1
|
Gould NR, Torre OM, Leser JM, Stains JP. The cytoskeleton and connected elements in bone cell mechano-transduction. Bone 2021; 149:115971. [PMID: 33892173 PMCID: PMC8217329 DOI: 10.1016/j.bone.2021.115971] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/30/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023]
Abstract
Bone is a mechano-responsive tissue that adapts to changes in its mechanical environment. Increases in strain lead to increased bone mass acquisition, whereas decreases in strain lead to a loss of bone mass. Given that mechanical stress is a regulator of bone mass and quality, it is important to understand how bone cells sense and transduce these mechanical cues into biological changes to identify druggable targets that can be exploited to restore bone cell mechano-sensitivity or to mimic mechanical load. Many studies have identified individual cytoskeletal components - microtubules, actin, and intermediate filaments - as mechano-sensors in bone. However, given the high interconnectedness and interaction between individual cytoskeletal components, and that they can assemble into multiple discreet cellular structures, it is likely that the cytoskeleton as a whole, rather than one specific component, is necessary for proper bone cell mechano-transduction. This review will examine the role of each cytoskeletal element in bone cell mechano-transduction and will present a unified view of how these elements interact and work together to create a mechano-sensor that is necessary to control bone formation following mechanical stress.
Collapse
Affiliation(s)
- Nicole R Gould
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Olivia M Torre
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jenna M Leser
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA..
| |
Collapse
|
2
|
Joanne P, Hovhannisyan Y, Bencze M, Daher MT, Parlakian A, Toutirais G, Gao-Li J, Lilienbaum A, Li Z, Kordeli E, Ferry A, Agbulut O. Absence of Desmin Results in Impaired Adaptive Response to Mechanical Overloading of Skeletal Muscle. Front Cell Dev Biol 2021; 9:662133. [PMID: 34336827 PMCID: PMC8320001 DOI: 10.3389/fcell.2021.662133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Desmin is a muscle-specific protein belonging to the intermediate filament family. Desmin mutations are linked to skeletal muscle defects, including inherited myopathies with severe clinical manifestations. The aim of this study was to examine the role of desmin in skeletal muscle remodeling and performance gain induced by muscle mechanical overloading which mimics resistance training. Methods: Plantaris muscles were overloaded by surgical ablation of gastrocnemius and soleus muscles. The functional response of plantaris muscle to mechanical overloading in desmin-deficient mice (DesKO, n = 32) was compared to that of control mice (n = 36) after 7-days or 1-month overloading. To elucidate the molecular mechanisms implicated in the observed partial adaptive response of DesKO muscle, we examined the expression levels of genes involved in muscle growth, myogenesis, inflammation and oxidative energetic metabolism. Moreover, ultrastructure and the proteolysis pathway were explored. Results: Contrary to control, absolute maximal force did not increase in DesKO muscle following 1-month mechanical overloading. Fatigue resistance was also less increased in DesKO as compared to control muscle. Despite impaired functional adaptive response of DesKO mice to mechanical overloading, muscle weight and the number of oxidative MHC2a-positive fibers per cross-section similarly increased in both genotypes after 1-month overloading. However, mechanical overloading-elicited remodeling failed to activate a normal myogenic program after 7-days overloading, resulting in proportionally reduced activation and differentiation of muscle stem cells. Ultrastructural analysis of the plantaris muscle after 1-month overloading revealed muscle fiber damage in DesKO, as indicated by the loss of sarcomere integrity and mitochondrial abnormalities. Moreover, the observed accumulation of autophagosomes and lysosomes in DesKO muscle fibers could indicate a blockage of autophagy. To address this issue, two main proteolysis pathways, the ubiquitin-proteasome system and autophagy, were explored in DesKO and control muscle. Our results suggested an alteration of proteolysis pathways in DesKO muscle in response to mechanical overloading. Conclusion: Taken together, our results show that mechanical overloading increases the negative impact of the lack of desmin on myofibril organization and mitochondria. Furthermore, our results suggest that under these conditions, the repairing activity of autophagy is disturbed. Consequently, force generation is not improved despite muscle growth, suggesting that desmin is required for a complete response to resistance training in skeletal muscle.
