1
|
Hanusrichterova J, Mokry J, Al-Saiedy MR, Koetzler R, Amrein MW, Green FHY, Calkovska A. Factors influencing airway smooth muscle tone: a comprehensive review with a special emphasis on pulmonary surfactant. Am J Physiol Cell Physiol 2024; 327:C798-C816. [PMID: 39099420 DOI: 10.1152/ajpcell.00337.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
A thin film of pulmonary surfactant lines the surface of the airways and alveoli, where it lowers the surface tension in the peripheral lungs, preventing collapse of the bronchioles and alveoli and reducing the work of breathing. It also possesses a barrier function for maintaining the blood-gas interface of the lungs and plays an important role in innate immunity. The surfactant film covers the epithelium lining both large and small airways, forming the first line of defense between toxic airborne particles/pathogens and the lungs. Furthermore, surfactant has been shown to relax airway smooth muscle (ASM) after exposure to ASM agonists, suggesting a more subtle function. Whether surfactant masks irritant sensory receptors or interacts with one of them is not known. The relaxant effect of surfactant on ASM is absent in bronchial tissues denuded of an epithelial layer. Blocking of prostanoid synthesis inhibits the relaxant function of surfactant, indicating that prostanoids might be involved. Another possibility for surfactant to be active, namely through ATP-dependent potassium channels and the cAMP-regulated epithelial chloride channels [cystic fibrosis transmembrane conductance regulators (CFTRs)], was tested but could not be confirmed. Hence, this review discusses the mechanisms of known and potential relaxant effects of pulmonary surfactant on ASM. This review summarizes what is known about the role of surfactant in smooth muscle physiology and explores the scientific questions and studies needed to fully understand how surfactant helps maintain the delicate balance between relaxant and constrictor needs.
Collapse
Affiliation(s)
- Juliana Hanusrichterova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Mustafa R Al-Saiedy
- Department of Internal Medicine, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rommy Koetzler
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Matthias W Amrein
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Francis H Y Green
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrea Calkovska
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
2
|
Biton T, Scher N, Carmon S, Elbaz-Alon Y, Schejter ED, Shilo BZ, Avinoam O. Fusion pore dynamics of large secretory vesicles define a distinct mechanism of exocytosis. J Cell Biol 2023; 222:e202302112. [PMID: 37707500 PMCID: PMC10501449 DOI: 10.1083/jcb.202302112] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/06/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
Exocrine cells utilize large secretory vesicles (LSVs) up to 10 μm in diameter. LSVs fuse with the apical surface, often recruiting actomyosin to extrude their content through dynamic fusion pores. The molecular mechanism regulating pore dynamics remains largely uncharacterized. We observe that the fusion pores of LSVs in the Drosophila larval salivary glands expand, stabilize, and constrict. Arp2/3 is essential for pore expansion and stabilization, while myosin II is essential for pore constriction. We identify several Bin-Amphiphysin-Rvs (BAR) homology domain proteins that regulate fusion pore expansion and stabilization. We show that the I-BAR protein Missing-in-Metastasis (MIM) localizes to the fusion site and is essential for pore expansion and stabilization. The MIM I-BAR domain is essential but not sufficient for localization and function. We conclude that MIM acts in concert with actin, myosin II, and additional BAR-domain proteins to control fusion pore dynamics, mediating a distinct mode of exocytosis, which facilitates actomyosin-dependent content release that maintains apical membrane homeostasis during secretion.
Collapse
Affiliation(s)
- Tom Biton
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Scher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shari Carmon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Elbaz-Alon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal D. Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Avinoam
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
3
|
Dietl P, Frick M. Channels and Transporters of the Pulmonary Lamellar Body in Health and Disease. Cells 2021; 11:45. [PMID: 35011607 PMCID: PMC8750383 DOI: 10.3390/cells11010045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
The lamellar body (LB) of the alveolar type II (ATII) cell is a lysosome-related organelle (LRO) that contains surfactant, a complex mix of mainly lipids and specific surfactant proteins. The major function of surfactant in the lung is the reduction of surface tension and stabilization of alveoli during respiration. Its lack or deficiency may cause various forms of respiratory distress syndrome (RDS). Surfactant is also part of the innate immune system in the lung, defending the organism against air-borne pathogens. The limiting (organelle) membrane that encloses the LB contains various transporters that are in part responsible for translocating lipids and other organic material into the LB. On the other hand, this membrane contains ion transporters and channels that maintain a specific internal ion composition including the acidic pH of about 5. Furthermore, P2X4 receptors, ligand gated ion channels of the danger signal ATP, are expressed in the limiting LB membrane. They play a role in boosting surfactant secretion and fluid clearance. In this review, we discuss the functions of these transporting pathways of the LB, including possible roles in disease and as therapeutic targets, including viral infections such as SARS-CoV-2.
