomal phospholipase A2) promotes disintegration of autophagic vesicles to maintain C. elegans development. Autophagy 2021; 18:595-607. [PMID: 34130592 DOI: 10.1080/15548627.2021.1943178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The autophagosome has two lipid bilayer membranes. The outer membrane fuses with the lysosome, while the inner membrane is degraded to release autophagic contents for degradation. It remains unclear how the inner vesicle of the autophagosome (called the autophagic vesicle) is disintegrated after autophagosome-lysosome fusion. Here, we identified C. elegans LPLA-2/M05B5.4 as a key enzyme that degrades membranous material in lysosomes. LPLA-2 is homologous to human PLA2G15, a lysosomal phospholipase A2 family protein that catalyzes cleavage of membrane phospholipids. We found that loss of LPLA-2 causes accumulation of large membrane whorls in enlarged lysosomes and both phenotypes are suppressed by blocking macroautophagy/autophagy. Moreover, autophagic vesicles persisted in enlarged lysosomes in PLA2G15 knockdown cells and lpla-2(lf) mutants, which suggests that the breakdown of the inner autophagosomal membrane in lysosomes is impaired. lpla-2(lf) mutants exhibit severe defects in both embryonic and larval development. Our data suggest that disintegration of the inner autophagosomal membrane by LPLA-2 promotes the release and subsequent degradation of autophagic contents in lysosomes, which is essential for C. elegans development.
Collapse
Affiliation(s)
- Yuan Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xin Wang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Meijiao Li
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Xiaochen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
24
|
Boughey H, Jurga M, El-Khamisy SF. DNA Homeostasis and Senescence: Lessons from the Naked Mole Rat. Int J Mol Sci 2021; 22:ijms22116011. [PMID: 34199458 PMCID: PMC8199619 DOI: 10.3390/ijms22116011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
As we age, our bodies accrue damage in the form of DNA mutations. These mutations lead to the generation of sub-optimal proteins, resulting in inadequate cellular homeostasis and senescence. The build-up of senescent cells negatively affects the local cellular micro-environment and drives ageing associated disease, including neurodegeneration. Therefore, limiting the accumulation of DNA damage is essential for healthy neuronal populations. The naked mole rats (NMR) are from eastern Africa and can live for over three decades in chronically hypoxic environments. Despite their long lifespan, NMRs show little to no biological decline, neurodegeneration, or senescence. Here, we discuss molecular pathways and adaptations that NMRs employ to maintain genome integrity and combat the physiological and pathological decline in organismal function.
Collapse
Affiliation(s)
- Harvey Boughey
- The Healthy Lifespan Institute and the Institute of Neuroscience, University of Sheffield, Sheffield S10 2TN, UK;
| | - Mateusz Jurga
- The Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK;
| | - Sherif F. El-Khamisy
- The Healthy Lifespan Institute and the Institute of Neuroscience, University of Sheffield, Sheffield S10 2TN, UK;
- The Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK;
- Correspondence: ; Tel.: +44-(0)-114-2222-791; Fax: +44-(0)-114-222-2850
| |
Collapse
|
25
|
Barz S, Kriegenburg F, Sánchez-Martín P, Kraft C. Small but mighty: Atg8s and Rabs in membrane dynamics during autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119064. [PMID: 34048862 PMCID: PMC8261831 DOI: 10.1016/j.bbamcr.2021.119064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/04/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
Autophagy is a degradative pathway during which autophagosomes are formed that enwrap cytosolic material destined for turnover within the lytic compartment. Autophagosome biogenesis requires controlled lipid and membrane rearrangements to allow the formation of an autophagosomal seed and its subsequent elongation into a fully closed and fusion-competent double membrane vesicle. Different membrane remodeling events are required, which are orchestrated by the distinct autophagy machinery. An important player among these autophagy proteins is the small lipid-modifier Atg8. Atg8 proteins facilitate various aspects of autophagosome formation and serve as a binding platform for autophagy factors. Also Rab GTPases have been implicated in autophagosome biogenesis. As Atg8 proteins interact with several Rab GTPase regulators, they provide a possible link between autophagy progression and Rab GTPase activity. Here, we review central aspects in membrane dynamics during autophagosome biogenesis with a focus on Atg8 proteins and selected Rab GTPases.
Collapse
Affiliation(s)
- Saskia Barz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Franziska Kriegenburg
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Pablo Sánchez-Martín
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
26
|
Plasmodium falciparum Atg18 localizes to the food vacuole via interaction with the multi-drug resistance protein 1 and phosphatidylinositol 3-phosphate. Biochem J 2021; 478:1705-1732. [PMID: 33843972 DOI: 10.1042/bcj20210001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/27/2022]
Abstract
Autophagy, a lysosome-dependent degradative process, does not appear to be a major degradative process in malaria parasites and has a limited repertoire of genes. To better understand the autophagy process, we investigated Plasmodium falciparum Atg18 (PfAtg18), a PROPPIN family protein, whose members like S. cerevisiae Atg18 (ScAtg18) and human WIPI2 bind PI3P and play an essential role in autophagosome formation. Wild type and mutant PfAtg18 were expressed in P. falciparum and assessed for localization, the effect of various inhibitors and antimalarials on PfAtg18 localization, and identification of PfAtg18-interacting proteins. PfAtg18 is expressed in asexual erythrocytic stages and localized to the food vacuole, which was also observed with other Plasmodium Atg18 proteins, indicating that food vacuole localization is likely a shared feature. Interaction of PfAtg18 with the food vacuole-associated PI3P is essential for localization, as PfAtg18 mutants of PI3P-binding motifs neither bound PI3P nor localized to the food vacuole. Interestingly, wild type ScAtg18 interacted with PI3P, but its expression in P. falciparum showed complete cytoplasmic localization, indicating additional requirement for food vacuole localization. The food vacuole multi-drug resistance protein 1 (MDR1) was consistently identified in the immunoprecipitates of PfAtg18 and P. berghei Atg18, and also interacted with PfAtg18. In contrast with PfAtg18, ScAtg18 did not interact with MDR1, which, in addition to PI3P, could play a critical role in localization of PfAtg18. Chloroquine and amodiaquine caused cytoplasmic localization of PfAtg18, suggesting that these target PfAtg18 transport pathway. Thus, PI3P and MDR1 are critical mediators of PfAtg18 localization.