Collapse
Affiliation(s)
- Pierre Joanne
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Yeranuhi Hovhannisyan
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Maximilien Bencze
- U955-IMRB, Team 10, Biology of the Neuromuscular System, Inserm, UPEC, ENVA, EFS, Créteil, France
| | - Marie-Thérèse Daher
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Ara Parlakian
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Geraldine Toutirais
- Muséum National d'Histoire Naturelle (MNHN), Unité Molécules de Communication et Adaptation des Micro-organismes (MCAM), CNRS UMR 7245, Plateau technique de Microscopie Electronique (PtME), Paris, France
| | - Jacqueline Gao-Li
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Alain Lilienbaum
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Université de Paris, Paris, France
| | - Zhenlin Li
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Ekaterini Kordeli
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Arnaud Ferry
- Institut de Myologie, INSERM U974, Centre de Recherche en Myologie, Sorbonne Université, Paris, France.,Université de Paris, Paris, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| |
Collapse
|
3
|
Zottel A, Jovčevska I, Šamec N, Komel R. Cytoskeletal proteins as glioblastoma biomarkers and targets for therapy: A systematic review. Crit Rev Oncol Hematol 2021; 160:103283. [PMID: 33667657 DOI: 10.1016/j.critrevonc.2021.103283] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma, the most common primary brain malignancy, is an exceptionally fatal cancer. Lack of suitable biomarkers and efficient treatment largely contribute to the therapy failure. Cytoskeletal proteins are crucial proteins in glioblastoma pathogenesis and can potentially serve as biomarkers and therapeutic targets. Among them, GFAP, has gained most attention as potential diagnostic biomarker, while vimentin and microtubules are considered as prospective therapeutic targets. Microtubules represent one of the best anti-cancer targets due to their critical role in cell proliferation. Despite testing in clinical trials, the efficiency of taxanes, epothilones, vinca-domain binding drugs, colchicine-domain binding drugs and γ-tubulin binding drugs remains to be confirmed. Moreover, tumor treating field that disrupts microtubules draw attention because of its high efficiency and is called "the fourth cancer treatment modality". Thereby, because of the involvement of cytoskeleton in key physiological and pathological processes, its therapeutic potential in glioblastoma is currently extensively investigated.
Collapse
Affiliation(s)
- Alja Zottel
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neja Šamec
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Ferry A, Messéant J, Parlakian A, Lemaitre M, Roy P, Delacroix C, Lilienbaum A, Hovhannisyan Y, Furling D, Klein A, Li Z, Agbulut O. Desmin prevents muscle wasting, exaggerated weakness and fragility, and fatigue in dystrophic mdx mouse. J Physiol 2020; 598:3667-3689. [PMID: 32515007 DOI: 10.1113/jp279282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/05/2020] [Indexed: 01/21/2023] Open
Abstract
KEY POINTS Desmin, similar to dystrophin, is associated with costameric structures bridging sarcomeres to the extracellular matrix. Deletion of the desmin gene in mdx mice [double knockout (DKO) mice] induces marked muscle weakness and fatigue resistance compared to mdx mice. Muscle fragility (higher susceptibility to contraction-induced injury) was also aggravated in DKO mice compared to mdx mice. By contrast to mdx mice, the DKO mice did not undergo muscle hypertrophy. Desmin cDNA transfer with adeno-associated virus in newborn mdx mice reduced muscle weakness. Overall, desmin plays important and beneficial roles in muscle wasting, performance and fragility in dystrophic muscle. ABSTRACT Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease caused by dystrophin deficiency. Desmin, similar to dystrophin, is associated with costameric structures bridging sarcomeres to the extracellular matrix that contributes to muscle function. In the present study, we attempted to provide further insight into the roles of desmin, for which the expression is increased in the muscle from the mouse mdx DMD model. We show that a deletion of the desmin gene (Des) in mdx mice [double knockout (DKO) mice, mdx:desmin-/-] induces a marked muscle weakness; namely, a reduced absolute maximal force production and increased fatigue compared to that in mdx mice. Fragility (i.e. higher susceptibility to contraction-induced injury) was also aggravated in DKO mice compared to mdx mice, despite the promotion of supposedly less fragile muscle fibres in DKO mice, and this worsening of fragility was related to a decreased muscle excitability. Moreover, in contrast to mdx mice, the DKO mice did not undergo muscle hypertrophy, as indicated by smaller and fewer fibres, with a reduced percentage of centronucleated fibres, potentially explaining the severe muscle weakness. Notably, Desmin cDNA transfer with adeno-associated virus in newborn mdx mice improved specific maximal force normalized to muscle weight. Overall, desmin plays important and beneficial roles in muscle wasting, performance and fragility in dystrophic mdx mice, which differ, at least in part, from those observed in healthy muscle.