Collapse
Affiliation(s)
- Paul Dietl
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
4
|
Wirsching E, Fauler M, Fois G, Frick M. P2 Purinergic Signaling in the Distal Lung in Health and Disease. Int J Mol Sci 2020; 21:E4973. [PMID: 32674494 PMCID: PMC7404078 DOI: 10.3390/ijms21144973] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
The distal lung provides an intricate structure for gas exchange in mammalian lungs. Efficient gas exchange depends on the functional integrity of lung alveoli. The cells in the alveolar tissue serve various functions to maintain alveolar structure, integrity and homeostasis. Alveolar epithelial cells secrete pulmonary surfactant, regulate the alveolar surface liquid (ASL) volume and, together with resident and infiltrating immune cells, provide a powerful host-defense system against a multitude of particles, microbes and toxicants. It is well established that all of these cells express purinergic P2 receptors and that purinergic signaling plays important roles in maintaining alveolar homeostasis. Therefore, it is not surprising that purinergic signaling also contributes to development and progression of severe pathological conditions like pulmonary inflammation, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) and pulmonary fibrosis. Within this review we focus on the role of P2 purinergic signaling in the distal lung in health and disease. We recapitulate the expression of P2 receptors within the cells in the alveoli, the possible sources of ATP (adenosine triphosphate) within alveoli and the contribution of purinergic signaling to regulation of surfactant secretion, ASL volume and composition, as well as immune homeostasis. Finally, we summarize current knowledge of the role for P2 signaling in infectious pneumonia, ALI/ARDS and idiopathic pulmonary fibrosis (IPF).
Collapse
Affiliation(s)
| | | | | | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (E.W.); (M.F.); (G.F.)
| |
Collapse
|
5
|
Wu Z, Sun Z, Huang R, Zang D, Wang C, Yan X, Yan W. Silencing of synaptotagmin 7 regulates osteosarcoma cell proliferation, apoptosis, and migration. Histol Histopathol 2019; 35:303-312. [PMID: 31631310 DOI: 10.14670/hh-18-174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Synaptotagmin 7 (SYT7) is a component of the synaptotagmin family, which is essential in many physiological and pathological processes. In this study, we aimed to investigate the role of SYT7 in osteosarcoma. METHODS We defined the expression levels of SYT7 in osteosarcoma tissues and para-sarcoma tissues by immunohistochemistry and analyzed the possible correlation between SYT7 expression and pathological characteristics via Mann-Whitney U analysis and Spearman correlation analysis. The effects of SYT7 silencing in vitro cell growth were assessed by MTT assay. Cell cycle and cell apoptosis were assessed by flow cytometry analysis. Wound healing assay and transwell assay were applied to assess the migration and invasion capacity. RESULTS The results showed that the expression levels of SYT7 were upregulated in osteosarcoma tissues compared with para-sarcoma tissues and positively correlated with the pathological characteristics of osteosarcoma. Functional experiments demonstrated that SYT7 silencing significantly inhibited cell proliferation and colony formation capacity (P<0.001), induced cell cycle arrest which increased the proportion of G2 phase and decreased the proportion of S phase, enhanced cell apoptosis (P<0.01), and limited the capacity of migration and invasion (P<0.01), compared with shCtrl group. CONCLUSION The results indicated that SYT7 plays a crucial role in the development of osteosarcoma. SYT7 can be applied as a new diagnostic and therapeutic target in osteosarcoma.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, China.,Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, China
| | - Zhengwang Sun
- Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, China.,Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, China
| | - Rui Huang
- Department of General Surgery, PLA 455 hospital, Changning District, Shanghai, China
| | - Ding Zang
- Department of Clinical Laboratory, PLA 455 hospital, Changning District, Shanghai, China
| | - Chunmeng Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, China.,Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, China
| | - Xu Yan
- Department of Orthopedics, PLA 455 hospital, Changning District, Shanghai, China.
