1
|
Ehring K, Ehlers SF, Froese J, Gude F, Puschmann J, Grobe K. Two-way Dispatched function in Sonic hedgehog shedding and transfer to high-density lipoproteins. eLife 2024; 12:RP86920. [PMID: 39297609 PMCID: PMC11412720 DOI: 10.7554/elife.86920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
The Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We have previously shown that Disp promotes proteolytic solubilization of Shh from its lipidated terminal peptide anchors. This process, termed shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as a soluble sink for free membrane cholesterol, HDLs also accept the cholesterol-modified Shh peptide from Disp. The cholesteroylated Shh peptide is necessary and sufficient for Disp-mediated transfer because artificially cholesteroylated mCherry associates with HDL in a Disp-dependent manner, whereas an N-palmitoylated Shh variant lacking C-cholesterol does not. Disp-mediated Shh transfer to HDL is completed by proteolytic processing of the palmitoylated N-terminal membrane anchor. In contrast to dual-processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We propose that the purpose of generating different soluble forms of Shh from the dual-lipidated precursor is to tune cellular responses in a tissue-type and time-specific manner.
Collapse
Affiliation(s)
- Kristina Ehring
- Institute of Physiological Chemistry and Pathobiochemistry, University of MünsterMünsterGermany
| | | | - Jurij Froese
- Institute of Physiological Chemistry and Pathobiochemistry, University of MünsterMünsterGermany
| | - Fabian Gude
- Institute of Physiological Chemistry and Pathobiochemistry, University of MünsterMünsterGermany
| | - Janna Puschmann
- Institute of Physiological Chemistry and Pathobiochemistry, University of MünsterMünsterGermany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of MünsterMünsterGermany
| |
Collapse
|
2
|
Alexander JI, Martinez E, Vargas A, Zinshteyn D, Sodi V, Connolly DC, Hartman TR, O'Reilly AM. Cholesterol and CDON Regulate Sonic Hedgehog Release from Pancreatic Cancer Cells. J Pancreat Cancer 2021; 7:39-47. [PMID: 34235374 PMCID: PMC8252898 DOI: 10.1089/pancan.2021.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Sonic Hedgehog (Shh) is a tightly regulated membrane-associated morphogen and a known driver of tumorigenesis in pancreatic ductal adenocarcinoma (PDAC). After processing, Shh remains at the plasma membrane of Shh producing cells, thereby limiting its distribution and signal strength. In PDAC, the release of Shh from tumor cells is necessary to promote a tumor-permissive microenvironment. Mechanisms regulating Shh sequestration and/or release from tumor cells to signal distant stromal cells are not well known. Previously, our laboratory demonstrated that the Drosophila transmembrane protein Boi, sequesters Hh at the membrane of Hh-producing cells. In response to dietary cholesterol or in the absence of boi, Hh is constitutively released to promote proliferation in distant cells. In this study, we investigated the conservation of this mechanism in mammals by exploring the role of the human boi homolog, CDON, in PDAC. Methods: Using PDAC cell-lines BxPC-3, Capan-2, and MIA PaCa-2, along with normal pancreatic epithelial cells (PDEC), we investigated Shh expression via Immunoblot and real-time, quantitative polymerase chain reaction in addition to Shh release via enzyme-linked immunoassay following cholesterol treatment and/or transfection with either RNA interference to reduce CDON expression or with human CDON to increase expression. Results: Consistent with our Boi model, CDON suppresses Shh release, which is alleviated in response to dietary cholesterol. However, over-expressing CDON suppresses cholesterol-mediated Shh release in some PDAC contexts, which may be relative to the mutational burden of the cells. Conclusion: Identifying mechanisms that either sequester or stimulate Shh release from the tumor cell membrane may provide new avenues to reduce signaling between the tumor and its surrounding environment, which may restrain tumor development.