Collapse
Affiliation(s)
- Arnaud Ferry
- Sorbonne Université, Centre de recherche en myologie, INSERM U974, Institut de Myologie, Paris, France.,Université de Paris, Institut des Sciences du Sport Santé de Paris, UFRSTAPS, Paris, France
| | - Julien Messéant
- Sorbonne Université, Centre de recherche en myologie, INSERM U974, Institut de Myologie, Paris, France
| | - Ara Parlakian
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Mégane Lemaitre
- Sorbonne Université, Centre de recherche en myologie, INSERM U974, Institut de Myologie, Paris, France
| | - Pauline Roy
- Sorbonne Université, Centre de recherche en myologie, INSERM U974, Institut de Myologie, Paris, France
| | - Clément Delacroix
- Sorbonne Université, Centre de recherche en myologie, INSERM U974, Institut de Myologie, Paris, France
| | - Alain Lilienbaum
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, France
| | - Yeranuhi Hovhannisyan
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Denis Furling
- Sorbonne Université, Centre de recherche en myologie, INSERM U974, Institut de Myologie, Paris, France
| | - Arnaud Klein
- Sorbonne Université, Centre de recherche en myologie, INSERM U974, Institut de Myologie, Paris, France
| | - Zhenlin Li
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| |
Collapse
|
5
|
Russell MA. Synemin Redefined: Multiple Binding Partners Results in Multifunctionality. Front Cell Dev Biol 2020; 8:159. [PMID: 32258037 PMCID: PMC7090255 DOI: 10.3389/fcell.2020.00159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Historically synemin has been studied as an intermediate filament protein. However, synemin also binds the type II regulatory (R) subunit α of protein kinase A (PKA) and protein phosphatase type 2A, thus participating in the PKA and phosphoinositide 3-kinase (PI3K)-Akt and signaling pathways. In addition, recent studies using transgenic mice indicate that a significant function of synemin is its role in signaling pathways in various tissues, including the heart. Recent clinical reports have shown that synemin mutations led to multiple cases of dilated cardiomyopathy. Additionally, a single case of the rare condition ulnar-mammary-like syndrome with left ventricular tachycardia due to a mutation in the synemin gene (SYNM) has been reported. Therefore, this review uses these recent studies to provide a new framework for detailed discussions on synemin tissue distribution, binding partners and synemin in disease. Differences between α- and β-synemin are highlighted. The studies presented here indicate that while synemin does function as an intermediate filament protein, it is unique among this large family of proteins as it is also a regulator of signaling pathways and a crosslinker. Also evident is that the dominant function(s) are isoform-, developmental-, and tissue-specific.
Collapse
Affiliation(s)
- Mary A Russell
- Department of Biological Sciences, Kent State University at Trumbull, Warren, OH, United States
| |
Collapse
|
6
|
Paulin D, Hovhannisyan Y, Kasakyan S, Agbulut O, Li Z, Xue Z. Synemin-related skeletal and cardiac myopathies: an overview of pathogenic variants. Am J Physiol Cell Physiol 2020; 318:C709-C718. [PMID: 32023076 DOI: 10.1152/ajpcell.00485.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review analyzes data concerning patients with cardiomyopathies or skeletal myopathies associated with a variation in the intermediate filament (IF) synemin gene (SYNM), also referred to as desmuslin (DMN). Molecular studies demonstrate that synemin copolymerizes with desmin and vimentin IF and interacts with vinculin, α-actinin, α-dystrobrevin, dystrophin, talin, and zyxin. It has been found that synemin is an A-kinase-anchoring protein (AKAP) that anchors protein kinase A (PKA) and modulates the PKA-dependent phosphorylation of several cytoskeletal substrates such as desmin. Because several IF proteins, including desmin, have been implicated in human genetic disorders such as dominant or recessive congenital and adult-onset myopathy, synemin becomes a significant candidate for cardiac and skeletal myopathies of unknown etiology. Because SYNM is a new candidate gene that displays numerous sequence polymorphisms, in this review, we summarize the genetic and clinical literature about SYNM mutations. Protein-changing variants (missense, frameshifts, nonsense) were further evaluated based on structural modifications and amino acid interactions. We present in silico modeling of helical salt-bridges between residues to evaluate the impact of the synemin networks crucial to interactions with cytoskeletal proteins. Finally, a discussion is featured regarding certain variants that may contribute to the disease state.