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, Shanghai, China.
| |
Collapse
|
6
|
Murrell-Lagnado RD, Frick M. P2X4 and lysosome fusion. Curr Opin Pharmacol 2019; 47:126-132. [PMID: 31039505 DOI: 10.1016/j.coph.2019.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023]
Abstract
Similar to other members of the P2X receptor family, the P2X4 receptor at the plasma membrane forms a highly Ca2+ permeable, non-selective cation channel that is activated by extracellular ATP. Yet, P2X4 differs from the other subtypes, as it is predominantly localized on late endosomal, lysosomal and/or lysosome-related organelles. It is targeted there by virtue of tyrosine-based and di-leucine like trafficking motifs contained within its C-terminal and N-terminal regions respectively. The physiological role of the stable intracellular expression of P2X4 in acidic compartments has been a long-standing puzzle. Recent evidence, however, points to a dual role in the regulation of ion fluxes across lysosomal membranes to control lysosome membrane fusion and in the re-sensitization of receptors exposed to extracellular ATP.
Collapse
Affiliation(s)
| | - Manfred Frick
- Institute of General Physiology, University of Ulm, Ulm, Germany
| |
Collapse
|
7
|
Barzilai-Tutsch H, Dewulf M, Lamaze C, Butler Browne G, Pines M, Halevy O. A promotive effect for halofuginone on membrane repair and synaptotagmin-7 levels in muscle cells of dysferlin-null mice. Hum Mol Genet 2019; 27:2817-2829. [PMID: 29771357 DOI: 10.1093/hmg/ddy185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/09/2018] [Indexed: 11/14/2022] Open
Abstract
In the absence of dysferlin, skeletal muscle cells fail to reseal properly after injury, resulting in slow progress of the dysferlinopathy muscular dystrophy (MD). Halofuginone, a leading agent in preventing fibrosis in MDs, was tested for its effects on membrane resealing post-injury. A hypo-osmotic shock assay on myotubes derived from wild-type (Wt) and dysferlin-null (dysf-/-) mice revealed that pre-treatment with halofuginone reduces the percentage of membrane-ruptured myotubes only in dysf-/- myotubes. In laser-induced injury of isolated myofibers, halofuginone decreased the amount of FM1-43 at the injury site of dysf-/- myofibers while having no effect on Wt myofibers. These results implicate halofuginone in ameliorating muscle-cell membrane integrity in dysf-/- mice. Halofuginone increased lysosome scattering across the cytosol of dysf-/- primary myoblasts, in a protein kinase/extracellular signal-regulated protein kinase and phosphoinositide 3 kinase/Akt-dependent manner, in agreement with an elevation in lysosomal exocytotic activity in these cells. A spatial- and age-dependent synaptotagmin-7 (Syt-7) expression pattern was shown in dysf-/- versus Wt mice, suggesting that these pattern alterations are related to the disease progress and that sytnaptotagmin-7 may be compensating for the lack of dysferlin at least with regard to membrane resealing post-injury. While halofuginone did not affect patch-repair-complex key proteins, it further enhanced Syt-7 levels and its spread across the cytosol in dysf-/- myofibers and muscle tissue, and increased its co-localization with lysosomes. Together, the data imply a novel role for halofuginone in membrane-resealing events with Syt-7 possibly taking part in these events.
Collapse
Affiliation(s)
- Hila Barzilai-Tutsch
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Melissa Dewulf
- Membrane Dynamics and Mechanics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, INSERM U1143, Centre national de la recherche scientifique, UMR 3666, Paris, France
| | - Christophe Lamaze
- Membrane Dynamics and Mechanics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, INSERM U1143, Centre national de la recherche scientifique, UMR 3666, Paris, France
| | - Gillian Butler Browne
- Center for Research in Myology, CNRS FRE 3617, UPMC Univ Paris 06, UM76, INSERM U974, Sorbonne Universités, Paris, France
| | - Mark Pines
- The Volcani Center, Institute of Animal Science, Bet Dagan 52505, Israel
| | - Orna Halevy
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
8
|
Winkelmann VE, Thompson KE, Neuland K, Jaramillo AM, Fois G, Schmidt H, Wittekindt OH, Han W, Tuvim MJ, Dickey BF, Dietl P, Frick M. Inflammation-induced upregulation of P2X 4 expression augments mucin secretion in airway epithelia. Am J Physiol Lung Cell Mol Physiol 2018; 316:L58-L70. [PMID: 30358443 DOI: 10.1152/ajplung.00157.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mucus clearance provides an essential innate defense mechanism to keep the airways and lungs free of particles and pathogens. Baseline and stimulated mucin secretion from secretory airway epithelial cells need to be tightly regulated to prevent mucus hypersecretion and mucus plugging of the airways. It is well established that extracellular ATP is a potent stimulus for regulated mucus secretion. Previous studies revealed that ATP acts via metabotropic P2Y2 purinoreceptors on goblet cells. Extracellular ATP, however, is also a potent agonist for ionotropic P2X purinoreceptors. Expression of several P2X isoforms has been reported in airways, but cell type-specific expression and the function thereof remained elusive. With this study, we now provide evidence that P2X4 is the predominant P2X isoform expressed in secretory airway epithelial cells. After IL-13 treatment of either human primary tracheal epithelial cells or mice, P2X4 expression is upregulated in vitro and in vivo under conditions of chronic inflammation, mucous metaplasia, and hyperplasia. Upregulation of P2X4 is strongest in MUC5AC-positive goblet cells. Moreover, activation of P2X4 by extracellular ATP augments intracellular Ca2+ signals and mucin secretion, whereas Ca2+ signals and mucin secretion are dampened by inhibition of P2X4 receptors. These data provide new insights into the purinergic regulation of mucin secretion and add to the emerging picture that P2X receptors modulate exocytosis of large secretory organelles and secretion of macromolecular vesicle cargo.