Collapse
Affiliation(s)
- Jennifer I Alexander
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Esteban Martinez
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Alberto Vargas
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Daniel Zinshteyn
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Valerie Sodi
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Denise C Connolly
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Tiffiney R Hartman
- Roberts Individualized Medical Genetics Center and the Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Alana M O'Reilly
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Yan Y, Qian H, Cao Y, Zhu T. Nuclear factor-κB inhibitor Bay11-7082 inhibits gastric cancer cell proliferation by inhibiting Gli1 expression. Oncol Lett 2021; 21:301. [PMID: 33732377 PMCID: PMC7905653 DOI: 10.3892/ol.2021.12562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Dysregulated nuclear factor (NF)-κB signaling pathway is involved in gastric carcinogenesis. The present study aimed to investigate the antitumor effects of the NF-κB inhibitor, Bay11-7082, on gastric cancer (GC) and elucidate its underlying molecular mechanisms. The MTT assay was performed to assess the effects of Bay11-7082 on the proliferation of HGC27 and MKN45 gastric cancer cells. In addition, the Transwell and wound healing assays were performed to determine cell migration and invasion, respectively. Reverse transcription-quantitative PCR and western blot analyses were performed to detect the mRNA and protein expression levels of the target genes. The results demonstrated that the half-maximal inhibitory concentration (IC50) of Bay11-7082 in HGC27 cells was 24.88, 6.72 and 4.23 nM at 24, 48 and 72 h, respectively. Furthermore, the IC50 of Bay11-7082 in MKN45 cells was 29.11, 11.22 and 5.88 nM at 24, 48 and 72 h, respectively. Treatment with Bay11-7082 significantly suppressed the cell migratory and invasive abilities compared with the control group. Notably, Bay11-7082 suppressed GLI Family Zinc Finger 1 (Gli1) mRNA and protein expression levels. Taken together, the results of the present study demonstrated that Bay11-7082 inhibited GC cell proliferation, at least in part through inhibition of Gli1.
Collapse
Affiliation(s)
- Yan Yan
- Department of Pharmacology, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, Jiangsu 215600, P.R. China
| | - Heya Qian
- Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, Jiangsu 215600, P.R. China
| | - Ying Cao
- Department of Pharmacology, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, Jiangsu 215600, P.R. China
| | - Tao Zhu
- Department of Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, Jiangsu 215600, P.R. China
| |
Collapse
|
4
|
Mateska I, Nanda K, Dye NA, Alexaki VI, Eaton S. Range of SHH signaling in adrenal gland is limited by membrane contact to cells with primary cilia. J Biophys Biochem Cytol 2020; 219:211483. [PMID: 33090184 PMCID: PMC7588141 DOI: 10.1083/jcb.201910087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 07/27/2020] [Accepted: 09/15/2020] [Indexed: 01/04/2023] Open
Abstract
The signaling protein Sonic Hedgehog (SHH) is crucial for the development and function of many vertebrate tissues. It remains largely unclear, however, what defines the range and specificity of pathway activation. The adrenal gland represents a useful model to address this question, where the SHH pathway is activated in a very specific subset of cells lying near the SHH-producing cells, even though there is an abundance of lipoproteins that would allow SHH to travel and signal long-range. We determine that, whereas adrenal cells can secrete SHH on lipoproteins, this form of SHH is inactive due to the presence of cosecreted inhibitors, potentially explaining the absence of long-range signaling. Instead, we find that SHH-producing cells signal at short range via membrane-bound SHH, only to receiving cells with primary cilia. Finally, our data from NCI-H295R adrenocortical carcinoma cells suggest that adrenocortical tumors may evade these regulatory control mechanisms by acquiring the ability to activate SHH target genes in response to TGF-β.
Collapse
Affiliation(s)
- Ivona Mateska
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany,Biotechnologisches Zentrum, Technische Universität Dresden, Dresden, Germany,Correspondence to Ivona Mateska:
| | - Kareena Nanda
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Natalie A. Dye
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Vasileia Ismini Alexaki
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany,Biotechnologisches Zentrum, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
Zhou R, Cho WCS, Ma V, Cheuk W, So YK, Wong SCC, Zhang M, Li C, Sun Y, Zhang H, Chan LWC, Tian M. ADAM9 Mediates Triple-Negative Breast Cancer Progression via AKT/NF-κB Pathway. Front Med (Lausanne) 2020; 7:214. [PMID: 32637415 PMCID: PMC7317048 DOI: 10.3389/fmed.2020.00214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Upregulation of a disintegrin and metalloprotease 9 (ADAM9) is correlated with progression of cancers, such as prostate, bladder, and pancreatic cancers. However, its role in triple-negative breast cancer (TNBC) is still unclear. Our study aimed to investigate whether ADAM9 is upregulated and promoted the aggressiveness in TNBC. Breast cancer cell lines and patient specimens were used to evaluate the ADAM9 expression by western blotting and immunohistochemistry staining, respectively. Compared with the non-TNBC, ADAM9 expression was significantly increased in TNBC cells and TNBC patient specimens. Based on the data acquired from public databases, the correlation between ADAM9 expression and breast cancer patient survival was analyzed by Kaplan-Meier method. It was shown that ADAM9 overexpression was significantly correlated with poorer survival in patients with TNBC. Furthermore, ADAM9 in TNBC cells was knocked down by small interference RNA and then studied by the MTT/colony formation assay, wound healing assay and transwell invasion assay on the cell proliferation, migration, and invasion, respectively. We found that inhibiting ADAM9 expression suppressed TNBC cell proliferation, migration, and invasion by lowering the activation of AKT/NF-κB pathway. Our results demonstrated that ADAM9 is an important molecule in mediating TNBC aggressiveness and may be a potential useful therapeutic target in TNBC treatment.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.,Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Victor Ma