Collapse
Affiliation(s)
- Denise Paulin
- Sorbonne Université, Institut de Biologie Paris-Seine, CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Yeranuhi Hovhannisyan
- Sorbonne Université, Institut de Biologie Paris-Seine, CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Serdar Kasakyan
- Duzen Laboratories Group, Center of Genetic Diagnosis, Istanbul, Turkey
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine, CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Zhenlin Li
- Sorbonne Université, Institut de Biologie Paris-Seine, CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Zhigang Xue
- Sorbonne Université, Institut de Biologie Paris-Seine, CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| |
Collapse
|
7
|
Muriel JM, O'Neill A, Kerr JP, Kleinhans-Welte E, Lovering RM, Bloch RJ. Keratin 18 is an integral part of the intermediate filament network in murine skeletal muscle. Am J Physiol Cell Physiol 2020; 318:C215-C224. [PMID: 31721615 PMCID: PMC6985829 DOI: 10.1152/ajpcell.00279.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 01/26/2023]
Abstract
Intermediate filaments (IFs) contribute to force transmission, cellular integrity, and signaling in skeletal muscle. We previously identified keratin 19 (Krt19) as a muscle IF protein. We now report the presence of a second type I muscle keratin, Krt18. Krt18 mRNA levels are about half those for Krt19 and only 1:1,000th those for desmin; the protein was nevertheless detectable in immunoblots. Muscle function, measured by maximal isometric force in vivo, was moderately compromised in Krt18-knockout (Krt18-KO) or dominant-negative mutant mice (Krt18 DN), but structure was unaltered. Exogenous Krt18, introduced by electroporation, was localized in a reticulum around the contractile apparatus in wild-type muscle and to a lesser extent in muscle lacking Krt19 or desmin or both proteins. Exogenous Krt19, which was either reticular or aggregated in controls, became reticular more frequently in Krt19-null than in Krt18-null, desmin-null, or double-null muscles. Desmin was assembled into the reticulum normally in all genotypes. Notably, all three IF proteins appeared in overlapping reticular structures. We assessed the effect of Krt18 on susceptibility to injury in vivo by electroporating siRNA into tibialis anterior (TA) muscles of control and Krt19-KO mice and testing 2 wk later. Results showed a 33% strength deficit (reduction in maximal torque after injury) compared with siRNA-treated controls. Conversely, electroporation of siRNA to Krt19 into Krt18-null TA yielded a strength deficit of 18% after injury compared with controls. Our results suggest that Krt18 plays a complementary role to Krt19 in skeletal muscle in both assembling keratin-based filaments and transducing contractile force.
Collapse
Affiliation(s)
- Joaquin M Muriel
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea O'Neill
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jaclyn P Kerr
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Emily Kleinhans-Welte
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
8
|
Swärd K, Krawczyk KK, Morén B, Zhu B, Matic L, Holmberg J, Hedin U, Uvelius B, Stenkula K, Rippe C. Identification of the intermediate filament protein synemin/SYNM as a target of myocardin family coactivators. Am J Physiol Cell Physiol 2019; 317:C1128-C1142. [PMID: 31461342 DOI: 10.1152/ajpcell.00047.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Myocardin (MYOCD) is a critical regulator of smooth muscle cell (SMC) differentiation, but its transcriptional targets remain to be exhaustively characterized, especially at the protein level. Here we leveraged human RNA and protein expression data to identify novel potential MYOCD targets. Using correlation analyses we found several targets that we could confirm at the protein level, including SORBS1, SLMAP, SYNM, and MCAM. We focused on SYNM, which encodes the intermediate filament protein synemin. SYNM rivalled smooth muscle myosin (MYH11) for SMC specificity and was controlled at the mRNA and protein levels by all myocardin-related transcription factors (MRTFs: MYOCD, MRTF-A/MKL1, and MRTF-B/MKL2). MRTF activity is regulated by the ratio of filamentous to globular actin, and SYNM was accordingly reduced by interventions that depolymerize actin, such as latrunculin treatment and overexpression of constitutively active cofilin. Many MRTF target genes depend on serum response factor (SRF), but SYNM lacked SRF-binding motifs in its proximal promoter, which was not directly regulated by MYOCD. Furthermore, SYNM resisted SRF silencing, yet the time course of induction closely paralleled that of the SRF-dependent target gene ACTA2. SYNM was repressed by the ternary complex factor (TCF) FLI1 and was increased in mouse embryonic fibroblasts lacking three classical TCFs (ELK1, ELK3, and ELK4). Imaging showed colocalization of SYNM with the intermediate filament proteins desmin and vimentin, and MRTF-A/MKL1 increased SYNM-containing intermediate filaments in SMCs. These studies identify SYNM as a novel SRF-independent target of myocardin that is abundantly expressed in all SMCs.
