1
|
Xia L, Wang J, Chen M, Li G, Wang W, An T. Biofilm formation mechanisms of mixed antibiotic-resistant bacteria in water: Bacterial interactions and horizontal transfer of antibiotic-resistant plasmids. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136554. [PMID: 39566460 DOI: 10.1016/j.jhazmat.2024.136554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/02/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Over 95 % of bacteria on water supply pipeline surfaces exist in biofilms, which are hotspots for antibiotic resistance gene (ARG) transmission. This study established mixed biofilm culture systems on a metal iron substrate using Escherichia coli: antibiotic-sensitive bacteria (ASB) and antibiotic-resistant bacteria (ARB). The growth rate and extracellular polymeric substances (EPS) content of mixed biofilm surpassed single-species biofilms due to synergistic interactions among different bacteria. However, the composition of mixed biofilms formed by ASB and ARB became unstable after 72 h, linked to reduced polysaccharide proportions in EPS and inter-bacterial competition. The bacterial composition and conjugative transfer frequency of ARGs in mixed biofilms indicate that biofilm formation significantly enhances horizontal transfer of ARGs. Notably, the conjugative transfer frequency of the mixed biofilm formed by two ARB increased 100-fold within five days. In contrast, the conjugative transfer frequency in the mixed biofilm formed by ASB and ARB was unstable; inter-bacterial competition led to plasmid loss associated with horizontal transfer of ARGs, ultimately resulting in biofilm shedding. Furthermore, genes associated with ARG transfer and biofilm growth up-regulated by 1.5 - 6 and 2 - 7 times, respectively, in mixed biofilm. These findings highlight a mutually reinforcing relationship between biofilm formation and horizontal ARG transmission, with significant environmental implications.
Collapse
Affiliation(s)
- Longji Xia
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiaping Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Min Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanjun Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Mayer M, Winer L, Karniel A, Pinner E, Yardeni EH, Morgenstern D, Bibi E. Co-translational membrane targeting and holo-translocon docking of ribosomes translating the SRP receptor. J Mol Biol 2022; 434:167459. [DOI: 10.1016/j.jmb.2022.167459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 10/19/2022]
|
3
|
Steinberg R, Origi A, Natriashvili A, Sarmah P, Licheva M, Walker PM, Kraft C, High S, Luirink J, Shi WQ, Helmstädter M, Ulbrich MH, Koch HG. Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle. PLoS Biol 2020; 18:e3000874. [PMID: 32997663 PMCID: PMC7549839 DOI: 10.1371/journal.pbio.3000874] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/12/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023] Open
Abstract
Small membrane proteins represent a largely unexplored yet abundant class of proteins in pro- and eukaryotes. They essentially consist of a single transmembrane domain and are associated with stress response mechanisms in bacteria. How these proteins are inserted into the bacterial membrane is unknown. Our study revealed that in Escherichia coli, the 27-amino-acid-long model protein YohP is recognized by the signal recognition particle (SRP), as indicated by in vivo and in vitro site-directed cross-linking. Cross-links to SRP were also observed for a second small membrane protein, the 33-amino-acid-long YkgR. However, in contrast to the canonical cotranslational recognition by SRP, SRP was found to bind to YohP posttranslationally. In vitro protein transport assays in the presence of a SecY inhibitor and proteoliposome studies demonstrated that SRP and its receptor FtsY are essential for the posttranslational membrane insertion of YohP by either the SecYEG translocon or by the YidC insertase. Furthermore, our data showed that the yohP mRNA localized preferentially and translation-independently to the bacterial membrane in vivo. In summary, our data revealed that YohP engages an unique SRP-dependent posttranslational insertion pathway that is likely preceded by an mRNA targeting step. This further highlights the enormous plasticity of bacterial protein transport machineries.