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Wah Cheuk
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, China
| | - Yik-Ka So
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, China
| | - S C Cesar Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Mingrong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, Chiba, Japan
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center, School of Life Sciences, Peking University, Beijing, China
| | - Hong Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.,The College of Biomedical Engineering and Instrument Science of Zhejiang University, Hangzhou, China.,Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Lawrence W C Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Mei Tian
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Guo W, Roelink H. Loss of the Heparan Sulfate Proteoglycan Glypican5 Facilitates Long-Range Sonic Hedgehog Signaling. Stem Cells 2019; 37:899-909. [PMID: 30977233 PMCID: PMC8491322 DOI: 10.1002/stem.3018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/31/2019] [Indexed: 01/01/2023]
Abstract
As a morphogen, Sonic Hedgehog (Shh) mediates signaling at a distance from its sites of synthesis. After secretion, Shh must traverse a distance through the extracellular matrix (ECM) to reach the target cells and activate the Hh response. ECM proteins, in particular, the heparan sulfate proteoglycans (HSPGs) of the glypican family, have both negative and positive effects on Shh signaling, all attributed to their ability to bind Shh. Using mouse embryonic stem cell-derived mosaic tissues with compartments that lack the glycosyltransferases Exostosin1 and Exostosin2, or the HSPG core protein Glypican5, we show that Shh accumulates around its source cells when they are surrounded by cells that have a mutated ECM. This accumulation of Shh is correlated with an increased noncell autonomous Shh response. Our results support a model in which Shh presented on the cell surface accumulates at or near ECM that lacks HSPGs, possibly due to the absence of these Shh sequestering molecules. Stem Cells 2019;37:899-909.
Collapse
Affiliation(s)
- Wei Guo
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, USA
| | - Henk Roelink
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, USA
| |
Collapse
|
7
|
Manikowski D, Jakobs P, Jboor H, Grobe K. Soluble Heparin and Heparan Sulfate Glycosaminoglycans Interfere with Sonic Hedgehog Solubilization and Receptor Binding. Molecules 2019; 24:molecules24081607. [PMID: 31018591 PMCID: PMC6526471 DOI: 10.3390/molecules24081607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/14/2019] [Accepted: 04/19/2019] [Indexed: 12/24/2022] Open
Abstract
Sonic hedgehog (Shh) signaling plays a tumor-promoting role in many epithelial cancers. Cancer cells produce soluble a Shh that signals to distant stromal cells that express the receptor Patched (Ptc). These receiving cells respond by producing other soluble factors that promote cancer cell growth, generating a positive feedback loop. To interfere with reinforced Shh signaling, we examined the potential of defined heparin and heparan sulfate (HS) polysaccharides to block Shh solubilization and Ptc receptor binding. We confirm in vitro and in vivo that proteolytic cleavage of the N-terminal Cardin-Weintraub (CW) amino acid motif is a prerequisite for Shh solubilization and function. Consistent with the established binding of soluble heparin or HS to the Shh CW target motif, both polysaccharides impaired proteolytic Shh processing and release from source cells. We also show that HS and heparin bind to, and block, another set of basic amino acids required for unimpaired Shh binding to Ptc receptors on receiving cells. Both modes of Shh activity downregulation depend more on HS size and overall charge than on specific HS sulfation modifications. We conclude that heparin oligosaccharide interference in the physiological roles of HS in Shh release and reception may be used to expand the field of investigation to pharmaceutical intervention of tumor-promoting Shh functions.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites
- Binding, Competitive
- Cell Line, Tumor
- Drosophila Proteins/antagonists & inhibitors
- Drosophila Proteins/chemistry
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/genetics
- Drosophila melanogaster/growth & development
- Drosophila melanogaster/metabolism
- Embryo, Nonmammalian
- Feedback, Physiological
- Gene Expression Regulation, Developmental
- HeLa Cells
- Hedgehog Proteins/antagonists & inhibitors
- Hedgehog Proteins/chemistry
- Hedgehog Proteins/genetics
- Hedgehog Proteins/metabolism
- Heparin/chemistry
- Heparin/pharmacology
- Heparitin Sulfate/chemistry
- Heparitin Sulfate/pharmacology
- Humans
- Models, Molecular
- Patched-1 Receptor/genetics
- Patched-1 Receptor/metabolism
- Protein Binding
- Protein Interaction Domains and Motifs
- Protein Structure, Secondary
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Signal Transduction
- Solubility
- Wings, Animal/growth & development
- Wings, Animal/metabolism
Collapse
Affiliation(s)
- Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany.