Collapse
Affiliation(s)
- Karl Swärd
- Department of Experimental Medical Science, Lund, Sweden
| | | | - Björn Morén
- Department of Experimental Medical Science, Lund, Sweden
| | - Baoyi Zhu
- Department of Experimental Medical Science, Lund, Sweden.,Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), Guangdong, China
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Johan Holmberg
- Department of Experimental Medical Science, Lund, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Uvelius
- Department of Clinical Science, Lund, Lund University, Lund, Sweden
| | - Karin Stenkula
- Department of Experimental Medical Science, Lund, Sweden
| | - Catarina Rippe
- Department of Experimental Medical Science, Lund, Sweden
| |
Collapse
|
9
|
Qiu K, Zhang X, Wang L, Jiao N, Xu D, Yin J. Protein Expression Landscape Defines the Differentiation Potential Specificity of Adipogenic and Myogenic Precursors in the Skeletal Muscle. J Proteome Res 2018; 17:3853-3865. [DOI: 10.1021/acs.jproteome.8b00530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kai Qiu
- State Key Lab of Animal Nutrition & Ministry of Agriculture Feed Industry Centre, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Xin Zhang
- State Key Lab of Animal Nutrition & Ministry of Agriculture Feed Industry Centre, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Liqi Wang
- State Key Lab of Animal Nutrition & Ministry of Agriculture Feed Industry Centre, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Ning Jiao
- State Key Lab of Animal Nutrition & Ministry of Agriculture Feed Industry Centre, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Doudou Xu
- State Key Lab of Animal Nutrition & Ministry of Agriculture Feed Industry Centre, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Jingdong Yin
- State Key Lab of Animal Nutrition & Ministry of Agriculture Feed Industry Centre, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Zlotina A, Kiselev A, Sergushichev A, Parmon E, Kostareva A. Rare Case of Ulnar-Mammary-Like Syndrome With Left Ventricular Tachycardia and Lack of TBX3 Mutation. Front Genet 2018; 9:209. [PMID: 29963074 PMCID: PMC6013977 DOI: 10.3389/fgene.2018.00209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/25/2018] [Indexed: 12/13/2022] Open
Abstract
"Heart-hand" type syndromes represent a group of rare congenital conditions that combine cardiac pathology (structural defect or arrhythmic disorder) and limb abnormality. Significant clinical variability and genetic heterogeneity typical for such syndromes complicate correct diagnosis, prognosis, and appropriate genetic counseling of the affected families. By now, only single genes have been unambiguously determined as a genetic cause of heart-hand syndromes and phenotypically similar conditions. In the present study, we report on a 25-year-old Russian female patient with a clinical picture resembling ulnar-mammary syndrome (UMS). Principal clinical manifestations included heart septal fibrosis and non-sustained left ventricular tachycardia combined with fifth finger camptodactyly, hypoplastic breast, abnormal teeth, and mental retardation. Target Sanger sequencing and array-based comparative genome hybridization confirmed the lack of pathogenic mutations and large-scale deletions in TBX3 (12q24.21), the only gene known to be associated with UMS cases to date. Based on the results of whole-exome sequencing, 14 potential candidate variants were identified. Among them, a novel missense variant in SYNM gene (exon 1, c.173C > T, p.A58V), encoding intermediate filament protein synemin was characterized. Until the present, no association between SYNM mutations and congenital clinical syndromes has been reported. At the same time, taking into account synemin tissue-specific expression profiles and available data on abnormal knock-out mice phenotypes, we propose SYNM as a candidate gene contributing to the UMS-like phenotype. Further comprehensive functional studies are required to evaluate possible involvement of SYNM in genesis of complex heart-limb pathology.
