1
|
Kurian SM, Lichius A, Read ND. Ca2+ Signalling Differentially Regulates Germ-Tube Formation and Cell Fusion in Fusarium oxysporum. J Fungi (Basel) 2022; 8:jof8010090. [PMID: 35050029 PMCID: PMC8780837 DOI: 10.3390/jof8010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
Fusarium oxysporum is an important plant pathogen and an emerging opportunistic human pathogen. Germination of conidial spores and their fusion via conidial anastomosis tubes (CATs) are significant events during colony establishment in culture and on host plants and, hence, very likely on human epithelia. CAT fusion exhibited by conidial germlings of Fusarium species has been postulated to facilitate mitotic recombination, leading to heterokaryon formation and strains with varied genotypes and potentially increased virulence. Ca2+ signalling is key to many of the important physiological processes in filamentous fungi. Here, we tested pharmacological agents with defined modes of action in modulation of the mammalian Ca2+ signalling machinery for their effect on germination and CAT-mediated cell fusion in F. oxysporum. We found various drug-specific and dose-dependent effects. Inhibition of calcineurin by FK506 or cyclosporin A, as well as chelation of extracellular Ca2+ by BAPTA, exclusively inhibit CAT induction but not germ-tube formation. On the other hand, inhibition of Ca2+ channels by verapamil, calmodulin inhibition by calmidazolium, and inhibition of mitochondrial calcium uniporters by RU360 inhibited both CAT induction and germ-tube formation. Thapsigargin, an inhibitor of mammalian sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), partially inhibited CAT induction but had no effect on germ-tube formation. These results provide initial evidence for morphologically defining roles of Ca2+-signalling components in the early developmental stages of F. oxysporum colony establishment—most notably, the indication that calcium ions act as self-signalling molecules in this process. Our findings contribute an important first step towards the identification of Ca2+ inhibitors with fungas-specific effects that could be exploited for the treatment of infected plants and humans.
Collapse
Affiliation(s)
- Smija M. Kurian
- Manchester Fungal Infection Group, University of Manchester, Manchester M13 9NT, UK;
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
- Correspondence:
| | - Alexander Lichius
- Department of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Nick D. Read
- Manchester Fungal Infection Group, University of Manchester, Manchester M13 9NT, UK;
| |
Collapse
|
2
|
Wang LY, Zhang YF, Yang DY, Zhang SJ, Han DD, Luo YP. Aureoverticillactam, a Potent Antifungal Macrocyclic Lactam from Streptomyces aureoverticillatus HN6, Generates Calcium Dyshomeostasis-Induced Cell Apoptosis via the Phospholipase C Pathway in Fusarium oxysporum f. sp. cubense Race 4. PHYTOPATHOLOGY 2021; 111:2010-2022. [PMID: 33900117 DOI: 10.1094/phyto-12-20-0543-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Extensive efforts have been made to discover new biofungicides of high efficiency for control of Fusarium oxysporum f. sp. cubense race 4, a catastrophic soilborne phytopathogen causing banana Fusarium wilt worldwide. We confirmed for the first time that aureoverticillactam (YY3) has potent antifungal activity against F. oxysporum f. sp. cubense race 4, with effective dose for 50% inhibition (EC50) of 20.80 μg/ml against hyphal growth and 12.62 μg/ml against spore germination. To investigate its mechanism of action, we observed the cellular ultrastructures of F. oxysporum f. sp. cubense race 4 with YY3 treatment and found that YY3 led to cell wall thinning, mitochondrial deformities, apoptotic degradation of the subcellular fractions, and entocyte leakage. Consistent with these variations, increased permeability of cell membrane and mitochondrial membrane also occurred after YY3 treatment. On the enzymatic level, the activity of mitochondrial complex III, as well as the ATP synthase, was significantly suppressed by YY3 at a concentration >12.50 μg/ml. Moreover, YY3 elevated the cytosolic Ca2+ level to promote mitochondrial reactive oxygen species (ROS) production. Cell apoptosis also occurred as expected. On the transcriptome level, key genes involved in the phosphatidylinositol signaling pathway were significantly affected, with the expression level of Plc1 increased approximately fourfold. The expression levels of two apoptotic genes, casA1 and casA2, were also significantly increased by YY3. Of note, phospholipase C activation was observed with YY3 treatment in F. oxysporum f. sp. cubense race 4. These findings indicate that YY3 exerts its antifungal activity by activating the phospholipase C calcium-dependent ROS signaling pathway, which makes it a promising biofungicide.