Collapse
Affiliation(s)
- Ruth Steinberg
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Andrea Origi
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Ana Natriashvili
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Pinku Sarmah
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Princess M. Walker
- Department of Chemistry, Ball State University, Muncie, Indiana, United States of America
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Stephen High
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Joen Luirink
- Molecular Microbiology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Wei. Q. Shi
- Department of Chemistry, Ball State University, Muncie, Indiana, United States of America
| | - Martin Helmstädter
- Internal Medicine IV, Department of Medicine, Medical Center − University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian H. Ulbrich
- Internal Medicine IV, Department of Medicine, Medical Center − University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Pellowe G, Findlay HE, Lee K, Gemeinhardt TM, Blackholly LR, Reading E, Booth PJ. Capturing Membrane Protein Ribosome Nascent Chain Complexes in a Native-like Environment for Co-translational Studies. Biochemistry 2020; 59:2764-2775. [PMID: 32627541 PMCID: PMC7551657 DOI: 10.1021/acs.biochem.0c00423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/02/2020] [Indexed: 01/02/2023]
Abstract
Co-translational folding studies of membrane proteins lag behind cytosolic protein investigations largely due to the technical difficulty in maintaining membrane lipid environments for correct protein folding. Stalled ribosome-bound nascent chain complexes (RNCs) can give snapshots of a nascent protein chain as it emerges from the ribosome during biosynthesis. Here, we demonstrate how SecM-facilitated nascent chain stalling and native nanodisc technologies can be exploited to capture in vivo-generated membrane protein RNCs within their native lipid compositions. We reveal that a polytopic membrane protein can be successfully stalled at various stages during its synthesis and the resulting RNC extracted within either detergent micelles or diisobutylene-maleic acid co-polymer native nanodiscs. Our approaches offer tractable solutions for the structural and biophysical interrogation of nascent membrane proteins of specified lengths, as the elongating nascent chain emerges from the ribosome and inserts into its native lipid milieu.
Collapse
Affiliation(s)
- Grant
A. Pellowe
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Heather E. Findlay
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Karen Lee
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Tim M. Gemeinhardt
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Laura R. Blackholly
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Eamonn Reading
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Paula J. Booth
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| |
Collapse
|
5
|
Steinberg R, Knüpffer L, Origi A, Asti R, Koch HG. Co-translational protein targeting in bacteria. FEMS Microbiol Lett 2019; 365:4966980. [PMID: 29790984 DOI: 10.1093/femsle/fny095] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/09/2018] [Indexed: 01/16/2023] Open
Abstract
About 30% of all bacterial proteins execute their function outside of the cytosol and have to be transported into or across the cytoplasmic membrane. Bacteria use multiple protein transport systems in parallel, but the majority of proteins engage two distinct targeting systems. One is the co-translational targeting by two universally conserved GTPases, the signal recognition particle (SRP) and its receptor FtsY, which deliver inner membrane proteins to either the SecYEG translocon or the YidC insertase for membrane insertion. The other targeting system depends on the ATPase SecA, which targets secretory proteins, i.e. periplasmic and outer membrane proteins, to SecYEG for their subsequent ATP-dependent translocation. While SRP selects its substrates already very early during their synthesis, the recognition of secretory proteins by SecA is believed to occur primarily after translation termination, i.e. post-translationally. In this review we highlight recent progress on how SRP recognizes its substrates at the ribosome and how the fidelity of the targeting reaction to SecYEG is maintained. We furthermore discuss similarities and differences in the SRP-dependent targeting to either SecYEG or YidC and summarize recent results that suggest that some membrane proteins are co-translationally targeted by SecA.
Collapse
Affiliation(s)
- Ruth Steinberg
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| | - Lara Knüpffer
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| | - Andrea Origi
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestr. 1, Freiburg D-79104, Germany
| | - Rossella Asti
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| |
Collapse
|
6
|
Pohlschroder M, Pfeiffer F, Schulze S, Abdul Halim MF. Archaeal cell surface biogenesis. FEMS Microbiol Rev 2018; 42:694-717. [PMID: 29912330 PMCID: PMC6098224 DOI: 10.1093/femsre/fuy027] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Cell surfaces are critical for diverse functions across all domains of life, from cell-cell communication and nutrient uptake to cell stability and surface attachment. While certain aspects of the mechanisms supporting the biosynthesis of the archaeal cell surface are unique, likely due to important differences in cell surface compositions between domains, others are shared with bacteria or eukaryotes or both. Based on recent studies completed on a phylogenetically diverse array of archaea, from a wide variety of habitats, here we discuss advances in the characterization of mechanisms underpinning archaeal cell surface biogenesis. These include those facilitating co- and post-translational protein targeting to the cell surface, transport into and across the archaeal lipid membrane, and protein anchoring strategies. We also discuss, in some detail, the assembly of specific cell surface structures, such as the archaeal S-layer and the type IV pili. We will highlight the importance of post-translational protein modifications, such as lipid attachment and glycosylation, in the biosynthesis as well as the regulation of the functions of these cell surface structures and present the differences and similarities in the biogenesis of type IV pili across prokaryotic domains.
