1
|
Nikitin S, Melnik E, Sharkova I, Murtazina A, Shchagina O, Zabnenkova V, Tsargush V, Dadali E, Kutsev S. Case Report: Exploring the clinical spectrum of LGMD R27: insights from a case study with homozygous pathogenic variant in the JAG2 gene. Front Pediatr 2024; 12:1414465. [PMID: 39649397 PMCID: PMC11620864 DOI: 10.3389/fped.2024.1414465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/06/2024] [Indexed: 12/10/2024] Open
Abstract
Limb-girdle muscular dystrophies (LGMD) constitute a heterogeneous group of genetic disorders characterized by progressive muscle weakness and atrophy, predominantly affecting the muscles of the pelvic and shoulder girdles. LGMD R27, linked to biallelic pathogenic variants in the JAG2 gene, was recently described, and to date, only 27 cases has been published in three reports. Here, we present two siblings exhibiting a severe clinical phenotype of LGMD R27, associated with a novel JAG2 homozygous frameshift variant [c.3467_3470dup, p.(Pro1158AlafsTer22)] results in truncated protein with 21 amino acid substitution within the cytoplasmic domain of the Jagged2 protein.
Collapse
Affiliation(s)
| | | | - Inna Sharkova
- Research Center for Medical Genetics, Moscow, Russia
| | | | | | | | | | - Elena Dadali
- Research Center for Medical Genetics, Moscow, Russia
| | - Sergey Kutsev
- Research Center for Medical Genetics, Moscow, Russia
| |
Collapse
|
2
|
Vargas‐Franco D, Kalra R, Draper I, Pacak CA, Asakura A, Kang PB. The Notch signaling pathway in skeletal muscle health and disease. Muscle Nerve 2022; 66:530-544. [PMID: 35968817 PMCID: PMC9804383 DOI: 10.1002/mus.27684] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 01/05/2023]
Abstract
The Notch signaling pathway is a key regulator of skeletal muscle development and regeneration. Over the past decade, the discoveries of three new muscle disease genes have added a new dimension to the relationship between the Notch signaling pathway and skeletal muscle: MEGF10, POGLUT1, and JAG2. We review the clinical syndromes associated with pathogenic variants in each of these genes, known molecular and cellular functions of their protein products with a particular focus on the Notch signaling pathway, and potential novel therapeutic targets that may emerge from further investigations of these diseases. The phenotypes associated with two of these genes, POGLUT1 and JAG2, clearly fall within the realm of muscular dystrophy, whereas the third, MEGF10, is associated with a congenital myopathy/muscular dystrophy overlap syndrome classically known as early-onset myopathy, areflexia, respiratory distress, and dysphagia. JAG2 is a canonical Notch ligand, POGLUT1 glycosylates the extracellular domain of Notch receptors, and MEGF10 interacts with the intracellular domain of NOTCH1. Additional genes and their encoded proteins relevant to muscle function and disease with links to the Notch signaling pathway include TRIM32, ATP2A1 (SERCA1), JAG1, PAX7, and NOTCH2NLC. There is enormous potential to identify convergent mechanisms of skeletal muscle disease and new therapeutic targets through further investigations of the Notch signaling pathway in the context of skeletal muscle development, maintenance, and disease.
Collapse
Affiliation(s)
| | - Raghav Kalra
- Division of Pediatric NeurologyUniversity of Florida College of MedicineGainesvilleFlorida
| | - Isabelle Draper
- Molecular Cardiology Research InstituteTufts Medical CenterBostonMassachusetts
| | - Christina A. Pacak
- Paul and Sheila Wellstone Muscular Dystrophy CenterUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota
| | - Atsushi Asakura
- Paul and Sheila Wellstone Muscular Dystrophy CenterUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota
| | - Peter B. Kang
- Paul and Sheila Wellstone Muscular Dystrophy CenterUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Institute for Translational NeuroscienceUniversity of Minnesota Medical SchoolMinneapolisMinnesota
| |
Collapse
|
3
|
Akil A, Gutiérrez-García AK, Guenter R, Rose JB, Beck AW, Chen H, Ren B. Notch Signaling in Vascular Endothelial Cells, Angiogenesis, and Tumor Progression: An Update and Prospective. Front Cell Dev Biol 2021; 9:642352. [PMID: 33681228 PMCID: PMC7928398 DOI: 10.3389/fcell.2021.642352] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
The Notch signaling pathway plays an essential role in a wide variety of biological processes including cell fate determination of vascular endothelial cells and the regulation of arterial differentiation and angiogenesis. The Notch pathway is also an essential regulator of tumor growth and survival by functioning as either an oncogene or a tumor suppressor in a context-dependent manner. Crosstalk between the Notch and other signaling pathways is also pivotal in tumor progression by promoting cancer cell growth, migration, invasion, metastasis, tumor angiogenesis, and the expansion of cancer stem cells (CSCs). In this review, we provide an overview and update of Notch signaling in endothelial cell fate determination and functioning, angiogenesis, and tumor progression, particularly in the development of CSCs and therapeutic resistance. We further summarize recent studies on how endothelial signaling crosstalk with the Notch pathway contributes to tumor angiogenesis and the development of CSCs, thereby providing insights into vascular biology within the tumor microenvironment and tumor progression.