Collapse
Affiliation(s)
- Anna Zlotina
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Artem Kiselev
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | | | - Elena Parmon
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Anna Kostareva
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- Department of Women’s and Children’s Health, Center for Molecular Medicine, Karolinska Institute, Solna, Sweden
| |
Collapse
|
11
|
García-Pelagio KP, Chen L, Joca HC, Ward C, Jonathan Lederer W, Bloch RJ. Absence of synemin in mice causes structural and functional abnormalities in heart. J Mol Cell Cardiol 2018; 114:354-363. [PMID: 29247678 PMCID: PMC5850968 DOI: 10.1016/j.yjmcc.2017.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 11/22/2017] [Accepted: 12/12/2017] [Indexed: 12/28/2022]
Abstract
Cardiomyopathies have been linked to changes in structural proteins, including intermediate filament (IF) proteins located in the cytoskeleton. IFs associate with the contractile machinery and costameres of striated muscle and with intercalated disks in the heart. Synemin is a large IF protein that mediates the association of desmin with Z-disks and stabilizes intercalated disks. It also acts as an A-kinase anchoring protein (AKAP). In murine skeletal muscle, the absence of synemin causes a mild myopathy. Here, we report that the genetic silencing of synemin in mice (synm -/-) causes left ventricular systolic dysfunction at 3months and 12-16months of age, and left ventricular hypertrophy and dilatation at 12-16months of age. Isolated cardiomyocytes showed alterations in calcium handling that indicate defects intrinsic to the heart. Although contractile and costameric proteins remained unchanged in the old synm -/- hearts, we identified alterations in several signaling proteins (PKA-RII, ERK and p70S6K) critical to cardiomyocyte function. Our data suggest that synemin plays an important regulatory role in the heart and that the consequences of its absence are profound.
Collapse
Affiliation(s)
- Karla P García-Pelagio
- Department of Physiology, School of Medicine, University of Maryland, 655 W. Baltimore St., Baltimore, MD 21201, USA; Department of Physics, School of Science, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City 04320, Mexico
| | - Ling Chen
- Department of Physiology, School of Medicine, University of Maryland, 655 W. Baltimore St., Baltimore, MD 21201, USA; Department of Medicine, School of Medicine, University of Maryland, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Humberto C Joca
- BioMET, University of Maryland, 111 S Penn St, Baltimore, MD 21201, USA; Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av Prof. Alfredo Balena, 190, Belo Horizonte, MG 30130, Brazil
| | - Christopher Ward
- School of Nursing and Department of Orthopedics, School of Medicine, University of Maryland,100 Penn St, Baltimore, MD 21201, USA
| | - W Jonathan Lederer
- Department of Physiology, School of Medicine, University of Maryland, 655 W. Baltimore St., Baltimore, MD 21201, USA; BioMET, University of Maryland, 111 S Penn St, Baltimore, MD 21201, USA
| | - Robert J Bloch
- Department of Physiology, School of Medicine, University of Maryland, 655 W. Baltimore St., Baltimore, MD 21201, USA.
| |
Collapse
|
12
|
Vimentin knockout results in increased expression of sub-endothelial basement membrane components and carotid stiffness in mice. Sci Rep 2017; 7:11628. [PMID: 28912461 PMCID: PMC5599644 DOI: 10.1038/s41598-017-12024-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/01/2017] [Indexed: 12/11/2022] Open
Abstract
Intermediate filaments are involved in stress-related cell mechanical properties and in plasticity via the regulation of focal adhesions (FAs) and the actomyosin network. We investigated whether vimentin regulates endothelial cells (ECs) and vascular smooth muscle cells (SMCs) and thereby influences vasomotor tone and arterial stiffness. Vimentin knockout mice (Vim−/−) exhibited increased expression of laminin, fibronectin, perlecan, collagen IV and VE-cadherin as well as von Willebrand factor deposition in the subendothelial basement membrane. Smooth muscle (SM) myosin heavy chain, α-SM actin and smoothelin were decreased in Vim−/− mice. Electron microscopy revealed a denser endothelial basement membrane and increased SM cell-matrix interactions. Integrin αv, talin and vinculin present in FAs were increased in Vim−/− mice. Phosphorylated FA kinase and its targets Src and ERK1/2 were elevated in Vim−/− mice. Knockout of vimentin, but not of synemin, resulted in increased carotid stiffness and contractility and endothelial dysfunction, independently of blood pressure and the collagen/elastin ratio. The increase in arterial stiffness in Vim−/− mice likely involves vasomotor tone and endothelial basement membrane organization changes. At the tissue level, the results show the implication of FAs both in ECs and vascular SMCs in the role of vimentin in arterial stiffening.