Collapse
Affiliation(s)
| | - Kristin E Thompson
- Centre de Recherche Saint-Antoine, INSERM, Université Pierre et Marie Curie-Université Paris 06, Sorbonne Universités, Paris , France
| | - Kathrin Neuland
- Institute of General Physiology, Ulm University , Ulm , Germany
| | - Ana M Jaramillo
- Department of Pulmonary Medicine, MD Anderson Cancer Center , Houston, Texas
| | - Giorgio Fois
- Institute of General Physiology, Ulm University , Ulm , Germany
| | - Hanna Schmidt
- Institute of General Physiology, Ulm University , Ulm , Germany
| | | | - Wei Han
- Department of Pulmonary Medicine, MD Anderson Cancer Center , Houston, Texas
| | - Michael J Tuvim
- Department of Pulmonary Medicine, MD Anderson Cancer Center , Houston, Texas
| | - Burton F Dickey
- Department of Pulmonary Medicine, MD Anderson Cancer Center , Houston, Texas
| | - Paul Dietl
- Institute of General Physiology, Ulm University , Ulm , Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University , Ulm , Germany
| |
Collapse
|
9
|
Wang K, Xiao H, Zhang J, Zhu D. Synaptotagmin7 Is Overexpressed In Colorectal Cancer And Regulates Colorectal Cancer Cell Proliferation. J Cancer 2018; 9:2349-2356. [PMID: 30026831 PMCID: PMC6036711 DOI: 10.7150/jca.25098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/01/2018] [Indexed: 12/25/2022] Open
Abstract
Purpose: Synaptotagmin7 (SYT7) belongs to the synaptotagmin gene family and plays an important role in synaptic transmission. However, the function of this gene in most human cancer especially in colorectal cancer (CRC) remains unknown. In this research, we examined SYT7's role in CRC and tried to reveal its underlying mechanism. Methods: We examined SYT7's expression levels in normal colorectal tissue and CRC tissues from 83 patients and analyzed the possible correlation between the expression level of SYT7 and pathological characteristics. The influences of SYT7 knockdown on cell growth were detected by Celigo image cytometer, colony formation assay, cell cycle analysis and apoptosis assay in vitro. The possible molecular mechanism was assessed using a microarray and Ingenuity Pathway Analysis. Results: Our results show that the expression of SYT7 is upregulated in colorectal cancer tissues in comparison with normal tissues and positively correlated with the pathological stage of colorectal cancer. (P=0.015). We examined SYT7's role in human colorectal cancer cell line RKO by using SYT7-shRNA and revealed that SYT7 knockdown inhibit cell proliferation (P=8.6E-5), clonogenic ability (P=4.5E-6) and promoted G2/M Phase arrest and apoptosis (P=4.6E-7). Multiple cancer-associated pathways regulated by SYT7 were unraveled by microarray and Ingenuity Pathway Analysis. Conclusions: Our study suggests that SYT7 plays an important role in the development of CRC and SYT7 may become a new therapeutic target in CRC.