Collapse
Affiliation(s)
- Abdellah Akil
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ana K. Gutiérrez-García
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rachael Guenter
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J. Bart Rose
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Adam W. Beck
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Herbert Chen
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bin Ren
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
4
|
Muscle development : a view from adult myogenesis in Drosophila. Semin Cell Dev Biol 2020; 104:39-50. [DOI: 10.1016/j.semcdb.2020.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
|
5
|
Koca Y, Housden BE, Gault WJ, Bray SJ, Mlodzik M. Notch signaling coordinates ommatidial rotation in the Drosophila eye via transcriptional regulation of the EGF-Receptor ligand Argos. Sci Rep 2019; 9:18628. [PMID: 31819141 PMCID: PMC6901570 DOI: 10.1038/s41598-019-55203-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/24/2019] [Indexed: 02/02/2023] Open
Abstract
In all metazoans, a small number of evolutionarily conserved signaling pathways are reiteratively used during development to orchestrate critical patterning and morphogenetic processes. Among these, Notch (N) signaling is essential for most aspects of tissue patterning where it mediates the communication between adjacent cells to control cell fate specification. In Drosophila, Notch signaling is required for several features of eye development, including the R3/R4 cell fate choice and R7 specification. Here we show that hypomorphic alleles of Notch, belonging to the Nfacet class, reveal a novel phenotype: while photoreceptor specification in the mutant ommatidia is largely normal, defects are observed in ommatidial rotation (OR), a planar cell polarity (PCP)-mediated cell motility process. We demonstrate that during OR Notch signaling is specifically required in the R4 photoreceptor to upregulate the transcription of argos (aos), an inhibitory ligand to the epidermal growth factor receptor (EGFR), to fine-tune the activity of EGFR signaling. Consistently, the loss-of-function defects of Nfacet alleles and EGFR-signaling pathway mutants are largely indistinguishable. A Notch-regulated aos enhancer confers R4 specific expression arguing that aos is directly regulated by Notch signaling in this context via Su(H)-Mam-dependent transcription.
Collapse
Affiliation(s)
- Yildiz Koca
- 0000 0001 0670 2351grid.59734.3cDept. of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ,0000 0001 0670 2351grid.59734.3cGraduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Benjamin E. Housden
- 0000000121885934grid.5335.0Dept. of Physiology, Development and Neuroscience, University of Cambridge Downing Street, Cambridge, CB2 3DY UK ,0000 0004 1936 8024grid.8391.3Present Address: Living Systems Institute, University of Exeter, Exeter, EX4 4QD UK
| | - William J. Gault
- 0000 0001 0670 2351grid.59734.3cDept. of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ,0000 0001 0670 2351grid.59734.3cGraduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ,0000 0001 2264 7145grid.254250.4Present Address: City College of New York, 160 Convert Ave, New York, NY USA
| | - Sarah J. Bray
- 0000000121885934grid.5335.0Dept. of Physiology, Development and Neuroscience, University of Cambridge Downing Street, Cambridge, CB2 3DY UK
| | - Marek Mlodzik
- 0000 0001 0670 2351grid.59734.3cDept. of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ,0000 0001 0670 2351grid.59734.3cGraduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| |
Collapse
|
6
|
Draper I, Saha M, Stonebreaker H, Salomon RN, Matin B, Kang PB. The impact of Megf10/Drpr gain-of-function on muscle development in Drosophila. FEBS Lett 2019; 593:680-696. [PMID: 30802937 DOI: 10.1002/1873-3468.13348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 11/07/2022]
Abstract
Recessive mutations in multiple epidermal growth factor-like domains 10 (MEGF10) underlie a rare congenital muscle disease known as MEGF10 myopathy. MEGF10 and its Drosophila homolog Draper (Drpr) are transmembrane receptors expressed in muscle and glia. Drpr deficiency is known to result in muscle abnormalities in flies. In the current study, flies that ubiquitously overexpress Drpr, or mouse Megf10, display developmental arrest. The phenotype is reproduced with overexpression in muscle, but not in other tissues, and with overexpression during intermediate stages of myogenesis, but not in myoblasts. We find that tubular muscle subtypes are particularly sensitive to Megf10/Drpr overexpression. Complementary genetic analyses show that Megf10/Drpr and Notch may interact to regulate myogenesis. Our findings provide a basis for investigating MEGF10 in muscle development using Drosophila.