Collapse
|
27
|
Wei X, Hogstrand C, Chen G, Lv W, Song Y, Xu Y, Luo Z. Zn Induces Lipophagy via the Deacetylation of Beclin1 and Alleviates Cu-Induced Lipotoxicity at Their Environmentally Relevant Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4943-4953. [PMID: 33739816 DOI: 10.1021/acs.est.0c08609] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, the mechanisms of environmentally relevant doses of Cu and Zn mixtures influencing lipid deposition and metabolism were investigated in freshwater teleost yellow catfish Pelteobagrus fulvidraco (2 months old, 4.95 (t0.01 g, mean ± SEM). Our study indicated that waterborne Cu exposure increased lipid content, while Zn activated lipophagic flux and alleviated Cu-induced lipid accumulation. Yellow catfish hepatocytes treated with Zn or Zn + Cu activated autophagy-specific lipophagy, decreased lipid storage, and increased nonesterified fatty acid (NEFA) release, suggesting a causal relationship between lipophagy and lipid droplet (LD) breakdown under Zn and Zn + Cu conditions. Our further investigation found that Beclin1 deacetylation by sirtuin 1 (SIRT1) was required for Zn- and Zn + Cu-induced lipophagy and lipolysis, and lysine residues 427 and 434 were key sites for Beclin1 deacetylation. Taken together, these findings show that the Zn-induced deacetylation of Beclin1 promotes lipophagy as an important pathway to alleviate Cu-induced lipid accumulation in fish, which reveals a previously unidentified mechanism for understanding the antagonistic effects of Cu and Zn on metabolism at their environmentally relevant concentrations. Our results highlight the importance of combined exposure when the biological effects of heavy metals are evaluated during environmental risk assessments.
Collapse
Affiliation(s)
- Xiaolei Wei
- Laboratory of Molecular Nutrition and Environmental Health for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London SE5 9RJ, U.K
| | - Guanghui Chen
- Laboratory of Molecular Nutrition and Environmental Health for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Wuhong Lv
- Laboratory of Molecular Nutrition and Environmental Health for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yufeng Song
- Laboratory of Molecular Nutrition and Environmental Health for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yichuang Xu
- Laboratory of Molecular Nutrition and Environmental Health for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Laboratory of Molecular Nutrition and Environmental Health for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
28
|
Melia TJ, Lystad AH, Simonsen A. Autophagosome biogenesis: From membrane growth to closure. J Cell Biol 2021; 219:151729. [PMID: 32357219 PMCID: PMC7265318 DOI: 10.1083/jcb.202002085] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagosome biogenesis involves de novo formation of a membrane that elongates to sequester cytoplasmic cargo and closes to form a double-membrane vesicle (an autophagosome). This process has remained enigmatic since its initial discovery >50 yr ago, but our understanding of the mechanisms involved in autophagosome biogenesis has increased substantially during the last 20 yr. Several key questions do remain open, however, including, What determines the site of autophagosome nucleation? What is the origin and lipid composition of the autophagosome membrane? How is cargo sequestration regulated under nonselective and selective types of autophagy? This review provides key insight into the core molecular mechanisms underlying autophagosome biogenesis, with a specific emphasis on membrane modeling events, and highlights recent conceptual advances in the field.
Collapse
Affiliation(s)
- Thomas J Melia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Alf H Lystad
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
Tognarelli EI, Reyes A, Corrales N, Carreño LJ, Bueno SM, Kalergis AM, González PA. Modulation of Endosome Function, Vesicle Trafficking and Autophagy by Human Herpesviruses. Cells 2021; 10:cells10030542. [PMID: 33806291 PMCID: PMC7999576 DOI: 10.3390/cells10030542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
Human herpesviruses are a ubiquitous family of viruses that infect individuals of all ages and are present at a high prevalence worldwide. Herpesviruses are responsible for a broad spectrum of diseases, ranging from skin and mucosal lesions to blindness and life-threatening encephalitis, and some of them, such as Kaposi’s sarcoma-associated herpesvirus (KSHV) and Epstein–Barr virus (EBV), are known to be oncogenic. Furthermore, recent studies suggest that some herpesviruses may be associated with developing neurodegenerative diseases. These viruses can establish lifelong infections in the host and remain in a latent state with periodic reactivations. To achieve infection and yield new infectious viral particles, these viruses require and interact with molecular host determinants for supporting their replication and spread. Important sets of cellular factors involved in the lifecycle of herpesviruses are those participating in intracellular membrane trafficking pathways, as well as autophagic-based organelle recycling processes. These cellular processes are required by these viruses for cell entry and exit steps. Here, we review and discuss recent findings related to how herpesviruses exploit vesicular trafficking and autophagy components by using both host and viral gene products to promote the import and export of infectious viral particles from and to the extracellular environment. Understanding how herpesviruses modulate autophagy, endolysosomal and secretory pathways, as well as other prominent trafficking vesicles within the cell, could enable the engineering of novel antiviral therapies to treat these viruses and counteract their negative health effects.
Collapse
Affiliation(s)
- Eduardo I. Tognarelli
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Nicolás Corrales
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence:
| |
Collapse
|
30
|
Hernández-Cáceres MP, Munoz L, Pradenas JM, Pena F, Lagos P, Aceiton P, Owen GI, Morselli E, Criollo A, Ravasio A, Bertocchi C. Mechanobiology of Autophagy: The Unexplored Side of Cancer. Front Oncol 2021; 11:632956. [PMID: 33718218 PMCID: PMC7952994 DOI: 10.3389/fonc.2021.632956] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Proper execution of cellular function, maintenance of cellular homeostasis and cell survival depend on functional integration of cellular processes and correct orchestration of cellular responses to stresses. Cancer transformation is a common negative consequence of mismanagement of coordinated response by the cell. In this scenario, by maintaining the balance among synthesis, degradation, and recycling of cytosolic components including proteins, lipids, and organelles the process of autophagy plays a central role. Several environmental stresses activate autophagy, among those hypoxia, DNA damage, inflammation, and metabolic challenges such as starvation. In addition to these chemical challenges, there is a requirement for cells to cope with mechanical stresses stemming from their microenvironment. Cells accomplish this task by activating an intrinsic mechanical response mediated by cytoskeleton active processes and through mechanosensitive protein complexes which interface the cells with their mechano-environment. Despite autophagy and cell mechanics being known to play crucial transforming roles during oncogenesis and malignant progression their interplay is largely overlooked. In this review, we highlight the role of physical forces in autophagy regulation and their potential implications in both physiological as well as pathological conditions. By taking a mechanical perspective, we wish to stimulate novel questions to further the investigation of the mechanical requirements of autophagy and appreciate the extent to which mechanical signals affect this process.