Collapse
Affiliation(s)
| | - Friedhelm Pfeiffer
- Computational Biology Group, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Stefan Schulze
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
7
|
Kempf G, Stjepanovic G, Sloan J, Hendricks A, Lapouge K, Sinning I. The Escherichia coli SRP Receptor Forms a Homodimer at the Membrane. Structure 2018; 26:1440-1450.e5. [PMID: 30146170 DOI: 10.1016/j.str.2018.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/14/2018] [Accepted: 07/22/2018] [Indexed: 01/19/2023]
Abstract
The Escherichia coli signal recognition particle (SRP) receptor, FtsY, plays a fundamental role in co-translational targeting of membrane proteins via the SRP pathway. Efficient targeting relies on membrane interaction of FtsY and heterodimerization with the SRP protein Ffh, which is driven by detachment of α helix (αN1) in FtsY. Here we show that apart from the heterodimer, FtsY forms a nucleotide-dependent homodimer on the membrane, and upon αN1 removal also in solution. Homodimerization triggers reciprocal stimulation of GTP hydrolysis and occurs in vivo. Biochemical characterization together with integrative modeling suggests that the homodimer employs the same interface as the heterodimer. Structure determination of FtsY NG+1 with GMPPNP shows that a dimerization-induced conformational switch of the γ-phosphate is conserved in Escherichia coli, filling an important gap in SRP GTPase activation. Our findings add to the current understanding of SRP GTPases and may challenge previous studies that did not consider homodimerization of FtsY.
Collapse
Affiliation(s)
- Georg Kempf
- Heidelberg University Biochemistry Centre, Heidelberg 69120, Germany
| | - Goran Stjepanovic
- Heidelberg University Biochemistry Centre, Heidelberg 69120, Germany
| | - Jeremy Sloan
- Heidelberg University Biochemistry Centre, Heidelberg 69120, Germany
| | - Astrid Hendricks
- Heidelberg University Biochemistry Centre, Heidelberg 69120, Germany
| | - Karine Lapouge
- Heidelberg University Biochemistry Centre, Heidelberg 69120, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Centre, Heidelberg 69120, Germany.
| |
Collapse
|
8
|
Co-translational Folding Intermediate Dictates Membrane Targeting of the Signal Recognition Particle Receptor. J Mol Biol 2018; 430:1607-1620. [PMID: 29704493 DOI: 10.1016/j.jmb.2018.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 11/22/2022]
Abstract
Much of our knowledge on the function of proteins is deduced from their mature, folded states. However, it is unknown whether partially synthesized nascent protein segments can execute biological functions during translation and whether their premature folding states matter. A recent observation that a nascent chain performs a distinct function, co-translational targeting in vivo, has been made with the Escherichia coli signal recognition particle receptor FtsY, a major player in the conserved pathway of membrane protein biogenesis. FtsY functions as a membrane-associated entity, but very little is known about the mode of its targeting to the membrane. Here we investigated the underlying structural mechanism of the co-translational FtsY targeting to the membrane. Our results show that helices N2-4, which mediate membrane targeting, form a stable folding intermediate co-translationally that greatly differs from its fold in the mature FtsY. These results thus resolve a long-standing mystery of how the receptor targets the membrane even when deleted of its alleged membrane targeting sequence. The structurally distinct targeting determinant of FtsY exists only co-translationally. Our studies will facilitate further efforts to seek cellular factors required for proper targeting and association of FtsY with the membrane. Moreover, the results offer a hallmark example for how co-translational nascent intermediates may dictate biological functions.
