1
|
Intrachromosomal Looping and Histone K27 Methylation Coordinately Regulates the lncRNA H19-Fetal Mitogen IGF2 Imprinting Cluster in the Decidual Microenvironment of Early Pregnancy. Cells 2022; 11:cells11193130. [PMID: 36231092 PMCID: PMC9563431 DOI: 10.3390/cells11193130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a highly heterogeneous complication of pregnancy with the underlying mechanisms remaining uncharacterized. Dysregulated decidualization is a critical contributor to the phenotypic alterations related to pregnancy complications. To understand the molecular factors underlying RSA, we explored the role of longnoncoding RNAs (lncRNAs) in the decidual microenvironment where the crosstalk at the fetal–maternal interface occurs. By exploring RNA-seq data from RSA patients, we identified H19, a noncoding RNA that exhibits maternal monoallelic expression, as one of the most upregulated lncRNAs associated with RSA. The paternally expressed fetal mitogen IGF2, which is reciprocally coregulated with H19 within the same imprinting cluster, was also upregulated. Notably, both genes underwent loss of imprinting, as H19 and IGF2 were actively transcribed from both parental alleles in some decidual tissues. This loss of imprinting in decidual tissues was associated with the loss of the H3K27m3 repressive histone marker in the IGF2 promoter, CpG hypomethylation at the central CTCF binding site in the imprinting control center (ICR), and the loss of CTCF-mediated intrachromosomal looping. These data suggest that dysregulation of the H19/IGF2 imprinting pathway may be an important epigenetic factor in the decidual microenvironment related to poor decidualization.
Collapse
|
2
|
Focal Adhesion Protein Vinculin Is Required for Proper Meiotic Progression during Mouse Spermatogenesis. Cells 2022; 11:cells11132013. [PMID: 35805097 PMCID: PMC9265697 DOI: 10.3390/cells11132013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
The focal adhesion protein Vinculin (VCL) is ascribed to various cytoplasmic functions; however, its nuclear role has so far been ambiguous. We observed that VCL localizes to the nuclei of mouse primary spermatocytes undergoing first meiotic division. Specifically, VCL localizes along the meiosis-specific structure synaptonemal complex (SC) during prophase I and the centromeric regions, where it remains until metaphase I. To study the role of VCL in meiotic division, we prepared a conditional knock-out mouse (VCLcKO). We found that the VCLcKO male mice were semi-fertile, with a decreased number of offspring compared to wild-type animals. This study of events in late prophase I indicated premature splitting of homologous chromosomes, accompanied by an untimely loss of SCP1. This caused erroneous kinetochore formation, followed by failure of the meiotic spindle assembly and metaphase I arrest. To assess the mechanism of VCL involvement in meiosis, we searched for its possible interacting partners. A mass spectrometry approach identified several putative interactors which belong to the ubiquitin–proteasome pathway (UPS). The depletion of VLC leads to the dysregulation of a key subunit of the proteasome complex in the meiotic nuclei and an altered nuclear SUMOylation level. Taken together, we show for the first time the presence of VCL in the nucleus of spermatocytes and its involvement in proper meiotic progress. It also suggests the direction for future studies regarding the role of VCL in spermatogenesis through regulation of UPS.
Collapse
|
3
|
Kamrani S, Amirchaghmaghi E, Ghaffari F, Shahhoseini M, Ghaedi K. Altered gene expression of VEGF, IGFs and H19 lncRNA and epigenetic profile of H19-DMR region in endometrial tissues of women with endometriosis. Reprod Health 2022; 19:100. [PMID: 35459174 PMCID: PMC9034598 DOI: 10.1186/s12978-022-01406-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/06/2022] [Indexed: 12/03/2022] Open
Abstract
Background Endometriosis, as chronic estrogen-dependent disease, is defined by the presence of endometrial-like tissue outside the uterus. Proliferation of endometrial tissue and neoangiogenesis are critical factors in development of endometriosis. Hence, vascular endothelial growth factor (VEGF) as well as insulin‐like growth factor 1 and 2 (IGF1, 2) may be involved as inducers of cellular proliferation or neoangiogenesis. Imprinted long noncoding RNA H19 (lncRNA H19) has been suggested to be involved in pathogenesis of endometriosis via regulation of cellular proliferation and differentiation. Epigenetic aberrations appear to play an important role in its pathogenesis. The present study was designed to elucidate VEGF, IGF1, IGF2 and H19 lncRNA genes expression and epigenetic alterations of differentially methylated region (DMR) of H19 (H19-DMR) regulatory region in endometrial tissues of patients with endometriosis, in comparison with control women. Methods In this case–control study, 24 women with and without endometriosis were studied for the relative expression of VEGF, IGF1, IGF2 and H19 lncRNA genes using real-time polymerase chain reaction (PCR) technique. Occupancy of the MeCP2 on DMR region of H19 gene was assessed using chromatin immunoprecipitation (ChIP), followed by real-time PCR. Results Genes expression profile of H19, IGF1 and IGF2 was decreased in eutopic and ectopic endometrial tissues of endometriosis group, compared to the control tissues. Decreased expression of H19 in ectopic samples was significant in comparison with the controls (P < 0.05). Gene expression of VEGF was increased in eutopic tissues of endometriosis group, compared to control group. Whereas its expression level was lower in ectopic lesions versus eutopic and control endometrial samples. ChIP analysis revealed significant and nearly significant hypomethylation of H19-DMR region II in eutopic and ectopic samples, compared to the control group respectively. This epigenetic change was aligned with expression of IGF2. While methylation of H19-DMR region I was not significantly different between the eutopic, ectopic and control endometrial samples. Conclusion These data showed that VEGF, IGF1, IGF2 and H19 lncRNA genes expression and epigenetic alterations of H19 lncRNA have dynamic role in the pathogenesis of endometriosis, specifically in the way that hypomethylation of H19-DMR region II can be involved in IGF2 dysregulation in endometriosis.