Collapse
Affiliation(s)
- Maria Paz Hernández-Cáceres
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Leslie Munoz
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Javiera M. Pradenas
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Investigation in Oncology, Faculty of Biological Sciences Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Pena
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo Lagos
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo Aceiton
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Gareth I. Owen
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Investigation in Oncology, Faculty of Biological Sciences Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Eugenia Morselli
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
- Autophagy Research Center, Santiago de Chile, Chile
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Autophagy Research Center, Santiago de Chile, Chile
- Facultad De Odontología, Instituto De Investigación En Ciencias Odontológicas (ICOD), Universidad De Chile, Santiago, Chile
| | - Andrea Ravasio
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| |
Collapse
|
31
|
Evans AS, Lennemann NJ, Coyne CB. BPIFB3 interacts with ARFGAP1 and TMED9 to regulate non-canonical autophagy and RNA virus infection. J Cell Sci 2021; 134:jcs251835. [PMID: 33277377 PMCID: PMC7929927 DOI: 10.1242/jcs.251835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022] Open
Abstract
Autophagy is a degradative cellular pathway that targets cytoplasmic contents and organelles for turnover by the lysosome. Various autophagy pathways play key roles in the clearance of viral infections, and many families of viruses have developed unique methods for avoiding degradation. Some positive-stranded RNA viruses, such as enteroviruses and flaviviruses, usurp the autophagic pathway to promote their own replication. We previously identified the endoplasmic reticulum (ER)-localized protein BPIFB3 as an important negative regulator of non-canonical autophagy that uniquely impacts the replication of enteroviruses and flaviviruses. Here, we find that many components of the canonical autophagy machinery are not required for BPIFB3 depletion-induced autophagy and identify the host factors that facilitate its role in the replication of enteroviruses and flaviviruses. Using proximity-dependent biotinylation (BioID) followed by mass spectrometry, we identify ARFGAP1 and TMED9 as two cellular components that interact with BPIFB3 to regulate autophagy and viral replication. Importantly, our data demonstrate that non-canonical autophagy in mammalian cells can be controlled outside of the traditional pathway regulators and define the role of two proteins in BPIFB3 depletion mediated non-canonical autophagy.
Collapse
Affiliation(s)
- Azia S Evans
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA 15224, USA
- Center for Microbial Pathogenesis, 4401 Penn Ave, Pittsburgh, PA 15224, USA
| | - Nicholas J Lennemann
- Department of Microbiology, University of Alabama at Birmingham, 845, 19th St S, Birmingham, AL 35222, USA
| | - Carolyn B Coyne
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA 15224, USA
- Center for Microbial Pathogenesis, 4401 Penn Ave, Pittsburgh, PA 15224, USA
- Richard K. Mellon Institute for Pediatric Research, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA 15224, USA
| |
Collapse
|
32
|
Cerda-Troncoso C, Varas-Godoy M, Burgos PV. Pro-Tumoral Functions of Autophagy Receptors in the Modulation of Cancer Progression. Front Oncol 2021; 10:619727. [PMID: 33634029 PMCID: PMC7902017 DOI: 10.3389/fonc.2020.619727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Cancer progression involves a variety of pro-tumorigenic biological processes including cell proliferation, migration, invasion, and survival. A cellular pathway implicated in these pro-tumorigenic processes is autophagy, a catabolic route used for recycling of cytoplasmic components to generate macromolecular building blocks and energy, under stress conditions, to remove damaged cellular constituents to adapt to changing nutrient conditions and to maintain cellular homeostasis. During autophagy, cells form a double-membrane sequestering a compartment termed the phagophore, which matures into an autophagosome. Following fusion with the lysosome, the cargo is degraded inside the autolysosomes and the resulting macromolecules released back into the cytosol for reuse. Cancer cells use this recycling system during cancer progression, however the key autophagy players involved in this disease is unclear. Accumulative evidences show that autophagy receptors, crucial players for selective autophagy, are overexpressed during cancer progression, yet the mechanisms whereby pro-tumorigenic biological processes are modulated by these receptors remains unknown. In this review, we summarized the most important findings related with the pro-tumorigenic role of autophagy receptors p62/SQSTM1, NBR1, NDP52, and OPTN in cancer progression. In addition, we showed the most relevant cargos degraded by these receptors that have been shown to function as critical regulators of pro-tumorigenic processes. Finally, we discussed the role of autophagy receptors in the context of the cellular pathways implicated in this disease, such as growth factors signaling, oxidative stress response and apoptosis. In summary, we highlight that autophagy receptors should be considered important players of cancer progression, which could offer a niche for the development of novel diagnosis and cancer treatment strategies.
Collapse
Affiliation(s)
- Cristóbal Cerda-Troncoso
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Manuel Varas-Godoy
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Patricia V. Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
33
|
Ye Y, Tyndall ER, Bui V, Tang Z, Shen Y, Jiang X, Flanagan JM, Wang HG, Tian F. An N-terminal conserved region in human Atg3 couples membrane curvature sensitivity to conjugase activity during autophagy. Nat Commun 2021; 12:374. [PMID: 33446636 PMCID: PMC7809043 DOI: 10.1038/s41467-020-20607-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
During autophagy the enzyme Atg3 catalyzes the covalent conjugation of LC3 to the amino group of phosphatidylethanolamine (PE) lipids, which is one of the key steps in autophagosome formation. Here, we have demonstrated that an N-terminal conserved region of human Atg3 (hAtg3) communicates information from the N-terminal membrane curvature-sensitive amphipathic helix (AH), which presumably targets the enzyme to the tip of phagophore, to the C-terminally located catalytic core for LC3-PE conjugation. Mutations in the putative communication region greatly reduce or abolish the ability of hAtg3 to catalyze this conjugation in vitro and in vivo, and alter the membrane-bound conformation of the wild-type protein, as reported by NMR. Collectively, our results demonstrate that the N-terminal conserved region of hAtg3 works in concert with its geometry-selective AH to promote LC3-PE conjugation only on the target membrane, and substantiate the concept that highly curved membranes drive spatial regulation of the autophagosome biogenesis during autophagy.