Collapse
Affiliation(s)
- Lan-Ying Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Yun-Fei Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - De-You Yang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Shu-Jing Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Dan-Dan Han
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Yan-Ping Luo
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Ayala-Usma DA, Danies G, Myers K, Bond MO, Romero-Navarro JA, Judelson HS, Restrepo S, Fry WE. Genome-Wide Association Study Identifies Single Nucleotide Polymorphism Markers Associated with Mycelial Growth (at 15, 20, and 25°C), Mefenoxam Resistance, and Mating Type in Phytophthora infestans. PHYTOPATHOLOGY 2020; 110:822-833. [PMID: 31829117 DOI: 10.1094/phyto-06-19-0206-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phenotypic diversity among individuals defines the potential for evolutionary selection in a species. Phytophthora infestans epidemics are generally thought to be favored by moderate to low temperatures, but temperatures in many locations worldwide are expected to rise as a result of global climate change. Thus, we investigated variation among individuals of P. infestans for relative growth at different temperatures. Isolates of P. infestans came from three collections: (i) individual genotypes recently dominant in the United States, (ii) recently collected individuals from Central Mexico, and (iii) progeny of a recent sexual recombination event in the northeastern United States. In general, these isolates had optimal mycelial growth rates at 15 or 20°C. However, two individuals from Central Mexico grew better at higher temperatures than did most others and two individuals grew relatively less at higher temperatures than did most others. The isolates were also assessed for mefenoxam sensitivity and mating type. Each collection contained individuals of diverse sensitivities to mefenoxam and individuals of the A1 and A2 mating type. We then searched for genomic regions associated with phenotypic diversity using genotyping-by-sequencing. We found one single nucleotide polymorphism (SNP) associated with variability in mycelial growth at 20°C, two associated with variability in mycelial growth at 25°C, two associated with sensitivity to mefenoxam, and one associated with mating type. Interestingly, the SNPs associated with mefenoxam sensitivity were found in a gene-sparse region, whereas the SNPs associated with growth at the two temperatures and mating type were found both at more gene-dense regions.
Collapse
Affiliation(s)
- D A Ayala-Usma
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogotá, Colombia
| | - G Danies
- Department of Design, Universidad de los Andes, Bogotá, Colombia
| | - K Myers
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - M O Bond
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
- Department of Botany, University of Hawaii, Mānoa, HI, U.S.A
| | - J A Romero-Navarro
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - H S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, U.S.A
| | - S Restrepo
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - W E Fry
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| |
Collapse
|
4
|
Iyer KR, Whitesell L, Porco JA, Henkel T, Brown LE, Robbins N, Cowen LE. Translation Inhibition by Rocaglates Activates a Species-Specific Cell Death Program in the Emerging Fungal Pathogen Candida auris. mBio 2020; 11:e03329-19. [PMID: 32156828 PMCID: PMC7064782 DOI: 10.1128/mbio.03329-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/24/2020] [Indexed: 11/20/2022] Open
Abstract
Fungal infections are a major contributor to infectious disease-related deaths worldwide. Recently, global emergence of the fungal pathogen Candida auris has caused considerable concern because most C. auris isolates are resistant to fluconazole, the most commonly administered antifungal, and some isolates are resistant to drugs from all three major antifungal classes. To identify novel agents with bioactivity against C. auris, we screened 2,454 compounds from a diversity-oriented synthesis collection. Of the five hits identified, most shared a common rocaglate core structure and displayed fungicidal activity against C. auris These rocaglate hits inhibited translation in C. auris but not in its pathogenic relative Candida albicans Species specificity was contingent on variation at a single amino acid residue in Tif1, a fungal member of the eukaryotic initiation factor 4A (eIF4A) family of translation initiation factors known to be targeted by rocaglates. Rocaglate-mediated inhibition of translation in C. auris activated a cell death program characterized by loss of mitochondrial membrane potential, increased caspase-like activity, and disrupted