Collapse
|
9
|
Benhalevy D, Biran I, Bochkareva ES, Sorek R, Bibi E. Evidence for a cytoplasmic pool of ribosome-free mRNAs encoding inner membrane proteins in Escherichia coli. PLoS One 2017; 12:e0183862. [PMID: 28841711 PMCID: PMC5571963 DOI: 10.1371/journal.pone.0183862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022] Open
Abstract
Translation-independent mRNA localization represents an emerging concept in cell biology. In Escherichia coli, mRNAs encoding integral membrane proteins (MPRs) are targeted to the membrane where they are translated by membrane associated ribosomes and the produced proteins are inserted into the membrane co-translationally. In order to better understand aspects of the biogenesis and localization of MPRs, we investigated their subcellular distribution using cell fractionation, RNA-seq and qPCR. The results show that MPRs are overrepresented in the membrane fraction, as expected, and depletion of the signal recognition particle-receptor, FtsY reduced the amounts of all mRNAs on the membrane. Surprisingly, however, MPRs were also found relatively abundant in the soluble ribosome-free fraction and their amount in this fraction is increased upon overexpression of CspE, which was recently shown to interact with MPRs. CspE also conferred a positive effect on the membrane-expression of integral membrane proteins. We discuss the possibility that the effects of CspE overexpression may link the intriguing subcellular localization of MPRs to the cytosolic ribosome-free fraction with their translation into membrane proteins and that the ribosome-free pool of MPRs may represent a stage during their targeting to the membrane, which precedes translation.
Collapse
Affiliation(s)
- Daniel Benhalevy
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ido Biran
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Elena S. Bochkareva
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eitan Bibi
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Gupta S, Roy M, Ghosh A. The Archaeal Signal Recognition Particle: Present Understanding and Future Perspective. Curr Microbiol 2016; 74:284-297. [DOI: 10.1007/s00284-016-1167-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
|
11
|
Lakomek NA, Draycheva A, Bornemann T, Wintermeyer W. Electrostatics and Intrinsic Disorder Drive Translocon Binding of the SRP Receptor FtsY. Angew Chem Int Ed Engl 2016; 55:9544-7. [PMID: 27346853 PMCID: PMC5094494 DOI: 10.1002/anie.201602905] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/19/2016] [Indexed: 01/18/2023]
Abstract
Integral membrane proteins in bacteria are co‐translationally targeted to the SecYEG translocon for membrane insertion via the signal recognition particle (SRP) pathway. The SRP receptor FtsY and its N‐terminal A domain, which is lacking in any structural model of FtsY, were studied using NMR and fluorescence spectroscopy. The A domain is mainly disordered and highly flexible; it binds to lipids via its N terminus and the C‐terminal membrane targeting sequence. The central A domain binds to the translocon non‐specifically and maintains disorder. Translocon targeting and binding of the A domain is driven by electrostatic interactions. The intrinsically disordered A domain tethers FtsY to the translocon, and because of its flexibility, allows the FtsY NG domain to scan a large area for binding to the NG domain of ribosome‐bound SRP, thereby promoting the formation of the quaternary transfer complex at the membrane.
Collapse
Affiliation(s)
- Nils-Alexander Lakomek
- Department of NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany. .,ETH Zurich, Department of Chemistry and Applied Biosciences (D-CHAB), Laboratory of Physical Chemistry (LPC), Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| | - Albena Draycheva
- Max-Planck Institute for Biophysical Chemistry, Department of Physical Biochemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Thomas Bornemann
- Max-Planck Institute for Biophysical Chemistry, Department of Physical Biochemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Wolfgang Wintermeyer
- Max-Planck Institute for Biophysical Chemistry, Department of Physical Biochemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
12
|
Lakomek NA, Draycheva A, Bornemann T, Wintermeyer W. Electrostatics and Intrinsic Disorder Drive Translocon Binding of the SRP Receptor FtsY. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nils-Alexander Lakomek
- Department of NMR-based Structural Biology; Max-Planck Institute for Biophysical Chemistry; Am Fassberg 11 37077 Göttingen Germany
- ETH Zurich; Department of Chemistry and Applied Biosciences (D-CHAB), Laboratory of Physical Chemistry (LPC); Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
| | - Albena Draycheva
- Max-Planck Institute for Biophysical Chemistry; Department of Physical Biochemistry; Am Fassberg 11 37077 Göttingen Germany
| | - Thomas Bornemann
- Max-Planck Institute for Biophysical Chemistry; Department of Physical Biochemistry; Am Fassberg 11 37077 Göttingen Germany
| | - Wolfgang Wintermeyer
- Max-Planck Institute for Biophysical Chemistry; Department of Physical Biochemistry; Am Fassberg 11 37077 Göttingen Germany
| |
Collapse
|