Collapse
|
13
|
Zhu C, Song W, Tao Z, Liu H, Xu W, Zhang S, Li H. Deep RNA sequencing of pectoralis muscle transcriptomes during late-term embryonic to neonatal development in indigenous Chinese duck breeds. PLoS One 2017; 12:e0180403. [PMID: 28771592 PMCID: PMC5542427 DOI: 10.1371/journal.pone.0180403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 06/15/2017] [Indexed: 12/14/2022] Open
Abstract
Pectoral muscle (PM) comprises an important component of overall meat mass in ducks. However, PM has shown arrested or even reduced growth during late embryonic development, and the molecular mechanisms underlying PM growth during the late embryonic to neonatal period in ducks have not been addressed. In this study, we characterized potential candidate genes and signaling pathways related to PM development using RNA sequencing of PM samples selected at embryonic days (E) 21 and 27 and 5 days post-hatch (dph) in two duck breeds (Gaoyou and Jinding ducks). A total of 393 differentially expressed genes (DEGs) were identified, which showed higher or lower expression levels at E27 compared with E21 and 5 dph, reflecting the pattern of PM growth rates. Among these, 43 DEGs were common to all three time points in both duck breeds. These DEGs may thus be involved in regulating this developmental process. Specifically, KEGG pathway analysis of the 393 DEGs showed that genes involved with different metabolism pathways were highly expressed, while genes involved with cell cycle pathways showed lower expression levels at E27. These DEGs may thus be involved in the mechanisms responsible for the phenomenon of static or decreased breast muscle growth in duck breeds during the late embryonic period. These results increase the available genetic information for ducks and provide valuable resources for analyzing the mechanisms underlying the process of PM development.
Collapse
Affiliation(s)
- Chunhong Zhu
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Weitao Song
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Zhiyun Tao
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Hongxiang Liu
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Wenjuan Xu
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Shuangjie Zhang
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Huifang Li
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu Province, People’s Republic of China
- * E-mail: ,
| |
Collapse
|
14
|
Lindqvist J, Torvaldson E, Gullmets J, Karvonen H, Nagy A, Taimen P, Eriksson JE. Nestin contributes to skeletal muscle homeostasis and regeneration. J Cell Sci 2017; 130:2833-2842. [PMID: 28733456 DOI: 10.1242/jcs.202226] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/12/2017] [Indexed: 01/15/2023] Open
Abstract
Nestin, a member of the cytoskeletal family of intermediate filaments, regulates the onset of myogenic differentiation through bidirectional signaling with the kinase Cdk5. Here, we show that these effects are also reflected at the organism level, as there is a loss of skeletal muscle mass in nestin-/- (NesKO) mice, reflected as reduced lean (muscle) mass in the mice. Further examination of muscles in male mice revealed that these effects stemmed from nestin-deficient muscles being more prone to spontaneous regeneration. When the regeneration capacity of the compromised NesKO muscle was tested by muscle injury experiments, a significant healing delay was observed. NesKO satellite cells showed delayed proliferation kinetics in conjunction with an elevation in p35 (encoded by Cdk5r1) levels and Cdk5 activity. These results reveal that nestin deficiency generates a spontaneous regenerative phenotype in skeletal muscle that relates to a disturbed proliferation cycle that is associated with uncontrolled Cdk5 activity.
Collapse
Affiliation(s)
- Julia Lindqvist
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Elin Torvaldson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Josef Gullmets
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520, Turku, Finland.,Department of Pathology, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Henok Karvonen
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, M5G 1X5, Canada
| | - Pekka Taimen
- Department of Pathology, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland .,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| |
Collapse
|
15
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
16
|
|
17
|
Skalli O. The cytoskeleton meets the skeleton. Focus on "Deficiency of the intermediate filament synemin reduces bone mass in vivo". Am J Physiol Cell Physiol 2016; 311:C837-C838. [PMID: 27784680 DOI: 10.1152/ajpcell.00303.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Omar Skalli
- Department of Life Sciences, The University of Memphis, Memphis, Tennessee
| |
Collapse
|
18
|
Gautel M, Djinović-Carugo K. The sarcomeric cytoskeleton: from molecules to motion. ACTA ACUST UNITED AC 2016; 219:135-45. [PMID: 26792323 DOI: 10.1242/jeb.124941] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Highly ordered organisation of striated muscle is the prerequisite for the fast and unidirectional development of force and motion during heart and skeletal muscle contraction. A group of proteins, summarised as the sarcomeric cytoskeleton, is essential for the ordered assembly of actin and myosin filaments into sarcomeres, by combining architectural, mechanical and signalling functions. This review discusses recent cell biological, biophysical and structural insight into the regulated assembly of sarcomeric cytoskeleton proteins and their roles in dissipating mechanical forces in order to maintain sarcomere integrity during passive extension and active contraction. α-Actinin crosslinks in the Z-disk show a pivot-and-rod structure that anchors both titin and actin filaments. In contrast, the myosin crosslinks formed by myomesin in the M-band are of a ball-and-spring type and may be crucial in providing stable yet elastic connections during active contractions, especially eccentric exercise.