vacuolar homeostasis. In a rocaglate-sensitized C. albicans mutant engineered to express translation initiation factor 1 (Tif1) with the variant amino acid that we had identified in C. auris, translation was inhibited but no programmed cell death phenotypes were observed. This surprising finding suggests divergence between these related fungal pathogens in their pathways of cellular responses to translation inhibition. From a therapeutic perspective, the chemical biology that we have uncovered reveals species-specific vulnerability in C. auris and identifies a promising target for development of new, mechanistically distinct antifungals in the battle against this emerging pathogen.IMPORTANCE Emergence of the fungal pathogen Candida auris has ignited intrigue and alarm within the medical community and the public at large. This pathogen is unusually resistant to antifungals, threatening to overwhelm current management options. By screening a library of structurally diverse molecules, we found that C. auris is surprisingly sensitive to translation inhibition by a class of compounds known as rocaglates (also known as flavaglines). Despite the high level of conservation across fungi in their protein synthesis machinery, these compounds inhibited translation initiation and activated a cell death program in C. auris but not in its relative Candida albicans Our findings highlight a surprising divergence across the cell death programs operating in Candida species and underscore the need to understand the specific biology of a pathogen in attempting to develop more-effective treatments against it.
Collapse
Affiliation(s)
- Kali R Iyer
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - John A Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, USA
| | | | - Lauren E Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, USA
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Lange M, Peiter E. Calcium Transport Proteins in Fungi: The Phylogenetic Diversity of Their Relevance for Growth, Virulence, and Stress Resistance. Front Microbiol 2020; 10:3100. [PMID: 32047484 PMCID: PMC6997533 DOI: 10.3389/fmicb.2019.03100] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022] Open
Abstract
The key players of calcium (Ca2+) homeostasis and Ca2+ signal generation, which are Ca2+ channels, Ca2+/H+ antiporters, and Ca2+-ATPases, are present in all fungi. Their coordinated action maintains a low Ca2+ baseline, allows a fast increase in free Ca2+ concentration upon a stimulus, and terminates this Ca2+ elevation by an exponential decrease – hence forming a Ca2+ signal. In this respect, the Ca2+ signaling machinery is conserved in different fungi. However, does the similarity of the genetic inventory that shapes the Ca2+ peak imply that if “you’ve seen one, you’ve seen them all” in terms of physiological relevance? Individual studies have focused mostly on a single species, and mechanisms elucidated in few model organisms are usually extrapolated to other species. This mini-review focuses on the physiological relevance of the machinery that maintains Ca2+ homeostasis for growth, virulence, and stress responses. It reveals common and divergent functions of homologous proteins in different fungal species. In conclusion, for the physiological role of these Ca2+ transport proteins, “seen one,” in many cases, does not mean: “seen them all.”
Collapse
Affiliation(s)
- Mario Lange
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
6
|
Gonçalves AP, McCluskey K, Glass NL, Videira A. The Fungal Cell Death Regulator czt-1 Is Allelic to acr-3. J Fungi (Basel) 2019; 5:jof5040114. [PMID: 31817728 PMCID: PMC6958467 DOI: 10.3390/jof5040114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 01/24/2023] Open
Abstract
Fungal infections have far-reaching implications that range from severe human disease to a panoply of disruptive agricultural and ecological effects, making it imperative to identify and understand the molecular pathways governing the response to antifungal compounds. In this context, CZT-1 (cell death-activated zinc cluster transcription factor) functions as a master regulator of cell death and drug susceptibility in Neurospora crassa. Here we provide evidence indicating that czt-1 is allelic to acr-3, a previously described locus that we now found to harbor a point mutation in its coding sequence. This nonsynonymous amino acid substitution in a low complexity region of CZT-1/ACR-3 caused a robust gain-of-function that led to reduced sensitivity to acriflavine and staurosporine, and increased expression of the drug efflux pump abc-3. Thus, accumulating evidence shows that CZT-1 is an important broad regulator of the cellular response to various antifungal compounds that appear to share common molecular targets.