Collapse
Affiliation(s)
- Kewei Wang
- Department of Gastrointestinal & hernia Surgery, First Hospital of China Medical University, Shenyang, China
| | - Huimin Xiao
- Department of General Surgery, People's Hospital of China Medical University, Shenyang, China
| | - Jiaqi Zhang
- Department of Gastrointestinal & hernia Surgery, First Hospital of China Medical University, Shenyang, China
| | - Dehua Zhu
- Department of Gastrointestinal & hernia Surgery, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
MacDougall DD, Lin Z, Chon NL, Jackman SL, Lin H, Knight JD, Anantharam A. The high-affinity calcium sensor synaptotagmin-7 serves multiple roles in regulated exocytosis. J Gen Physiol 2018; 150:783-807. [PMID: 29794152 PMCID: PMC5987875 DOI: 10.1085/jgp.201711944] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/07/2018] [Indexed: 12/19/2022] Open
Abstract
MacDougall et al. review the structure and function of the calcium sensor synaptotagmin-7 in exocytosis. Synaptotagmin (Syt) proteins comprise a 17-member family, many of which trigger exocytosis in response to calcium. Historically, most studies have focused on the isoform Syt-1, which serves as the primary calcium sensor in synchronous neurotransmitter release. Recently, Syt-7 has become a topic of broad interest because of its extreme calcium sensitivity and diversity of roles in a wide range of cell types. Here, we review the known and emerging roles of Syt-7 in various contexts and stress the importance of its actions. Unique functions of Syt-7 are discussed in light of recent imaging, electrophysiological, and computational studies. Particular emphasis is placed on Syt-7–dependent regulation of synaptic transmission and neuroendocrine cell secretion. Finally, based on biochemical and structural data, we propose a mechanism to link Syt-7’s role in membrane fusion with its role in subsequent fusion pore expansion via strong calcium-dependent phospholipid binding.
Collapse
Affiliation(s)
| | - Zesen Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Nara L Chon
- Department of Chemistry, University of Colorado, Denver, CO
| | - Skyler L Jackman
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Hai Lin
- Department of Chemistry, University of Colorado, Denver, CO
| | | | - Arun Anantharam
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
11
|
Fois G, Winkelmann VE, Bareis L, Staudenmaier L, Hecht E, Ziller C, Ehinger K, Schymeinsky J, Kranz C, Frick M. ATP is stored in lamellar bodies to activate vesicular P2X 4 in an autocrine fashion upon exocytosis. J Gen Physiol 2017; 150:277-291. [PMID: 29282210 PMCID: PMC5806682 DOI: 10.1085/jgp.201711870] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/12/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
Abstract
P2X4 receptor activation facilitates secretion of pulmonary surfactant from secretory vesicles called lamellar bodies in alveolar epithelial cells. Fois et al. reveal that P2X4 receptors on the lamellar body membranes are activated by ATP stored within the vesicles themselves upon vesicle exocytosis. Vesicular P2X4 receptors are known to facilitate secretion and activation of pulmonary surfactant in the alveoli of the lungs. P2X4 receptors are expressed in the membrane of lamellar bodies (LBs), large secretory lysosomes that store lung surfactant in alveolar type II epithelial cells, and become inserted into the plasma membrane after exocytosis. Subsequent activation of P2X4 receptors by adenosine triphosphate (ATP) results in local fusion-activated cation entry (FACE), facilitating fusion pore dilation, surfactant secretion, and surfactant activation. Despite the importance of ATP in the alveoli, and hence lung function, the origin of ATP in the alveoli is still elusive. In this study, we demonstrate that ATP is stored within LBs themselves at a concentration of ∼1.9 mM. ATP is loaded into LBs by the vesicular nucleotide transporter but does not activate P2X4 receptors because of the low intraluminal pH (5.5). However, the rise in intravesicular pH after opening of the exocytic fusion pore results in immediate activation of vesicular P2X4 by vesicular ATP. Our data suggest a new model in which agonist (ATP) and receptor (P2X4) are located in the same intracellular compartment (LB), protected from premature degradation (ATP) and activation (P2X4), and ideally placed to ensure coordinated and timely receptor activation as soon as fusion occurs to facilitate surfactant secretion.