| | - Petra Jakobs
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany.
| | - Hamodah Jboor
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany.
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
8
|
ADAM12 is a circulating marker for stromal activation in pancreatic cancer and predicts response to chemotherapy. Oncogenesis 2018; 7:87. [PMID: 30442938 PMCID: PMC6237826 DOI: 10.1038/s41389-018-0096-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/09/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by abundant stroma that harbors tumor-promoting properties. No good biomarkers exist to monitor the effect of stromal targeting therapies or to predict response. We set out to identify such non-invasive markers for PDAC stroma and predict response to therapy. Gene expression datasets, co-culture experiments, xenografts, and patient samples were analyzed. Serum samples were measured from a cohort of 58 resected patients, and 87 metastatic or locally advanced PDAC patients. Baseline and follow-up levels were assessed in 372 additional metastatic PDAC patients who received nab-paclitaxel with gemcitabine (n = 184) or gemcitabine monotherapy (n = 188) in the phase III MPACT trial. Increased levels of ADAM12 were found in PDAC patients compared to healthy controls (p < 0.0001, n = 157 and n = 38). High levels of ADAM12 significantly associated with poor outcome in resected PDAC (HR 2.07, p = 0.04). In the MPACT trial survival was significantly longer for patients who received nab-paclitaxel and had undetectable ADAM12 levels before treatment (OS 12.3 m vs 7.9 m p = 0.0046). Consistently undetectable or decreased ADAM12 levels during treatment significantly associated with longer survival as well (OS 14.4 m and 11.2 m, respectively vs 8.3, p = 0.0054). We conclude that ADAM12 is a blood-borne proxy for stromal activation, the levels of which have prognostic significance and correlate with treatment benefit.
Collapse
|
9
|
Kastl P, Manikowski D, Steffes G, Schürmann S, Bandari S, Klämbt C, Grobe K. Disrupting Hedgehog Cardin-Weintraub sequence and positioning changes cellular differentiation and compartmentalization in vivo. Development 2018; 145:145/18/dev167221. [PMID: 30242104 DOI: 10.1242/dev.167221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/24/2018] [Indexed: 12/25/2022]
Abstract
Metazoan Hedgehog (Hh) morphogens are essential regulators of growth and patterning at significant distances from their source, despite being produced as N-terminally palmitoylated and C-terminally cholesteroylated proteins, which firmly tethers them to the outer plasma membrane leaflet of producing cells and limits their spread. One mechanism to overcome this limitation is proteolytic processing of both lipidated terminal peptides, called shedding, but molecular target site requirements for effective Hh shedding remained undefined. In this work, by using Drosophila melanogaster as a model, we show that mutagenesis of the N-terminal Cardin-Weintraub (CW) motif inactivates recombinant Hh proteins to variable degrees and, if overexpressed in the same compartment, converts them into suppressors of endogenous Hh function. In vivo, additional removal of N-palmitate membrane anchors largely restored endogenous Hh function, supporting the hypothesis that proteolytic CW processing controls Hh solubilization. Importantly, we also observed that CW repositioning impairs anterior/posterior compartmental boundary maintenance in the third instar wing disc. This demonstrates that Hh shedding not only controls the differentiation of anterior cells, but also maintains the sharp physical segregation between these receiving cells and posterior Hh-producing cells.