Collapse
Affiliation(s)
- A. Pedro Gonçalves
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Correspondence:
| | - Kevin McCluskey
- Fungal Genetics Stock Center, Department of Plant Pathology, Kansas State University, 4024 Throckmorton Plant Sciences Center, Manhattan, KS 66506, USA
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Arnaldo Videira
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- i3S—Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| |
Collapse
|
7
|
Simaan H, Shalaby S, Hatoel M, Karinski O, Goldshmidt-Tran O, Horwitz BA. The AP-1-like transcription factor ChAP1 balances tolerance and cell death in the response of the maize pathogen Cochliobolus heterostrophus to a plant phenolic. Curr Genet 2019; 66:187-203. [PMID: 31312934 DOI: 10.1007/s00294-019-01012-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/23/2019] [Accepted: 07/01/2019] [Indexed: 01/01/2023]
Abstract
Fungal pathogens need to contend with stresses including oxidants and antimicrobial chemicals resulting from host defenses. ChAP1 of Cochliobolus heterostrophus, agent of Southern corn leaf blight, encodes an ortholog of yeast YAP1. ChAP1 is retained in the nucleus in response to plant-derived phenolic acids, in addition to its well-studied activation by oxidants. Here, we used transcriptome profiling to ask which genes are regulated in response to ChAP1 activation by ferulic acid (FA), a phenolic abundant in the maize host. Nuclearization of ChAP1 in response to phenolics is not followed by strong expression of genes needed for oxidative stress tolerance. We, therefore, compared the transcriptomes of the wild-type pathogen and a ChAP1 deletion mutant, to study the function of ChAP1 in response to FA. We hypothesized that if ChAP1 is retained in the nucleus under plant-related stress conditions yet in the absence of obvious oxidant stress, it should have additional regulatory functions. The transcriptional signature in response to FA in the wild type compared to the mutant sheds light on the signaling mechanisms and response pathways by which ChAP1 can mediate tolerance to ferulic acid, distinct from its previously known role in the antioxidant response. The ChAP1-dependent FA regulon consists mainly of two large clusters. The enrichment of transport and metabolism-related genes in cluster 1 indicates that C. heterostrophus degrades FA and removes it from the cell. When this fails at increasing stress levels, FA provides a signal for cell death, indicated by the enrichment of cell death-related genes in cluster 2. By quantitation of survival and by TUNEL assays, we show that ChAP1 promotes survival and mitigates cell death. Growth rate data show a time window in which the mutant colony expands faster than the wild type. The results delineate a transcriptional regulatory pattern in which ChAP1 helps balance a survival response for tolerance to FA, against a pathway promoting cell death in the pathogen. A general model for the transition from a phase where the return to homeostasis dominates to a phase leading to the onset of cell death provides a context for understanding these findings.
Collapse
Affiliation(s)
- Hiba Simaan
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Samer Shalaby
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.,Rockefeller University, New York, NY, 10065, USA
| | - Maor Hatoel
- Technion Genome Center, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Olga Karinski
- Technion Genome Center, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Orit Goldshmidt-Tran
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Benjamin A Horwitz
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
8
|
Gonçalves AP, Heller J, Daskalov A, Videira A, Glass NL. Regulated Forms of Cell Death in Fungi. Front Microbiol 2017; 8:1837. [PMID: 28983298 PMCID: PMC5613156 DOI: 10.3389/fmicb.2017.01837] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022] Open
Abstract