Collapse
Affiliation(s)
- Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | | - Lara Bareis
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | | - Elena Hecht
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Charlotte Ziller
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | | | - Jürgen Schymeinsky
- Immunology and Respiratory Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| |
Collapse
|
12
|
Xie Z, Long J, Liu J, Chai Z, Kang X, Wang C. Molecular Mechanisms for the Coupling of Endocytosis to Exocytosis in Neurons. Front Mol Neurosci 2017; 10:47. [PMID: 28348516 PMCID: PMC5346583 DOI: 10.3389/fnmol.2017.00047] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/10/2017] [Indexed: 11/13/2022] Open
Abstract
Neuronal communication and brain function mainly depend on the fundamental biological events of neurotransmission, including the exocytosis of presynaptic vesicles (SVs) for neurotransmitter release and the subsequent endocytosis for SV retrieval. Neurotransmitters are released through the Ca2+- and SNARE-dependent fusion of SVs with the presynaptic plasma membrane. Following exocytosis, endocytosis occurs immediately to retrieve SV membrane and fusion machinery for local recycling and thus maintain the homeostasis of synaptic structure and sustained neurotransmission. Apart from the general endocytic machinery, recent studies have also revealed the involvement of SNARE proteins (synaptobrevin, SNAP25 and syntaxin), synaptophysin, Ca2+/calmodulin, and members of the synaptotagmin protein family (Syt1, Syt4, Syt7 and Syt11) in the balance and tight coupling of exo-endocytosis in neurons. Here, we provide an overview of recent progress in understanding how these neuron-specific adaptors coordinate to ensure precise and efficient endocytosis during neurotransmission.
Collapse
Affiliation(s)
- Zhenli Xie
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'an, China; Frontier Institute of Science and Technology, Xi'an Jiaotong UniversityXi'an, China; State Key Laboratory of Membrane Biology, Peking UniversityBeijing, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking UniversityBeijing, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'an, China; Frontier Institute of Science and Technology, Xi'an Jiaotong UniversityXi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'an, China; Frontier Institute of Science and Technology, Xi'an Jiaotong UniversityXi'an, China
| | - Zuying Chai
- State Key Laboratory of Membrane Biology, Peking UniversityBeijing, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking UniversityBeijing, China
| | - Xinjiang Kang
- State Key Laboratory of Membrane Biology, Peking UniversityBeijing, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking UniversityBeijing, China; College of Life Sciences, Liaocheng UniversityLiaocheng, China; Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical UniversityLuzhou, China
| | - Changhe Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'an, China; Frontier Institute of Science and Technology, Xi'an Jiaotong UniversityXi'an, China; State Key Laboratory of Membrane Biology, Peking UniversityBeijing, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking UniversityBeijing, China
| |
Collapse
|
13
|
Olmeda B, Martínez-Calle M, Pérez-Gil J. Pulmonary surfactant metabolism in the alveolar airspace: Biogenesis, extracellular conversions, recycling. Ann Anat 2016; 209:78-92. [PMID: 27773772 DOI: 10.1016/j.aanat.2016.09.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/22/2016] [Accepted: 09/25/2016] [Indexed: 01/03/2023]
Abstract
Pulmonary surfactant is a lipid-protein complex that lines and stabilizes the respiratory interface in the alveoli, allowing for gas exchange during the breathing cycle. At the same time, surfactant constitutes the first line of lung defense against pathogens. This review presents an updated view on the processes involved in biogenesis and intracellular processing of newly synthesized and recycled surfactant components, as well as on the extracellular surfactant transformations before and after the formation of the surface active film at the air-water interface. Special attention is paid to the crucial regulation of surfactant homeostasis, because its disruption is associated with several lung pathologies.
Collapse
Affiliation(s)
- Bárbara Olmeda
- Department of Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, 28040 Madrid, Spain
| | - Marta Martínez-Calle
- Department of Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, 28040 Madrid, Spain
| | - Jesus Pérez-Gil
- Department of Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, 28040 Madrid, Spain.
| |
Collapse
|
14
|
Abstract
The early/recycling endosomes of an eukaryotic cell perform diverse cellular functions. In addition, the endosomal system generates multiple organelles, including certain cell type-specific organelles called lysosome-related organelles (LROs). The biosynthesis of these organelles possibly occurs through a sequential maturation process in which the cargo-containing endosomal vesicular/tubular structures are fused with the maturing organelle. The molecular machinery that regulates the cargo delivery or the membrane fusion during LRO biogenesis is poorly understood. Here, we describe the known key molecules, such as SNAREs, that regulate both the biogenesis and secretion of multiple LROs. Moreover, we also describe other regulatory molecules, such as Rab GTPases and their effectors that modulate the SNARE activity for cargo delivery to one such LRO, the melanosome. Overall, this review will increase our current understanding of LRO biogenesis and function.