Collapse
Affiliation(s)
- Yansheng Ye
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Erin R Tyndall
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Van Bui
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Zhenyuan Tang
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Yan Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John M Flanagan
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Hong-Gang Wang
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA.
| | - Fang Tian
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
34
|
Crizotinib Resistance Mediated by Autophagy Is Higher in the Stem-Like Cell Subset in ALK-Positive Anaplastic Large Cell Lymphoma, and This Effect Is MYC-Dependent. Cancers (Basel) 2021; 13:cancers13020181. [PMID: 33430343 PMCID: PMC7825760 DOI: 10.3390/cancers13020181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Previously it was shown that autophagy contributes to crizotinib resistance in ALK-positive anaplastic large cell lymphoma (ALK + ALCL). We asked if autophagy is equally important in two distinct subsets of ALK + ALCL, namely Reporter Unresponsive (RU) and Reporter Responsive (RR), of which RR cells display stem-like properties. Autophagic flux was assessed with a fluorescence tagged LC3 reporter and immunoblots to detect endogenous LC3 alongside chloroquine, an autophagy inhibitor. The stem-like RR cells displayed significantly higher autophagic response upon crizotinib treatment. Their exaggerated autophagic response is cytoprotective against crizotinib, as inhibition of autophagy using chloroquine or shRNA against BECN1 or ATG7 led to a decrease in their viability. In contrast, autophagy inhibition in RU resulted in minimal changes. Since the differential protein expression of MYC is a regulator of the RU/RR dichotomy and is higher in RR cells, we asked if MYC regulates the autophagy-mediated cytoprotective effect. Inhibition of MYC in RR cells using shRNA significantly blunted crizotinib-induced autophagic response and effectively suppressed this cytoprotective effect. In conclusion, stem-like RR cells respond with rapid and intense autophagic flux which manifests with crizotinib resistance. For the first time, we have highlighted the direct role of MYC in regulating autophagy and its associated chemoresistance phenotype in ALK + ALCL stem-like cells.
Collapse
|
35
|
Zulkefli KL, Mahmoud IS, Williamson NA, Gosavi PK, Houghton FJ, Gleeson PA. A role for Rab30 in retrograde trafficking and maintenance of endosome-TGN organization. Exp Cell Res 2021; 399:112442. [PMID: 33359467 DOI: 10.1016/j.yexcr.2020.112442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
Rab30 is a poorly characterized small GTPase. Here we show that Rab30 is localised primarily to the TGN and recycling endosomes in a range of cell types, including primary neurons; minor levels of Rab30 were also detected throughout the Golgi stack and early endosomes. Silencing of Rab30 resulted in the dispersal of both early and recycling endosomes and TGN compartments in HeLa cells. By analyzing cargo trafficking in Rab30-silenced and Rab30-overexpressing HeLa cells, we demonstrate that Rab30 plays a role in retrograde trafficking of TGN38 from endosomes to the Golgi, but has no apparent role in the endocytic recycling of the transferrin receptor to the plasma membrane. Five interactive partners with Rab30 were identified by pull-down and MS analysis using GFP-tagged Rab30 mutant, Rab30(Q68L). Two of the interactive partners identified were Arf1 and Arf4, known regulators of endosome to TGN retrograde transport. Knockdown of Arf1 and Arf4 results in GFP-Rab30 decorated tubules arising from the recycling endosomes, suggesting association of Rab30 with tubular carriers. Overall our data demonstrates a role for Rab30 in regulating retrograde transport to the TGN and maintenance of endosomal-TGN organization.
Collapse
Affiliation(s)
- Khalisah L Zulkefli
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Ismail S Mahmoud
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Nicholas A Williamson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia; The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Prajakta Kulkarni Gosavi
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Fiona J Houghton
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
36
|
Zhang W, Feng C, Jiang H. Novel target for treating Alzheimer's Diseases: Crosstalk between the Nrf2 pathway and autophagy. Ageing Res Rev 2021; 65:101207. [PMID: 33144123 DOI: 10.1016/j.arr.2020.101207] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/02/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
In mammals, the Keap1-Nrf2-ARE pathway (henceforth, "the Nrf2 pathway") and autophagy are major intracellular defence systems that combat oxidative damage and maintain homeostasis. p62/SQSTM1, a ubiquitin-binding autophagy receptor protein, links the Nrf2 pathway and autophagy. Phosphorylation of p62 dramatically enhances its affinity for Keap1, which induces Keap1 to release Nrf2, and the p62-Keap1 heterodimer recruits LC3 and mediates the permanent degradation of Keap1 in the selective autophagy pathway. Eventually, Nrf2 accumulates in the cytoplasm and then translocates into the nucleus to activate the transcription of downstream genes that encode antioxidant enzymes, which protect cells from oxidative damage. Since Nrf2 also upregulates the expression of the p62 gene, a p62-Keap1-Nrf2 positive feedback loop is created that further enhances the protective effect on cells. Studies have shown that the p62-activated noncanonical Nrf2 pathway is an important marker of neurodegenerative diseases. The p62-Keap1-Nrf2 positive feedback loop and the Nrf2 pathway are involved in eliminating the ROS and protein aggregates induced by AD. Therefore, maintaining the homeostasis of the p62-Keap1-Nrf2 positive feedback loop, which is a bridge between the Nrf2 pathway and autophagy, may be a potential target for the treatment of AD.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, People's Republic of China
| | - Cong Feng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, People's Republic of China
| | - Hong Jiang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, People's Republic of China.