Collapse
Affiliation(s)
- Isabelle Draper
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Madhurima Saha
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
| | | | - Robert N Salomon
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA
| | - Bahar Matin
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Peter B Kang
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Neurology, Boston Children's Hospital, MA, USA.,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Genetics Institute and Myology Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Antila CJM, Rraklli V, Blomster HA, Dahlström KM, Salminen TA, Holmberg J, Sistonen L, Sahlgren C. Sumoylation of Notch1 represses its target gene expression during cell stress. Cell Death Differ 2018; 25:600-615. [PMID: 29305585 PMCID: PMC5864205 DOI: 10.1038/s41418-017-0002-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
The Notch signaling pathway is a key regulator of stem cells during development, and its deregulated activity is linked to developmental defects and cancer. Transcriptional activation of Notch target genes requires cleavage of the Notch receptor in response to ligand binding, production of the Notch intracellular domain (NICD1), NICD1 migration into the nucleus, and assembly of a transcriptional complex. Post-translational modifications of Notch regulate its trafficking, turnover, and transcriptional activity. Here, we show that NICD1 is modified by small ubiquitin-like modifier (SUMO) in a stress-inducible manner. Sumoylation occurs in the nucleus where NICD1 is sumoylated in the RBPJ-associated molecule (RAM) domain. Although stress and sumoylation enhance nuclear localization of NICD1, its transcriptional activity is attenuated. Molecular modeling indicates that sumoylation can occur within the DNA-bound ternary transcriptional complex, consisting of NICD1, the transcription factor Suppressor of Hairless (CSL), and the co-activator Mastermind-like (MAML) without its disruption. Mechanistically, sumoylation of NICD1 facilitates the recruitment of histone deacetylase 4 (HDAC4) to the Notch transcriptional complex to suppress Notch target gene expression. Stress-induced sumoylation decreases the NICD1-mediated induction of Notch target genes, which was abrogated by expressing a sumoylation-defected mutant in cells and in the developing central nervous system of the chick in vivo. Our findings of the stress-inducible sumoylation of NICD1 reveal a novel context-dependent regulatory mechanism of Notch target gene expression.
Collapse
Affiliation(s)
- Christian J M Antila
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.,Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Vilma Rraklli
- Department of Cell and Molecular Biology, Karolinska Institutet, 285 SE-171 77, Stockholm, Sweden
| | - Henri A Blomster
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.,Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Käthe M Dahlström
- Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Tiina A Salminen
- Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Johan Holmberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 285 SE-171 77, Stockholm, Sweden
| | - Lea Sistonen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.,Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Cecilia Sahlgren
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland. .,Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland. .,Department of Biomedical Engineering, Technical University of Eindhoven, 5613 DR, Eindhoven, The Netherlands.
| |
Collapse
|
8
|
Salazar JL, Yamamoto S. Integration of Drosophila and Human Genetics to Understand Notch Signaling Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:141-185. [PMID: 30030826 PMCID: PMC6233323 DOI: 10.1007/978-3-319-89512-3_8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling research dates back to more than one hundred years, beginning with the identification of the Notch mutant in the fruit fly Drosophila melanogaster. Since then, research on Notch and related genes in flies has laid the foundation of what we now know as the Notch signaling pathway. In the 1990s, basic biological and biochemical studies of Notch signaling components in mammalian systems, as well as identification of rare mutations in Notch signaling pathway genes in human patients with rare Mendelian diseases or cancer, increased the significance of this pathway in human biology and medicine. In the 21st century, Drosophila and other genetic model organisms continue to play a leading role in understanding basic Notch biology. Furthermore, these model organisms can be used in a translational manner to study underlying mechanisms of Notch-related human diseases and to investigate the function of novel disease associated genes and variants. In this chapter, we first briefly review the major contributions of Drosophila to Notch signaling research, discussing the similarities and differences between the fly and human pathways. Next, we introduce several biological contexts in Drosophila in which Notch signaling has been extensively characterized. Finally, we discuss a number of genetic diseases caused by mutations in genes in the Notch signaling pathway in humans and we expand on how Drosophila can be used to study rare genetic variants associated with these and novel disorders. By combining modern genomics and state-of-the art technologies, Drosophila research is continuing to reveal exciting biology that sheds light onto mechanisms of disease.