Collapse
Affiliation(s)
- Philipp Kastl
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Georg Steffes
- Institute of Neurobiology and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Sabine Schürmann
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Shyam Bandari
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Christian Klämbt
- Institute of Neurobiology and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| |
Collapse
|
10
|
Abstract
Purpose Basal cell carcinoma (BCC) is one of the most common skin cancers, and is typically driven by an aberrantly activated Hedgehog (Hh) pathway. The Hh pathway is regulated by interactions between the Patched-1 (Ptch1) and Smoothened (Smo) receptors. Smo is an activating receptor and is subject to inhibition by Ptch1. Following ligand binding to Ptch1, its inhibitory action is relieved and pathway activation occurs. This receptor interaction is pivotal to restraining uncontrolled cellular growth. Both receptors have been found to be frequently mutated in BCCs. Ptch2 is a Ptch1 paralog that exhibits overlapping functions in both normal development and tissue homeostasis. As yet, its contribution to cancer growth is poorly defined. Here we set out to assess how Ptch2 inhibits BCC growth. Methods We used several in vitro readouts for transcriptional and chemotactic Hh signaling in BCC-derived ASZ001 cells, and a novel xenograft model to assess in vivo BCC tumor growth. Gene editing by TALEN was used to untangle the different Ptch2-dependent responses to its ligand sonic hedgehog (Shh). Results We first defined the signaling competence of Ptch2 in Ptch1-deficient ASZ001 cells in vitro, and found that Ptch2 ligand binding drives their migration rather than eliciting a transcriptional response. We found that subsequent targeting of Ptch2 abrogated the chemotaxic effect. Next, we tested the contribution of Ptch2 to in vivo tumor growth using a xenograft model and found that reduced Ptch function results in increased tumor growth, but that selective pressure appatently acts against complete Ptch2 ablation. Conclusions We conclude that like Ptch1, Ptch2 exerts a tumor-suppressive function in BCC cells, and that after targeting of both paralogs, ligand-independent activation of the Hh pathway contributes to tumor growth. Electronic supplementary material The online version of this article (10.1007/s13402-018-0381-9) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Manikowski D, Kastl P, Grobe K. Taking the Occam's Razor Approach to Hedgehog Lipidation and Its Role in Development. J Dev Biol 2018; 6:jdb6010003. [PMID: 29615552 PMCID: PMC5875562 DOI: 10.3390/jdb6010003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 01/01/2023] Open
Abstract
All Hedgehog (Hh) proteins signal from producing cells to distant receiving cells despite being synthesized as N-and C-terminally lipidated, membrane-tethered molecules. To explain this paradoxical situation, over the past 15 years, several hypotheses have been postulated that tie directly into this property, such as Hh transport on cellular extensions called cytonemes or on secreted vesicles called lipophorins and exosomes. The alternative situation that tight membrane association merely serves to prevent unregulated Hh solubilization has been addressed by biochemical and structural studies suggesting Hh extraction from the membrane or proteolytic Hh release. While some of these models may act in different organisms, tissues or developmental programs, others may act together to specify Hh short- and long-range signaling in the same tissues. To test and rank these possibilities, we here review major models of Hh release and transport and hypothesize that the (bio)chemical and physical properties of firmly established, homologous, and functionally essential biochemical Hh modifications are adapted to specify and determine interdependent steps of Hh release, transport and signaling, while ruling out other steps. This is also described by the term “congruence”, meaning that the logical combination of biochemical Hh modifications can reveal their true functional implications. This combined approach reveals potential links between models of Hh release and transport that were previously regarded as unrelated, thereby expanding our view of how Hhs can steer development in a simple, yet extremely versatile, manner.
Collapse
Affiliation(s)
- Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany.
| | - Philipp Kastl
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany.
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
12
|
Jakobs P, Schulz P, Schürmann S, Niland S, Exner S, Rebollido-Rios R, Manikowski D, Hoffmann D, Seidler DG, Grobe K. Ca 2+ coordination controls sonic hedgehog structure and its Scube2-regulated release. J Cell Sci 2017; 130:3261-3271. [PMID: 28778988 DOI: 10.1242/jcs.205872] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/30/2017] [Indexed: 12/22/2022] Open
Abstract
Proteolytic processing of cell-surface-bound ligands, called shedding, is a fundamental system to control cell-cell signaling. Yet, our understanding of how shedding is regulated is still incomplete. One way to increase the processing of dual-lipidated membrane-associated Sonic hedgehog (Shh) is to increase the density of substrate and sheddase. This releases and also activates Shh by the removal of lipidated inhibitory N-terminal peptides from Shh receptor binding sites. Shh release and activation is enhanced by Scube2 [signal sequence, cubulin (CUB) domain, epidermal growth factor (EGF)-like protein 2], raising the question of how this is achieved. Here, we show that Scube2 EGF domains are responsible for specific proteolysis of the inhibitory Shh N-terminus, and that CUB domains complete the process by reversing steric masking of this peptide. Steric masking, in turn, depends on Ca2+ occupancy of Shh ectodomains, unveiling a new mode of shedding regulation at the substrate level. Importantly, Scube2 uncouples processing of Shh peptides from their lipid-mediated juxtamembrane positioning, and thereby explains the long-standing conundrum that N-terminally unlipidated Shh shows patterning activity in Scube2-expressing vertebrates, but not in invertebrates that lack Scube orthologs.