Collapse
Affiliation(s)
- Riddhi Atul Jani
- a Department of Microbiology and Cell Biology ; Indian Institute of Science ; Bangalore , India
| | - Sarmistha Mahanty
- a Department of Microbiology and Cell Biology ; Indian Institute of Science ; Bangalore , India
| | - Subba Rao Gangi Setty
- a Department of Microbiology and Cell Biology ; Indian Institute of Science ; Bangalore , India
| |
Collapse
|
15
|
Quevedo MF, Lucchesi O, Bustos MA, Pocognoni CA, De la Iglesia PX, Tomes CN. The Rab3A-22A Chimera Prevents Sperm Exocytosis by Stabilizing Open Fusion Pores. J Biol Chem 2016; 291:23101-23111. [PMID: 27613869 DOI: 10.1074/jbc.m116.729954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 11/06/2022] Open
Abstract
At the final stage of exocytotis, a fusion pore opens between the plasma and a secretory vesicle membranes; typically, when the pore dilates the vesicle releases its cargo. Sperm contain a large dense-core secretory granule (the acrosome) whose contents are secreted by regulated exocytosis at fertilization. Minutes after the arrival of the triggering signal, the acrosomal and plasma membranes dock at multiple sites and fusion pores open at the contact points. It is believed that immediately afterward, fusion pores dilate spontaneously. Rab3A is an essential component of human sperm exocytotic machinery. Yet, recombinant, persistently active Rab3A halts calcium-triggered secretion when introduced after docking into streptolysin O-permeabilized cells; so does a Rab3A-22A chimera. Here, we applied functional assays, electron and confocal microscopy to show that the secretion blockage is due to the stabilization of open fusion pores. Other novel findings are that sperm SNAREs engage in α-SNAP/NSF-sensitive complexes at a post-fusion stage. Complexes are disentangled by these chaperons to achieve vesiculation and acrosomal contents release. Thus, post-fusion regulation of the pores determines their expansion and the success of the acrosome reaction.
Collapse
Affiliation(s)
- María F Quevedo
- From the IHEM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Médicas, CC56. 5500 Mendoza, Argentina
| | - Ornella Lucchesi
- From the IHEM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Médicas, CC56. 5500 Mendoza, Argentina
| | - Matías A Bustos
- From the IHEM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Médicas, CC56. 5500 Mendoza, Argentina
| | - Cristian A Pocognoni
- From the IHEM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Médicas, CC56. 5500 Mendoza, Argentina
| | - Paola X De la Iglesia
- From the IHEM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Médicas, CC56. 5500 Mendoza, Argentina
| | - Claudia N Tomes
- From the IHEM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Médicas, CC56. 5500 Mendoza, Argentina
| |
Collapse
|
16
|
Peng X, Moore M, Mathur A, Zhou Y, Sun H, Gan Y, Herazo-Maya JD, Kaminski N, Hu X, Pan H, Ryu C, Osafo-Addo A, Homer RJ, Feghali-Bostwick C, Fares WH, Gulati M, Hu B, Lee CG, Elias JA, Herzog EL. Plexin C1 deficiency permits synaptotagmin 7-mediated macrophage migration and enhances mammalian lung fibrosis. FASEB J 2016; 30:4056-4070. [PMID: 27609773 DOI: 10.1096/fj.201600373r] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/15/2016] [Indexed: 12/11/2022]
Abstract
Pulmonary fibrosis is a progressive and often fatal condition that is believed to be partially orchestrated by macrophages. Mechanisms that control migration of these cells into and within the lung remain undefined. We evaluated the contributions of the semaphorin receptor, plexin C1 (PLXNC1), and the exocytic calcium sensor, synaptotagmin 7 (Syt7), in these processes. We evaluated the role of PLXNC1 in macrophage migration by using Boyden chambers and scratch tests, characterized its contribution to experimentally induced lung fibrosis in mice, and defined the mechanism for our observations. Our findings reveal that relative to control participants, patients with idiopathic pulmonary fibrosis demonstrate excessive monocyte migration and underexpression of PLXNC1 in the lungs and circulation, a finding that is recapitulated in the setting of scleroderma-related interstitial lung disease. Relative to wild type, PLXNC1-/- mouse macrophages are excessively migratory, and PLXNC1-/- mice show exacerbated collagen accumulation in response to either inhaled bleomycin or inducible lung targeted TGF-β1 overexpression. These findings are ameliorated by replacement of PLXNC1 on bone marrow-derived cells or by genetic deletion of Syt7. These data demonstrate the previously unrecognized observation that PLXNC1 deficiency permits Syt7-mediated macrophage migration and enhances mammalian lung fibrosis.-Peng, X., Moore, M., Mathur, A., Zhou, Y., Sun, H., Gan, Y., Herazo-Maya, J. D., Kaminski, N., Hu, X., Pan, H., Ryu, C., Osafo-Addo, A., Homer, R. J., Feghali-Bostwick, C., Fares, W. H., Gulati, M., Hu, B., Lee, C.-G., Elias, J. A., Herzog, E. L. Plexin C1 deficiency permits synaptotagmin 7-mediated macrophage migration and enhances mammalian lung fibrosis.