| |
Collapse
|
37
|
Miller K, McGrath ME, Hu Z, Ariannejad S, Weston S, Frieman M, Jackson WT. Coronavirus interactions with the cellular autophagy machinery. Autophagy 2020; 16:2131-2139. [PMID: 32964796 PMCID: PMC7755319 DOI: 10.1080/15548627.2020.1817280] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, is the most recent example of an emergent coronavirus that poses a significant threat to human health. Virus-host interactions play a major role in the viral life cycle and disease pathogenesis, and cellular pathways such as macroautophagy/autophagy prove to be either detrimental or beneficial to viral replication and maturation. Here, we describe the literature over the past twenty years describing autophagy-coronavirus interactions. There is evidence that many coronaviruses induce autophagy, although some of these viruses halt the progression of the pathway prior to autophagic degradation. In contrast, other coronaviruses usurp components of the autophagy pathway in a non-canonical fashion. Cataloging these virus-host interactions is crucial for understanding disease pathogenesis, especially with the global challenge of SARS-CoV-2 and COVID-19. With the recognition of autophagy inhibitors, including the controversial drug chloroquine, as possible treatments for COVID-19, understanding how autophagy affects the virus will be critical going forward. Abbreviations: 3-MA: 3-methyladenine (autophagy inhibitor); AKT/protein kinase B: AKT serine/threonine kinase; ATG: autophagy related; ATPase: adenosine triphosphatase; BMM: bone marrow macrophage; CGAS: cyclic GMP-AMP synthase; CHO: Chinese hamster ovary/cell line; CoV: coronaviruses; COVID-19: Coronavirus disease 2019; DMV: double-membrane vesicle; EAV: equine arteritis virus; EDEM1: ER degradation enhancing alpha-mannosidase like protein 1; ER: endoplasmic reticulum; ERAD: ER-associated degradation; GFP: green fluorescent protein; HCoV: human coronavirus; HIV: human immunodeficiency virus; HSV: herpes simplex virus; IBV: infectious bronchitis virus; IFN: interferon; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MCoV: mouse coronavirus; MERS-CoV: Middle East respiratory syndrome coronavirus; MHV: mouse hepatitis virus; NBR1: NBR1 autophagy cargo receptor; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2 (autophagy receptor that directs cargo to phagophores); nsp: non-structural protein; OS9: OS9 endoplasmic reticulum lectin; PEDV: porcine epidemic diarrhea virus; PtdIns3K: class III phosphatidylinositol 3-kinase; PLP: papain-like protease; pMEF: primary mouse embryonic fibroblasts; SARS-CoV: severe acute respiratory syndrome coronavirus; SKP2: S-phase kinase associated protein 2; SQSTM1: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; ULK1: unc-51 like autophagy activating kinase 1; Vps: vacuolar protein sorting.
Collapse
Affiliation(s)
- Katelyn Miller
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marisa E. McGrath
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zhiqiang Hu
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sohha Ariannejad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stuart Weston
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - William T Jackson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
38
|
Targeting autophagy to overcome drug resistance: further developments. J Hematol Oncol 2020; 13:159. [PMID: 33239065 PMCID: PMC7687716 DOI: 10.1186/s13045-020-01000-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/15/2020] [Indexed: 12/13/2022] Open
Abstract
Inhibiting cell survival and inducing cell death are the main approaches of tumor therapy. Autophagy plays an important role on intracellular metabolic homeostasis by eliminating dysfunctional or unnecessary proteins and damaged or aged cellular organelles to recycle their constituent metabolites that enable the maintenance of cell survival and genetic stability and even promotes the drug resistance, which severely limits the efficacy of chemotherapeutic drugs. Currently, targeting autophagy has a seemingly contradictory effect to suppress and promote tumor survival, which makes the effect of targeting autophagy on drug resistance more confusing and fuzzier. In the review, we summarize the regulation of autophagy by emerging ways, the action of targeting autophagy on drug resistance and some of the new therapeutic approaches to treat tumor drug resistance by interfering with autophagy-related pathways. The full-scale understanding of the tumor-associated signaling pathways and physiological functions of autophagy will hopefully open new possibilities for the treatment of tumor drug resistance and the improvement in clinical outcomes.
Collapse
|
39
|
Martinez GP, Zabaleta ME, Di Giulio C, Charris JE, Mijares MR. The Role of Chloroquine and Hydroxychloroquine in Immune Regulation and Diseases. Curr Pharm Des 2020; 26:4467-4485. [DOI: 10.2174/1381612826666200707132920] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) are derivatives of the heterocyclic aromatic compound
quinoline. These economical compounds have been used as antimalarial agents for many years. Currently,
they are used as monotherapy or in conjunction with other therapies for the treatment of autoimmune diseases
such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjögren's syndrome (SS) and antiphospholipid
antibody syndrome (APS). Based on its effects on the modulation of the autophagy process, various
clinical studies suggest that CQ and HCQ could be used in combination with other chemotherapeutics for the
treatment of various types of cancer. Furthermore, the antiviral effects showed against Zika, Chikungunya, and
HIV are due to the annulation of endosomal/lysosomal acidification. Recently, CQ and HCQ were approved for
the U.S. Food and Drug Administration (FDA) for the treatment of infected patients with the coronavirus SARSCoV-
2, causing the disease originated in December 2019, namely COVID-2019. Several mechanisms have been
proposed to explain the pharmacological effects of these drugs: 1) disruption of lysosomal and endosomal pH, 2)
inhibition of protein secretion/expression, 3) inhibition of antigen presentation, 4) decrease of proinflammatory
cytokines, 5) inhibition of autophagy, 6) induction of apoptosis and 7) inhibition of ion channels activation. Thus,
evidence has shown that these structures are leading molecules that can be modified or combined with other
therapeutic agents. In this review, we will discuss the most recent findings in the mechanisms of action of CQ and
HCQ in the immune system, and the use of these antimalarial drugs on diseases.
Collapse
Affiliation(s)
- Gricelis P. Martinez
- Institute of Immunology, Faculty of Medicine, Central University of Venezuela, 50109, Los Chaguaramos 1050-A, Caracas, Venezuela
| | - Mercedes E. Zabaleta
- Institute of Immunology, Faculty of Medicine, Central University of Venezuela, 50109, Los Chaguaramos 1050-A, Caracas, Venezuela
| | - Camilo Di Giulio
- Institute of Immunology, Faculty of Medicine, Central University of Venezuela, 50109, Los Chaguaramos 1050-A, Caracas, Venezuela
| | - Jaime E. Charris
- Organic Synthesis Laboratory, Faculty of Pharmacy, Central University of Venezuela, 47206, Los Chaguaramos 1041-A, Caracas, Venezuela
| | - Michael R. Mijares
- Institute of Immunology, Faculty of Medicine, Central University of Venezuela, 50109, Los Chaguaramos 1050-A, Caracas, Venezuela
| |
Collapse
|
40
|
Liang S, Li X, Gao C, Zhang L. microRNA-based autophagy inhibition as targeted therapy in pancreatic cancer. Biomed Pharmacother 2020; 132:110799. [PMID: 33035835 DOI: 10.1016/j.biopha.2020.110799] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/22/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is a malignancy with extremely low five-year survival rate. Pancreatic tumors maintain a high basal level of autophagy for survival and progression. Autophagy dysfunction leads to tumor progression in pancreatic cancer patients. Clinical trials with autophagy inhibitors, including hydroxychloroquine and chloroquine, showed no significant therapeutic benefit as monotherapy. Instead of using chemical inhibitors, microRNA may serve as an alternative approach for autophagy inhibition. In the context of pancreatic cancer, the feasibility of using the microRNA approach to target core autophagy-related genes has been shown, which results in suppression of initiation or flux blockage of autophagy. In addition, autophagy inhibition leads to increased sensitivity of pancreatic tumors to a variety of therapeutic approaches, including radiotherapy, chemotherapy and other targeted agents. Recent studies suggest microRNA-based autophagy inhibition can be a promising and feasible approach for the clinical care of pancreatic cancer patients. Here we reviewed the mechanism of autophagy and recent progress of autophagy inhibition in pancreatic cancer treatment. We particularly focus on the microRNA approach in autophagy inhibition in pancreatic cancer.