Collapse
Affiliation(s)
- Petra Jakobs
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Philipp Schulz
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Sabine Schürmann
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Sebastian Exner
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Rocio Rebollido-Rios
- Center for Medical Biotechnology, University of Duisburg-Essen, D-45117 Essen, Germany
| | - Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Daniel Hoffmann
- Center for Medical Biotechnology, University of Duisburg-Essen, D-45117 Essen, Germany
| | - Daniela G Seidler
- Centre for Internal Medicine, Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School I3, EB2/R3110, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| |
Collapse
|
13
|
Ebbing EA, Medema JP, Damhofer H, Meijer SL, Krishnadath KK, van Berge Henegouwen MI, Bijlsma MF, van Laarhoven HWM. ADAM10-mediated release of heregulin confers resistance to trastuzumab by activating HER3. Oncotarget 2016; 7:10243-54. [PMID: 26863569 PMCID: PMC4891117 DOI: 10.18632/oncotarget.7200] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/23/2016] [Indexed: 01/24/2023] Open
Abstract
Receptor tyrosine kinases of the HER-family are involved in the development and progression of multiple epithelial tumors, and have consequently become widely used targets for new anti-cancer therapies. Trastuzumab, an antibody against HER2, has shown potent growth inhibitory effects on HER2 overexpressing tumors, including gastro-esophageal cancer, however, resistance to this therapy is inevitable. Unfortunately, a paucity of data on the cellular mechanisms of resistance to targeted therapeutic agents exists in esophageal adenocarcinoma. Using primary established HER2-overexpressing cultures and patient-derived xenograft models, we now reveal a novel resistance mechanism to trastuzumab in esophageal cancer: In response to trastuzumab, both HER3 and the metalloprotease ADAM10 are simultaneously upregulated. The proteolytic activity of the latter then releases the HER3 ligand heregulin from the cell surface to activate HER3 and confer resistance to trastuzumab by inducing compensatory growth factor receptor signaling. Blocking either HER3 or ADAM10 effectively reverts the acquired resistance to trastuzumab. Our data thus provide strategies to inhibit this signaling and circumvent resistance to trastuzumab.
Collapse
Affiliation(s)
- Eva A Ebbing
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands.,Department of Medical Oncology, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands.,Cancer Genomics Center, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Helene Damhofer
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Sybren L Meijer
- Department of Pathology, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Kausilia K Krishnadath
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | | | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
14
|
Wang Y, Jin G, Li Q, Wang Z, Hu W, Li P, Li S, Wu H, Kong X, Gao J, Li Z. Hedgehog Signaling Non-Canonical Activated by Pro-Inflammatory Cytokines in Pancreatic Ductal Adenocarcinoma. J Cancer 2016; 7:2067-2076. [PMID: 27877222 PMCID: PMC5118670 DOI: 10.7150/jca.15786] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/04/2016] [Indexed: 12/22/2022] Open
Abstract
Hedgehog(HH) pathway is found to be activated through a manner of canonical, or the non-canonical HH pathways. Distinct hyperplasia stroma around tumor cells is supposed to express pro-inflammatory cytokines abundantly, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), etc. in pancreatic ductal adenocarcinoma (PDAC) tissues. In this study we observed the effects of TNF-α and IL-1β on HH pathway activation in PDAC cells, and explored their activation manners. Our results showed that pro-inflammatory cytokines, TNF-α and IL-1β, could up-regulate the expression of GLI1 gene, increase its nuclear protein expression and promote malignant cell behaviors including migration, invasion, epithelial-mesenchymal transition (EMT) and drug resistance as well. Moreover, GLI1 promoter-reporter assay in combination with blocking either NF-κB or Smoothened (SMO) suggested that TNF-α and IL-1β could transcriptionally up-regulate expression of GLI1 completely via NF-κB, whereas ablation of SMO could not completely attenuate the regulation effects of TNF-α and IL-1β on GLI1 expression. Collectively, our results indicated that TNF-α and IL-1β in hyperplasia stroma can promote the PDAC cell development by activating HH pathway, through both the canonical and non-canonical HH activation ways.