Collapse
Affiliation(s)
- Xueyan Peng
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Meagan Moore
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Aditi Mathur
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| | - Huanxing Sun
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ye Gan
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jose D Herazo-Maya
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Naftali Kaminski
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Xinyuan Hu
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hongyi Pan
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Changwan Ryu
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Awo Osafo-Addo
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Robert J Homer
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; and
| | - Carol Feghali-Bostwick
- Department of Medicine, Medical University of South Carolina School of Medicine, Charleston, South Carolina, USA
| | - Wassim H Fares
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mridu Gulati
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Buqu Hu
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Chun-Geun Lee
- Department of Molecular Microbiology and Immunology, Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| | - Jack A Elias
- Department of Molecular Microbiology and Immunology, Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| | - Erica L Herzog
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA;
| |
Collapse
|
17
|
Neuland K, Frick M. Vesicular control of fusion pore expansion. Commun Integr Biol 2015; 8:e1018496. [PMID: 26479858 PMCID: PMC4594593 DOI: 10.1080/19420889.2015.1018496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 02/02/2015] [Accepted: 02/07/2015] [Indexed: 11/16/2022] Open
Abstract
Exocytic post-fusion events play an important role determining the composition and quantity of cellular secretion. In particular, Ca2+-dependent regulation of fusion pore dilation/closure is a key regulator for fine-tuning vesicle content secretion. This requires a tight temporal and spatial integration of vesicle fusion with the PM, Ca2+ signals and translation of the Ca2+ signal into fusion pore dilation via auxiliary factors. Yet, it is still mostly elusive how this is achieved in slow and non-excitable secretory cells, where initial Ca2+ signals triggering fusions will abate before onset of the post-fusion phase. New results suggest, that the vesicles themselves provide the necessary itinerary to sense and link vesicle fusion to generation of local Ca2+ signals and fusion pore expansion.
Collapse
Affiliation(s)
- Kathrin Neuland
- Institute of General Physiology; University of Ulm ; Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology; University of Ulm ; Ulm, Germany
| |
Collapse
|
18
|
Miklavc P, Ehinger K, Sultan A, Felder T, Paul P, Gottschalk KE, Frick M. Actin depolymerisation and crosslinking join forces with myosin II to contract actin coats on fused secretory vesicles. J Cell Sci 2015; 128:1193-203. [PMID: 25637593 PMCID: PMC4359923 DOI: 10.1242/jcs.165571] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In many secretory cells actin and myosin are specifically recruited to the surface of secretory granules following their fusion with the plasma membrane. Actomyosin-dependent compression of fused granules is essential to promote active extrusion of cargo. However, little is known about molecular mechanisms regulating actin coat formation and contraction. Here, we provide a detailed kinetic analysis of the molecules regulating actin coat contraction on fused lamellar bodies in primary alveolar type II cells. We demonstrate that ROCK1 and myosin light chain kinase 1 (MLCK1, also known as MYLK) translocate to fused lamellar bodies and activate myosin II on actin coats. However, myosin II activity is not sufficient for efficient actin coat contraction. In addition, cofilin-1 and α-actinin translocate to actin coats. ROCK1-dependent regulated actin depolymerisation by cofilin-1 in cooperation with actin crosslinking by α-actinin is essential for complete coat contraction. In summary, our data suggest a complementary role for regulated actin depolymerisation and crosslinking, and myosin II activity, to contract actin coats and drive secretion.
Collapse
Affiliation(s)
- Pika Miklavc
- Department of General Physiology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Konstantin Ehinger
- Department of General Physiology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Ayesha Sultan
- Department of General Physiology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Tatiana Felder
- Department of General Physiology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Patrick Paul
- Institute for Experimental Physics, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Kay-Eberhard Gottschalk
- Institute for Experimental Physics, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Manfred Frick
- Department of General Physiology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| |
Collapse
|