Collapse
Affiliation(s)
- Jose L Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA.
- Program in Developmental Biology, BCM, Houston, TX, USA.
- Department of Neuroscience, BCM, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
9
|
Pramanik KK, Singh AK, Alam M, Kashyap T, Mishra P, Panda AK, Dey RK, Rana A, Nagini S, Mishra R. Reversion-inducing cysteine-rich protein with Kazal motifs and its regulation by glycogen synthase kinase 3 signaling in oral cancer. Tumour Biol 2016; 37:15253-15264. [PMID: 27696293 DOI: 10.1007/s13277-016-5362-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/07/2016] [Indexed: 12/19/2022] Open
Abstract
The reversion-inducing cysteine-rich protein with Kazal motifs (RECK) and glycogen synthase kinase (GSK3) are novel tumor suppressors, and emerging evidence has suggested their active role in oral cancer pathogenesis. In the present study, 112 human samples, including 55 fresh samples of 14 adjacent normal tissues, 25 noninvasive oral tumors, and 18 invasive tumors, were included. The messenger RNA (mRNA) expression, protein expression, and promoter methylation of the RECK gene, as well as the expression of GSK3β, phospho/total β-catenin, and c-myc, were measured by RT-PCR, bisulphate modification-PCR, immunohistochemistry, and Western blot analysis. Additionally, ectopic expression of in/active GSK3β was performed in cell culture experiments. This study provided information on the progressive silencing of RECK gene expression at the protein and mRNA levels paralleled with promoter hypermethylation at various stages of oral tumor invasion. RECK expression and the hypermethylation of the RECK gene promoter were negatively and positively correlated with pS9GSK3β/c-myc expression, respectively. Further, a negative trend of RECK protein expression with nuclear β-catenin expression was observed. Induced expression of active GSK3β reversed the RECK silencing in SCC9 cells. Collectively, our results demonstrated that the silencing of the RECK gene, possibly regulated by the GSK3β pathway, is an important event in oral cancer invasion and this pathway could be exploited for therapeutic interventions.
Collapse
Affiliation(s)
- Kamdeo K Pramanik
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, Jharkhand, 835205, India
| | - Abhay K Singh
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, Jharkhand, 835205, India
| | - Manzar Alam
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, Jharkhand, 835205, India
| | - Tanushree Kashyap
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, Jharkhand, 835205, India
| | - Prajna Mishra
- Centre for Applied Chemistry, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, Jharkhand, 835205, India
| | - Aditya K Panda
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, Jharkhand, 835205, India
| | - Ratan K Dey
- Centre for Applied Chemistry, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, Jharkhand, 835205, India
| | - Ajay Rana
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The University of Illinois at Chicago, 840 S. Wood Street, Suite 601 Clinical Sciences Building, MC 958, Chicago, IL, 60612, USA
| | - Siddavaram Nagini
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, 608 002, India
| | - Rajakishore Mishra
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, Jharkhand, 835205, India.
| |
Collapse
|
10
|
Li XY, Zhai WJ, Teng CB. Notch Signaling in Pancreatic Development. Int J Mol Sci 2015; 17:ijms17010048. [PMID: 26729103 PMCID: PMC4730293 DOI: 10.3390/ijms17010048] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 12/12/2022] Open
Abstract
The Notch signaling pathway plays a significant role in embryonic cell fate determination and adult tissue homeostasis. Various studies have demonstrated the deep involvement of Notch signaling in the development of the pancreas and the lateral inhibition of Notch signaling in pancreatic progenitor differentiation and maintenance. The targeted inactivation of the Notch pathway components promotes premature differentiation of the endocrine pancreas. However, there is still the contrary opinion that Notch signaling specifies the endocrine lineage. Here, we review the current knowledge of the Notch signaling pathway in pancreatic development and its crosstalk with the Wingless and INT-1 (Wnt) and fibroblast growth factor (FGF) pathways.
Collapse
Affiliation(s)
- Xu-Yan Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| | - Wen-Jun Zhai
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Chun-Bo Teng
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
11
|
Pézeron G, Millen K, Boukhatmi H, Bray S. Notch directly regulates the cell morphogenesis genes Reck, talin and trio in adult muscle progenitors. Development 2014. [DOI: 10.1242/dev.118893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|