Collapse
Affiliation(s)
- Sanhong Liang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xin Li
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Chao Gao
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lexing Zhang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
41
|
Ariotti N, Wu Y, Okano S, Gambin Y, Follett J, Rae J, Ferguson C, Teasdale RD, Alexandrov K, Meunier FA, Hill MM, Parton RG. An inverted CAV1 (caveolin 1) topology defines novel autophagy-dependent exosome secretion from prostate cancer cells. Autophagy 2020; 17:2200-2216. [DOI: 10.1080/15548627.2020.1820787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Nicholas Ariotti
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Mark Wainwright Analytical Centre, Electron Microscope Unit, The University of New South Wales, Sydney, Australia
| | - Yeping Wu
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Satomi Okano
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Yann Gambin
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jordan Follett
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - James Rae
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Charles Ferguson
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Rohan D. Teasdale
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Kirill Alexandrov
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Frederic A. Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Michelle M. Hill
- UQ Diamantina Institute, The University of Queensland, Brisbane, Australia
| | - Robert G. Parton
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- The Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Australia
| |
Collapse
|
42
|
Hu B, Zhang Y, Deng T, Gu J, Liu J, Yang H, Xu Y, Yan Y, Yang F, Zhang H, Jin Y, Zhou J. PDPK1 regulates autophagosome biogenesis by binding to PIK3C3. Autophagy 2020; 17:2166-2183. [PMID: 32876514 DOI: 10.1080/15548627.2020.1817279] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PDPK1 (3-phosphoinositide dependent protein kinase 1) is a phosphorylation-regulated kinase that plays a central role in activating multiple signaling pathways and cellular processes. Here, this study shows that PDPK1 turns on macroautophagy/autophagy as a SUMOylation-regulated kinase. In vivo data demonstrate that the SUMO modification of PDPK1 is a physiological feature in the brain and that it can be induced by viral infections. The SUMOylated PDPK1 regulates its own phosphorylation and subsequent activation of the AKT1 (AKT serine/threonine kinase 1)-MTOR (mechanistic target of rapamycin kinase) pathway. However, SUMOylation of PDPK1 is inhibited by binding to PIK3C3 (phosphatidylinositol 3-kinase catalytic subunit type 3). The nonSUMOylated PDPK1 then tethers LC3 to the endoplasmic reticulum to initiate autophagy, and it acts as a key component in forming the autophagic vacuole. Collectively, this study reveals the intricate molecular regulation of PDPK1 by post-translational modification in controlling autophagosome biogenesis, and it highlights the role of PDPK1 as a sensor of cellular stress and regulator of autophagosome biogenesis.Abbreviations: AKT1: AKT serine/threonine kinase 1; ATG14: autophagy related 14; Co-IP: co-immunoprecipitation; ER: endoplasmic reticulum; hpi: hours post-infection; mAb: monoclonal antibody; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; MTOR: mechanistic target of rapamycin kinase; pAb: polyclonal antibody; PDPK1: 3-phosphoinositide dependent protein kinase 1; PI3K: phosphoinositide 3-kinase; PIK3C3: phosphatidylinositol 3-kinase catalytic, subunit type 3; RPS6KB1: ribosomal protein S6 kinase B1; SGK: serum/glucocorticoid regulated kinase; SQSTM1: sequestosome 1; SUMO: small ubiquitin like modifier; UBE2I/UBC9: ubiquitin conjugating enzyme E2 I; UVRAG: UV radiation resistance associated.
Collapse
Affiliation(s)
- Boli Hu
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yina Zhang
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Tingjuan Deng
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jinyan Gu
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Juan Liu
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hui Yang
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yuting Xu
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yan Yan
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Fan Yang
- Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Heng Zhang
- Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yulan Jin
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Guizzardi S, Picotto G, Rodriguez V, Welsh J, Narvaez C, Bohl L, Tolosa de Talamoni N. Combined treatment of menadione and calcitriol increases the antiproliferative effect by promoting oxidative/nitrosative stress, mitochondrial dysfunction, and autophagy in breast cancer MCF-7 cells. Can J Physiol Pharmacol 2020; 98:548-556. [PMID: 32762631 DOI: 10.1139/cjpp-2019-0585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The aim of this study was to determine new insights into the molecular mechanisms involved in the antiproliferative action of menadione + calcitriol (MEN+D) on MCF-7 cells. After 24 h, MEN+D inhibited the cell growth but was not observed with each single treatment. The combined drugs reduced the mitochondrial respiration at that time, as judged by an increase in the proton leak and a decrease in the ATP generation and coupling efficiency. At longer times, 48 or 96 h, either D or MEN reduced the proliferation, but the effect was higher when both drugs were used together. The combined treatment increased the superoxide anion ([Formula: see text]) and nitric oxide (NO•) contents as well as acidic vesicular organelles (AVOs) formation. The percentage of cells showing the lower mitochondrial membrane potential (ΔΨm) was highly increased by the combined therapy. LC3-II protein expression was enhanced by any treatment. In conclusion, the antiproliferative action of MEN+D involves oxidative/nitrosative stress, mitochondrial alteration, and autophagy. This combined therapy could be useful to treat breast cancer cells because it inhibits multiple oncogenic pathways more effectively than each single agent.