Collapse
Affiliation(s)
- Yuqiong Wang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.; No. 411 Hospital of PLA, Shanghai 200081, China
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Quanjiang Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.; Department of Oncology, No. 150 Central Hospital of PLA, Luoyang, Henan Province 471000, China
| | | | - Weimin Hu
- No. 411 Hospital of PLA, Shanghai 200081, China
| | - Ping Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Shude Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Hongyu Wu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xiangyu Kong
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jun Gao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
15
|
Jakobs P, Schulz P, Ortmann C, Schürmann S, Exner S, Rebollido-Rios R, Dreier R, Seidler DG, Grobe K. Bridging the gap: heparan sulfate and Scube2 assemble Sonic hedgehog release complexes at the surface of producing cells. Sci Rep 2016; 6:26435. [PMID: 27199253 PMCID: PMC4873810 DOI: 10.1038/srep26435] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/03/2016] [Indexed: 12/12/2022] Open
Abstract
Decision making in cellular ensembles requires the dynamic release of signaling molecules from the producing cells into the extracellular compartment. One important example of molecules that require regulated release in order to signal over several cell diameters is the Hedgehog (Hh) family, because all Hhs are synthesized as dual-lipidated proteins that firmly tether to the outer membrane leaflet of the cell that produces them. Factors for the release of the vertebrate Hh family member Sonic Hedgehog (Shh) include cell-surface sheddases that remove the lipidated terminal peptides, as well as the soluble glycoprotein Scube2 that cell-nonautonomously enhances this process. This raises the question of how soluble Scube2 is recruited to cell-bound Shh substrates to regulate their turnover. We hypothesized that heparan sulfate (HS) proteoglycans (HSPGs) on the producing cell surface may play this role. In this work, we confirm that HSPGs enrich Scube2 at the surface of Shh-producing cells and that Scube2-regulated proteolytic Shh processing and release depends on specific HS. This finding indicates that HSPGs act as cell-surface assembly and storage platforms for Shh substrates and for protein factors required for their release, making HSPGs critical decision makers for Scube2-dependent Shh signaling from the surface of producing cells.
Collapse
Affiliation(s)
- P Jakobs
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - P Schulz
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - C Ortmann
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - S Schürmann
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - S Exner
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - R Rebollido-Rios
- Center for Medical Biotechnology#, University of Duisburg-Essen, 45117 Essen, Germany
| | - R Dreier
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - D G Seidler
- Centre for Internal Medicine, Hannover Medical School I3, EB2/R3110, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - K Grobe
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| |
Collapse
|
16
|
Sarkar S, Cohen N, Sabhachandani P, Konry T. Phenotypic drug profiling in droplet microfluidics for better targeting of drug-resistant tumors. LAB ON A CHIP 2015; 15:4441-50. [PMID: 26456240 PMCID: PMC4666301 DOI: 10.1039/c5lc00923e] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Acquired drug resistance is a key factor in the failure of chemotherapy. Due to intratumoral heterogeneity, cancer cells depict variations in intracellular drug uptake and efflux at the single cell level, which may not be detectable in bulk assays. In this study we present a droplet microfluidics-based approach to assess the dynamics of drug uptake, efflux and cytotoxicity in drug-sensitive and drug-resistant breast cancer cells. An integrated droplet generation and docking microarray was utilized to encapsulate single cells as well as homotypic cell aggregates. Drug-sensitive cells showed greater death in the presence or absence of Doxorubicin (Dox) compared to the drug-resistant cells. We observed heterogeneous Dox uptake in individual drug-sensitive cells while the drug-resistant cells showed uniformly low uptake and retention. Dox-resistant cells were classified into distinct subsets based on their efflux properties. Cells that showed longer retention of extracellular reagents also demonstrated maximal death. We further observed homotypic fusion of both cell types in droplets, which resulted in increased cell survival in the presence of high doses of Dox. Our results establish the applicability of this microfluidic platform for quantitative drug screening in single cells and multicellular interactions.
Collapse
Affiliation(s)
- S Sarkar
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 02115 MA, USA.
| | - N Cohen
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 02115 MA, USA.
| | - P Sabhachandani
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 02115 MA, USA.
| | - T Konry
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 02115 MA, USA.