Cell death occurs in all domains of life. While some cells die in an uncontrolled way due to exposure to external cues, other cells die in a regulated manner as part of a genetically encoded developmental program. Like other eukaryotic species, fungi undergo programmed cell death (PCD) in response to various triggers. For example, exposure to external stress conditions can activate PCD pathways in fungi. Calcium redistribution between the extracellular space, the cytoplasm and intracellular storage organelles appears to be pivotal for this kind of cell death. PCD is also part of the fungal life cycle, in which it occurs during sexual and asexual reproduction, aging, and as part of development associated with infection in phytopathogenic fungi. Additionally, a fungal non-self-recognition mechanism termed heterokaryon incompatibility (HI) also involves PCD. Some of the molecular players mediating PCD during HI show remarkable similarities to major constituents involved in innate immunity in metazoans and plants. In this review we discuss recent research on fungal PCD mechanisms in comparison to more characterized mechanisms in metazoans. We highlight the role of PCD in fungi in response to exogenic compounds, fungal development and non-self-recognition processes and discuss identified intracellular signaling pathways and molecules that regulate fungal PCD.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Jens Heller
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Asen Daskalov
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Arnaldo Videira
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do PortoPorto, Portugal.,I3S - Instituto de Investigação e Inovação em SaúdePorto, Portugal
| | - N Louise Glass
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| |
Collapse
|
9
|
Lange M, Peiter E. Cytosolic free calcium dynamics as related to hyphal and colony growth in the filamentous fungal pathogen Colletotrichum graminicola. Fungal Genet Biol 2016; 91:55-65. [PMID: 27063059 DOI: 10.1016/j.fgb.2016.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 01/23/2023]
Abstract
Tip growth of pollen tubes and root hairs of plants is oscillatory and orchestrated by tip-focussed variations of cytosolic free calcium ([Ca(2+)]cyt). Hyphae of filamentous fungi are also tubular tip-growing cells, and components of the Ca(2+) signalling machinery, such as Ca(2+) channels and Ca(2+) sensors, are known to be important for fungal growth. In this study, we addressed the questions if tip-focussed [Ca(2+)]cyt transients govern hyphal and whole-colony growth in the maize pathogen Colletotrichum graminicola, and whether colony-wide [Ca(2+)]cyt dynamics rely on external Ca(2+) or internal Ca(2+) stores. Ratiometric fluorescence microscopy of individual hyphae expressing the Ca(2+) reporter Yellow Cameleon 3.6 revealed that Ca(2+) spikes in hyphal tips precede the re-initiation of growth after wounding. Tip-focussed [Ca(2+)]cyt spikes were also observed in undisturbed growing hyphae. They occurred not regularly and at a higher rate in hyphae growing at a medium-glass interface than in those growing on an agar surface. Hyphal tip growth was non-pulsatile, and growth speed was not correlated with the rate of spike occurrence. A possible relationship of [Ca(2+)]cyt spike generation and growth of whole colonies was assessed by using a codon-optimized version of the luminescent Ca(2+) reporter Aequorin. Depletion of extracellular free Ca(2+) abolished [Ca(2+)]cyt spikes nearly completely, but had only a modest effect on colony growth. In a pharmacological survey, some inhibitors targeting Ca(2+) influx or release from internal stores repressed growth strongly. However, although some of those inhibitors also affected [Ca(2+)]cyt spike generation, the effects on both parameters were not correlated. Collectively, the results indicate that tip growth of C. graminicola is non-pulsatile and not mechanistically linked to tip-focused or global [Ca(2+)]cyt spikes, which are likely a response to micro-environmental parameters, such as the physical properties of the growth surface.
Collapse
Affiliation(s)
- Mario Lange
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany.