Collapse
Affiliation(s)
- Solange Guizzardi
- Laboratorio "Dr. Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-UNC), Córdoba, Argentina
| | - Gabriela Picotto
- Laboratorio "Dr. Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-UNC), Córdoba, Argentina
| | - Valeria Rodriguez
- Laboratorio "Dr. Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-UNC), Córdoba, Argentina
| | - JoEllen Welsh
- University at Albany Cancer Research Center, Rensselaer, NY, USA
| | - Carmen Narvaez
- University at Albany Cancer Research Center, Rensselaer, NY, USA
| | - Luciana Bohl
- Centro de Investigaciones y Transferencia Villa María (CITVM-CONICET), Universidad Nacional Villa María, Villa María, Argentina
| | - Nori Tolosa de Talamoni
- Laboratorio "Dr. Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-UNC), Córdoba, Argentina
| |
Collapse
|
44
|
Hollenstein DM, Kraft C. Autophagosomes are formed at a distinct cellular structure. Curr Opin Cell Biol 2020; 65:50-57. [PMID: 32203894 PMCID: PMC7588827 DOI: 10.1016/j.ceb.2020.02.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 11/09/2022]
Abstract
Autophagy is characterized by the formation of double-membrane vesicles called autophagosomes, which deliver bulk cytoplasmic material to the lytic compartment of the cell for degradation. Autophagosome formation is initiated by assembly and recruitment of the core autophagy machinery to distinct cellular sites, referred to as phagophore assembly sites (PAS) in yeast or autophagosome formation sites in other organisms. A large number of autophagy proteins involved in the formation of autophagosomes has been identified; however, how the individual components of the PAS are assembled and how they function to generate autophagosomes remains a fundamental question. Here, we highlight recent studies that provide molecular insights into PAS organization and the role of the endoplasmic reticulum and the vacuole in autophagosome formation.
Collapse
Affiliation(s)
- David M Hollenstein
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
45
|
Yun HR, Jo YH, Kim J, Shin Y, Kim SS, Choi TG. Roles of Autophagy in Oxidative Stress. Int J Mol Sci 2020; 21:ijms21093289. [PMID: 32384691 PMCID: PMC7246723 DOI: 10.3390/ijms21093289] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a catabolic process for unnecessary or dysfunctional cytoplasmic contents by lysosomal degradation pathways. Autophagy is implicated in various biological processes such as programmed cell death, stress responses, elimination of damaged organelles and development. The role of autophagy as a crucial mediator has been clarified and expanded in the pathological response to redox signalling. Autophagy is a major sensor of the redox signalling. Reactive oxygen species (ROS) are highly reactive molecules that are generated as by-products of cellular metabolism, principally by mitochondria. Mitochondrial ROS (mROS) are beneficial or detrimental to cells depending on their concentration and location. mROS function as redox messengers in intracellular signalling at physiologically low level, whereas excessive production of mROS causes oxidative damage to cellular constituents and thus incurs cell death. Hence, the balance of autophagy-related stress adaptation and cell death is important to comprehend redox signalling-related pathogenesis. In this review, we attempt to provide an overview the basic mechanism and function of autophagy in the context of response to oxidative stress and redox signalling in pathology.
Collapse
Affiliation(s)
- Hyeong Rok Yun
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (H.R.Y.); (Y.S.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (J.K.)
| | - Yong Hwa Jo
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Jieun Kim
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Yoonhwa Shin
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (H.R.Y.); (Y.S.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (J.K.)
| | - Sung Soo Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (H.R.Y.); (Y.S.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (S.S.K.); (T.G.C.); Tel.: +82-2-961-0524 (S.S.K.); +82-2-961-0287 (T.G.C.)
| | - Tae Gyu Choi
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (S.S.K.); (T.G.C.); Tel.: +82-2-961-0524 (S.S.K.); +82-2-961-0287 (T.G.C.)
| |
Collapse
|
46
|
Park SW, Jun YW, Jeon P, Lee YK, Park JH, Lee SH, Lee JA, Jang DJ. LIR motifs and the membrane-targeting domain are complementary in the function of RavZ. BMB Rep 2020. [PMID: 31722778 PMCID: PMC6941762 DOI: 10.5483/bmbrep.2019.52.12.211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The bacterial effector protein RavZ is secreted by the intracellular pathogen Legionella pneumophila and inhibits host autophagy through an irreversible deconjugation of mammalian ATG8 (mATG8) proteins from autophagosome membranes. However, the roles of the LC3 interacting region (LIR) motifs in RavZ function remain unclear. In this study, we show that a membrane-targeting (MT) domain or the LIR motifs of RavZ play major or minor roles in RavZ function. A RavZ mutant that does not bind to mATG8 delipidated all forms of mATG8-phosphatidylethanolamine (PE) as efficiently as did wild-type RavZ. However, a RavZ mutant with a deletion of the MT domain selectively delipidated mATG8-PE less efficiently than did wild-type RavZ. Taken together, our results suggest that the effects of LIR motifs and the MT domain on RavZ activity are complementary and work through independent pathways.
Collapse
Affiliation(s)
- Sang-Won Park
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju 37224, Korea
| | - Yong-Woo Jun
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju 37224, Korea
| | - Pureum Jeon
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon 34054, Korea
| | - You-Kyung Lee
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon 34054, Korea
| | - Ju-Hui Park
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju 37224, Korea
| | - Seung-Hwan Lee
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju 37224, Korea
| | - Jin-A Lee
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon 34054, Korea
| | - Deok-Jin Jang
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju 37224, Korea
| |
Collapse
|
47
|
The Dynein Adaptor RILP Controls Neuronal Autophagosome Biogenesis, Transport, and Clearance. Dev Cell 2020; 53:141-153.e4. [PMID: 32275887 DOI: 10.1016/j.devcel.2020.03.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 12/30/2019] [Accepted: 03/12/2020] [Indexed: 12/31/2022]
Abstract
Autophagy plays critical roles in neurodegeneration and development, but how this pathway is organized and regulated in neurons remains poorly understood. Here, we find that the dynein adaptor RILP is essential for retrograde transport of neuronal autophagosomes, and surprisingly, their biogenesis as well. We find that induction of autophagy by mTOR inhibition specifically upregulates RILP expression and its localization to autophagosomes. RILP depletion or mutations in its LC3-binding LIR motifs strongly decrease autophagosome numbers suggesting an unexpected RILP role in autophagosome biogenesis. We find that RILP also interacts with ATG5 on isolation membranes, precluding premature dynein recruitment and autophagosome transport. RILP inhibition impedes autophagic turnover and causes p62/sequestosome-1 aggregation. Together, our results identify an mTOR-responsive neuronal autophagy pathway, wherein RILP integrates the processes of autophagosome biogenesis and retrograde transport to control autophagic turnover. This pathway has important implications for understanding how autophagy contributes to neuronal function, development, and disease.