| |
Collapse
|
17
|
Ortmann C, Pickhinke U, Exner S, Ohlig S, Lawrence R, Jboor H, Dreier R, Grobe K. Sonic hedgehog processing and release are regulated by glypican heparan sulfate proteoglycans. J Cell Sci 2015; 128:2374-85. [PMID: 25967551 DOI: 10.1242/jcs.170670] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022] Open
Abstract
All Hedgehog morphogens are released from producing cells, despite being synthesized as N- and C-terminally lipidated molecules, a modification that firmly tethers them to the cell membrane. We have previously shown that proteolytic removal of both lipidated peptides, called shedding, releases bioactive Sonic hedgehog (Shh) morphogens from the surface of transfected Bosc23 cells. Using in vivo knockdown together with in vitro cell culture studies, we now show that glypican heparan sulfate proteoglycans regulate this process, through their heparan sulfate chains, in a cell autonomous manner. Heparan sulfate specifically modifies Shh processing at the cell surface, and purified glycosaminoglycans enhance the proteolytic removal of N- and C-terminal Shh peptides under cell-free conditions. The most likely explanation for these observations is direct Shh processing in the extracellular compartment, suggesting that heparan sulfate acts as a scaffold or activator for Shh ligands and the factors required for their turnover. We also show that purified heparan sulfate isolated from specific cell types and tissues mediates the release of bioactive Shh from pancreatic cancer cells, revealing a previously unknown regulatory role for these versatile molecules in a pathological context.
Collapse
Affiliation(s)
- Corinna Ortmann
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Ute Pickhinke
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Sebastian Exner
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Stefanie Ohlig
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Roger Lawrence
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Hamodah Jboor
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Rita Dreier
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149 Münster, Germany
| | - Kay Grobe
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149 Münster, Germany
| |
Collapse
|
18
|
Damhofer H, Ebbing EA, Steins A, Welling L, Tol JA, Krishnadath KK, van Leusden T, van de Vijver MJ, Besselink MG, Busch OR, van Berge Henegouwen MI, van Delden O, Meijer SL, Dijk F, Medema JP, van Laarhoven HW, Bijlsma MF. Establishment of patient-derived xenograft models and cell lines for malignancies of the upper gastrointestinal tract. J Transl Med 2015; 13:115. [PMID: 25884700 PMCID: PMC4419410 DOI: 10.1186/s12967-015-0469-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/18/2015] [Indexed: 12/21/2022] Open
Abstract
Background The upper gastrointestinal tract is home to some of most notorious cancers like esophagogastric and pancreatic cancer. Several factors contribute to the lethality of these tumors, but one that stands out for both tumor types is the strong inter- as well as intratumor heterogeneity. Unfortunately, genetic tumor models do not match this heterogeneity, and for esophageal cancer no adequate genetic models exist. To allow for an improved understanding of these diseases, tissue banks with sufficient amount of samples to cover the extent of diversity of human cancers are required. Additionally, xenograft models that faithfully mimic and span the breadth of human disease are essential to perform meaningful functional experiments. Methods We describe here the establishment of a tissue biobank, patient derived xenografts (PDXs) and cell line models of esophagogastric and pancreatic cancer patients. Biopsy material was grafted into immunocompromised mice and PDXs were used to establish primary cell cultures to perform functional studies. Expression of Hedgehog ligands in patient tumor and matching PDX was assessed by immunohistochemical staining, and quantitative real-time PCR as well as flow cytometry was used for cultured cells. Cocultures with Hedgehog reporter cells were performed to study paracrine signaling potency. Furthermore, SHH expression was modulated in primary cultures using lentiviral mediated knockdown. Results We have established a panel of 29 PDXs from esophagogastric and pancreatic cancers, and demonstrate that these PDXs mirror several of the (immuno)histological and biochemical characteristics of the original tumors. Derived cell lines can be genetically manipulated and used to further study tumor biology and signaling capacity. In addition, we demonstrate an active (paracrine) Hedgehog signaling mode by both tumor types, the magnitude of which has not been compared directly in previous studies. Conclusions Our established PDXs and their matching primary cell lines retain important characteristics seen in the original tumors, and this should enable future studies to address the responses of these tumors to different treatment modalities, but also help in gaining mechanistic insight in how some tumors respond to certain regimens and others do not. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0469-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helene Damhofer
- Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Eva A Ebbing
- Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Anne Steins
- Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Lieke Welling
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, The Netherlands.
| | - Johanna A Tol
- Department of Surgery, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Kausilia K Krishnadath
- Department of Gastroenterology and Hepatology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Tom van Leusden
- Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Marc J van de Vijver
- Department of Pathology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Marc G Besselink
- Department of Surgery, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Olivier R Busch
- Department of Surgery, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | | | - Otto van Delden
- Department of Radiology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Sybren L Meijer
- Department of Pathology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Frederike Dijk
- Department of Pathology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Hanneke W van Laarhoven
- Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands. .,Department of Medical Oncology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| |
Collapse
|