Collapse
Affiliation(s)
- Mathias Gautel
- King's College London BHF Centre of Research Excellence, Randall Division for Cell and Molecular Biophysics, and Cardiovascular Division, New Hunt's House, London SE1 1UL, UK
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, Vienna A-1030, Austria Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, Ljubljana 1000, Slovenia
| |
Collapse
|
19
|
Parlakian A, Paulin D, Izmiryan A, Xue Z, Li Z. Intermediate filaments in peripheral nervous system: Their expression, dysfunction and diseases. Rev Neurol (Paris) 2016; 172:607-613. [DOI: 10.1016/j.neurol.2016.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/29/2016] [Indexed: 12/20/2022]
|
20
|
Moorer MC, Buo AM, Garcia-Pelagio KP, Stains JP, Bloch RJ. Deficiency of the intermediate filament synemin reduces bone mass in vivo. Am J Physiol Cell Physiol 2016; 311:C839-C845. [PMID: 27605453 DOI: 10.1152/ajpcell.00218.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/06/2016] [Indexed: 12/31/2022]
Abstract
While the type IV intermediate filament protein, synemin, has been shown to play a role in striated muscle and neuronal tissue, its presence and function have not been described in skeletal tissue. Here, we report that genetic ablation of synemin in 14-wk-old male mice results in osteopenia that includes a more than 2-fold reduction in the trabecular bone fraction in the distal femur and a reduction in the cross-sectional area at the femoral middiaphysis due to an attendant reduction in both the periosteal and endosteal perimeter. Analysis of serum markers of bone formation and static histomorphometry revealed a statistically significant defect in osteoblast activity and osteoblast number in vivo. Interestingly, primary osteoblasts isolated from synemin-null mice demonstrate markedly enhanced osteogenic capacity with a concomitant reduction in cyclin D1 mRNA expression, which may explain the loss of osteoblast number observed in vivo. In total, these data suggest an important, previously unknown role for synemin in bone physiology.
Collapse
Affiliation(s)
- Megan C Moorer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Atum M Buo
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Karla P Garcia-Pelagio
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
21
|
|
22
|
Perng MD, Huang YS, Quinlan RA. Purification of Protein Chaperones and Their Functional Assays with Intermediate Filaments. Methods Enzymol 2016; 569:155-75. [DOI: 10.1016/bs.mie.2015.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
García-Pelagio KP, Muriel J, O'Neill A, Desmond PF, Lovering RM, Lund L, Bond M, Bloch RJ. Myopathic changes in murine skeletal muscle lacking synemin. Am J Physiol Cell Physiol 2015; 308:C448-62. [PMID: 25567810 DOI: 10.1152/ajpcell.00331.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Diseases of striated muscle linked to intermediate filament (IF) proteins are associated with defects in the organization of the contractile apparatus and its links to costameres, which connect the sarcomeres to the cell membrane. Here we study the role in skeletal muscle of synemin, a type IV IF protein, by examining mice null for synemin (synm-null). Synm-null mice have a mild skeletal muscle phenotype. Tibialis anterior (TA) muscles show a significant decrease in mean fiber diameter, a decrease in twitch and tetanic force, and an increase in susceptibility to injury caused by lengthening contractions. Organization of proteins associated with the contractile apparatus and costameres is not significantly altered in the synm-null. Elastimetry of the sarcolemma and associated contractile apparatus in extensor digitorum longus myofibers reveals a reduction in tension consistent with an increase in sarcolemmal deformability. Although fatigue after repeated isometric contractions is more marked in TA muscles of synm-null mice, the ability of the mice to run uphill on a treadmill is similar to controls. Our results suggest that synemin contributes to linkage between costameres and the contractile apparatus and that the absence of synemin results in decreased fiber size and increased sarcolemmal deformability and susceptibility to injury. Thus synemin plays a moderate but distinct role in fast twitch skeletal muscle.
Collapse
Affiliation(s)
- Karla P García-Pelagio
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Joaquin Muriel
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Andrea O'Neill
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Patrick F Desmond
- Program in Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Richard M Lovering
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Linda Lund
- Merrick School of Business, University of Baltimore, Baltimore, Maryland; and
| | - Meredith Bond
- College of Sciences and Health Professions, Cleveland State University, Cleveland, Ohio
| | - Robert J Bloch
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland;
| |
Collapse
|