Collapse
|
48
|
Ke PY. Mitophagy in the Pathogenesis of Liver Diseases. Cells 2020; 9:cells9040831. [PMID: 32235615 PMCID: PMC7226805 DOI: 10.3390/cells9040831] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a catabolic process involving vacuolar sequestration of intracellular components and their targeting to lysosomes for degradation, thus supporting nutrient recycling and energy regeneration. Accumulating evidence indicates that in addition to being a bulk, nonselective degradation mechanism, autophagy may selectively eliminate damaged mitochondria to promote mitochondrial turnover, a process termed “mitophagy”. Mitophagy sequesters dysfunctional mitochondria via ubiquitination and cargo receptor recognition and has emerged as an important event in the regulation of liver physiology. Recent studies have shown that mitophagy may participate in the pathogenesis of various liver diseases, such as liver injury, liver steatosis/fatty liver disease, hepatocellular carcinoma, viral hepatitis, and hepatic fibrosis. This review summarizes the current knowledge on the molecular regulations and functions of mitophagy in liver physiology and the roles of mitophagy in the development of liver-related diseases. Furthermore, the therapeutic implications of targeting hepatic mitophagy to design a new strategy to cure liver diseases are discussed.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; ; Tel.: +886-3-211-8800 (ext. 5115); Fax: +886-3-211-8700
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Division of Allergy, Immunology, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
49
|
Iessi E, Marconi M, Manganelli V, Sorice M, Malorni W, Garofalo T, Matarrese P. On the role of sphingolipids in cell survival and death. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 351:149-195. [PMID: 32247579 DOI: 10.1016/bs.ircmb.2020.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sphingolipids, universal components of biological membranes of all eukaryotic organisms, from yeasts to mammals, in addition of playing a structural role, also play an important part of signal transduction pathways. They participate or, also, ignite several fundamental subcellular signaling processes but, more in general, they directly contribute to key biological activities such as cell motility, growth, senescence, differentiation as well as cell fate, i.e., survival or death. The sphingolipid metabolic pathway displays an intricate network of reactions that result in the formation of multiple sphingolipids, including ceramide, and sphingosine-1-phosphate. Different sphingolipids, that have key roles in determining cell fate, can induce opposite effects: as a general rule, sphingosine-1-phosphate promotes cell survival and differentiation, whereas ceramide is known to induce apoptosis. Furthermore, together with cholesterol, sphingolipids also represent the basic lipid component of lipid rafts, cholesterol- and sphingolipid-enriched membrane microdomains directly involved in cell death and survival processes. In this review, we briefly describe the characteristics of sphingolipids and lipid membrane microdomains. In particular, we will consider the involvement of various sphingolipids per se and of lipid rafts in apoptotic pathway, both intrinsic and extrinsic, in nonapoptotic cell death, in autophagy, and in cell differentiation. In addition, their roles in the most common physiological and pathological contexts either as pathogenetic elements or as biomarkers of diseases will be considered. We would also hint how the manipulation of sphingolipid metabolism could represent a potential therapeutic target to be investigated and functionally validated especially for those diseases for which therapeutic options are limited or ineffective.
Collapse
Affiliation(s)
- Elisabetta Iessi
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Matteo Marconi
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | | | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Walter Malorni
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy; Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| | - Tina Garofalo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
50
|
Dohmen M, Krieg S, Agalaridis G, Zhu X, Shehata SN, Pfeiffenberger E, Amelang J, Bütepage M, Buerova E, Pfaff CM, Chanda D, Geley S, Preisinger C, Sakamoto K, Lüscher B, Neumann D, Vervoorts J. AMPK-dependent activation of the Cyclin Y/CDK16 complex controls autophagy. Nat Commun 2020; 11:1032. [PMID: 32098961 PMCID: PMC7042329 DOI: 10.1038/s41467-020-14812-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
The AMP-activated protein kinase (AMPK) is a master sensor of the cellular energy status that is crucial for the adaptive response to limited energy availability. AMPK is implicated in the regulation of many cellular processes, including autophagy. However, the precise mechanisms by which AMPK controls these processes and the identities of relevant substrates are not fully understood. Using protein microarrays, we identify Cyclin Y as an AMPK substrate that is phosphorylated at Serine 326 (S326) both in vitro and in cells. Phosphorylation of Cyclin Y at S326 promotes its interaction with the Cyclin-dependent kinase 16 (CDK16), thereby stimulating its catalytic activity. When expressed in cells, Cyclin Y/CDK16 is sufficient to promote autophagy. Moreover, Cyclin Y/CDK16 is necessary for efficient AMPK-dependent activation of autophagy. This functional interaction is mediated by AMPK phosphorylating S326 of Cyclin Y. Collectively, we define Cyclin Y/CDK16 as downstream effector of AMPK for inducing autophagy.
Collapse
Affiliation(s)
- Marc Dohmen
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
- Center for Translational & Clinical Research Aachen (CTC-A), Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Georgios Agalaridis
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
- Miltenyi Biotec GmbH, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Xiaoqing Zhu
- CARIM School for Cardiovascular Diseases, Maastricht University, P.O. box 616, 6200 MD, Maastricht, The Netherlands
| | | | - Elisabeth Pfeiffenberger
- Division of Molecular Pathophysiology, Biocenter, Innsbruck Medical University, Innrain 80/82, 6020, Innsbruck, Austria
| | - Jan Amelang
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Mareike Bütepage
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Elena Buerova
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Carolina M Pfaff
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
- AstraZeneca GmbH, Tinsdaler Weg 183, 22880, Wedel, Germany
| | - Dipanjan Chanda
- CARIM School for Cardiovascular Diseases, Maastricht University, P.O. box 616, 6200 MD, Maastricht, The Netherlands
| | - Stephan Geley
- Division of Molecular Pathophysiology, Biocenter, Innsbruck Medical University, Innrain 80/82, 6020, Innsbruck, Austria
| | - Christian Preisinger
- Proteomics Facility, Interdisciplinary Center for Clinical Research (IZKF) Aachen, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Kei Sakamoto
- Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany.
| | - Dietbert Neumann
- CARIM School for Cardiovascular Diseases, Maastricht University, P.O. box 616, 6200 MD, Maastricht, The Netherlands.
- Department of Pathology, University Medical Center Maastricht, 6229 HX, Maastricht, The Netherlands.
| | - Jörg Vervoorts
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|