| |
Collapse
|
10
|
Involvement of mitochondrial proteins in calcium signaling and cell death induced by staurosporine in Neurospora crassa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1064-74. [DOI: 10.1016/j.bbabio.2015.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 04/23/2015] [Accepted: 05/15/2015] [Indexed: 12/20/2022]
|
11
|
Muñoz A, Bertuzzi M, Bettgenhaeuser J, Iakobachvili N, Bignell EM, Read ND. Different Stress-Induced Calcium Signatures Are Reported by Aequorin-Mediated Calcium Measurements in Living Cells of Aspergillus fumigatus. PLoS One 2015; 10:e0138008. [PMID: 26402916 PMCID: PMC4581630 DOI: 10.1371/journal.pone.0138008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/24/2015] [Indexed: 11/18/2022] Open
Abstract
Aspergillus fumigatus is an inhaled fungal pathogen of human lungs, the developmental growth of which is reliant upon Ca2+-mediated signalling. Ca2+ signalling has regulatory significance in all eukaryotic cells but how A. fumigatus uses intracellular Ca2+ signals to respond to stresses imposed by the mammalian lung is poorly understood. In this work, A. fumigatus strains derived from the clinical isolate CEA10, and a non-homologous recombination mutant ΔakuBKU80, were engineered to express the bioluminescent Ca2+-reporter aequorin. An aequorin-mediated method for routine Ca2+ measurements during the early stages of colony initiation was successfully developed and dynamic changes in cytosolic free calcium ([Ca2+]c) in response to extracellular stimuli were measured. The response to extracellular challenges (hypo- and hyper-osmotic shock, mechanical perturbation, high extracellular Ca2+, oxidative stress or exposure to human serum) that the fungus might be exposed to during infection, were analysed in living conidial germlings. The 'signatures' of the transient [Ca2+]c responses to extracellular stimuli were found to be dose- and age-dependent. Moreover, Ca2+-signatures associated with each physico-chemical treatment were found to be unique, suggesting the involvement of heterogeneous combinations of Ca2+-signalling components in each stress response. Concordant with the involvement of Ca2+-calmodulin complexes in these Ca2+-mediated responses, the calmodulin inhibitor trifluoperazine (TFP) induced changes in the Ca2+-signatures to all the challenges. The Ca2+-chelator BAPTA potently inhibited the initial responses to most stressors in accordance with a critical role for extracellular Ca2+ in initiating the stress responses.
Collapse
Affiliation(s)
- Alberto Muñoz
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Margherita Bertuzzi
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, United Kingdom
| | - Jan Bettgenhaeuser
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Nino Iakobachvili
- Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, United Kingdom
| | - Elaine M. Bignell
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail: (NDR); (EMB)
| | - Nick D. Read
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (NDR); (EMB)
| |
Collapse
|
12
|
Rigamonti M, Groppi S, Belotti F, Ambrosini R, Filippi G, Martegani E, Tisi R. Hypotonic stress-induced calcium signaling in Saccharomyces cerevisiae involves TRP-like transporters on the endoplasmic reticulum membrane. Cell Calcium 2015; 57:57-68. [DOI: 10.1016/j.ceca.2014.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 11/28/2022]
|
13
|
Gonçalves AP, Monteiro J, Lucchi C, Kowbel DJ, Cordeiro JM, Correia-de-Sá P, Rigden DJ, Glass NL, Videira A. Extracellular calcium triggers unique transcriptional programs and modulates staurosporine-induced cell death in Neurospora crassa. MICROBIAL CELL 2014; 1:289-302. [PMID: 28357255 PMCID: PMC5349132 DOI: 10.15698/mic2014.09.165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alterations in the intracellular levels of calcium are a common response to cell death stimuli in animals and fungi and, particularly, in the Neurospora crassa response to staurosporine. We highlight the importance of the extracellular availability of Ca2+ for this response. Limitation of the ion in the culture medium further sensitizes cells to the drug and results in increased accumulation of reactive oxygen species (ROS). Conversely, an approximately 30-fold excess of external Ca2+ leads to increased drug tolerance and lower ROS generation. In line with this, distinct staurosporine-induced cytosolic Ca2+ signaling profiles were observed in the absence or presence of excessive external Ca2+. High-throughput RNA sequencing revealed that different concentrations of extracellular Ca2+ define distinct transcriptional programs. Our transcriptional profiling also pointed to two putative novel Ca2+-binding proteins, encoded by the NCU08524 and NCU06607 genes, and provides a reference dataset for future investigations on the role of Ca2+ in fungal biology.
Collapse
Affiliation(s)
- A P Gonçalves
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal. ; IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - João Monteiro
- IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Chiara Lucchi
- IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - David J Kowbel
- Plant and Microbial Biology Department, The University of California, Berkeley, CA 94720, USA
| | - J M Cordeiro
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal. ; UMIB-Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paulo Correia-de-Sá
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal. ; UMIB-Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Daniel J Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - N L Glass
- Plant and Microbial Biology Department, The University of California, Berkeley, CA 94720, USA
| | - Arnaldo Videira
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal. ; IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| |
Collapse
|