Collapse
Affiliation(s)
- Sedigheh Kamrani
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave, Azadi Square, Isfahan, Iran
| | - Elham Amirchaghmaghi
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Firouzeh Ghaffari
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Shahhoseini
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O.Box: 19395-4644, Tehran, Iran. .,Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran. .,Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave, Azadi Square, Isfahan, Iran.
| |
Collapse
|
4
|
Wu B, Zhang Y, Yu Y, Zhong C, Lang Q, Liang Z, Lv C, Xu F, Tian Y. Long Noncoding RNA H19: A Novel Therapeutic Target Emerging in Oncology Via Regulating Oncogenic Signaling Pathways. Front Cell Dev Biol 2021; 9:796740. [PMID: 34977037 PMCID: PMC8716783 DOI: 10.3389/fcell.2021.796740] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNA H19 (H19) is an imprinting gene with only maternal expression that is involved in regulating different processes in various types of cells. Previous studies have shown that abnormal H19 expression is involved in many pathological processes, such as cancer, mainly through sponging miRNAs, interacting with proteins, or regulating epigenetic modifications. Accumulating evidence has shown that several oncogenic signaling pathways lead to carcinogenesis. Recently, the regulatory relationship between H19 and oncogenic signaling pathways in various types of cancer has been of great interest to many researchers. In this review, we discussed the key roles of H19 in cancer development and progression via its regulatory function in several oncogenic signaling pathways, such as PI3K/Akt, canonical Wnt/β-catenin, canonical NF-κB, MAPK, JAK/STAT and apoptosis. These oncogenic signaling pathways regulated by H19 are involved in cell proliferation, proliferation, migration and invasion, angiogenesis, and apoptosis of various cancer cells. This review suggests that H19 may be a novel therapeutic target for cancers treatment by regulating oncogenic signaling pathways.
Collapse
Affiliation(s)
- Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yizhou Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Yu
- Department of Surgery, Jinzhou Medical University, Jinzhou, China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Lang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiyun Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Phosphodiesterase 4D Depletion/Inhibition Exerts Anti-Oncogenic Properties in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13092182. [PMID: 34062786 PMCID: PMC8125776 DOI: 10.3390/cancers13092182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide. Drug resistance is a serious problem in the treatment of HCC. Therefore, it is of high clinical impact to discover targeted therapies that may overcome drug-related resistance and improve the survival of patients affected by HCC. In the present study, we investigated the role of Isoform D of type 4 phosphodiesterase (PDE4D) in HCC development and progression. We found that PDE4D is over-expressed HCCs in vitro and in vivo and the depletion of the gene by silencing or the pharmacological inhibition of protein activity exerted anti-tumorigenic activities. Abstract Isoform D of type 4 phosphodiesterase (PDE4D) has recently been associated with several human cancer types with the exception of human hepatocellular carcinoma (HCC). Here we explored the role of PDE4D in HCC. We found that PDE4D gene/protein were over-expressed in different samples of human HCCs compared to normal livers. Accordingly, HCC cells showed higher PDE4D activity than non-tumorigenic cells, accompanied by over-expression of the PDE4D isoform. Silencing of PDE4D gene and pharmacological inhibition of protein activity by the specific inhibitor Gebr-7b reduced cell proliferation and increased apoptosis in HCC cells, with a decreased fraction of cells in S phase and a differential modulation of key regulators of cell cycle and apoptosis. PDE4D silencing/inhibition also affected the gene expression of several cancer-related genes, such as the pro-oncogenic insulin growth factor (IGF2), which is down-regulated. Finally, gene expression data, available in the CancerLivER data base, confirm that PDE4D over-expression in human HCCs correlated with an increased expression of IGF2, suggesting a new possible molecular network that requires further investigations. In conclusion, intracellular depletion/inhibition of PDE4D prevents the growth of HCC cells, displaying anti-oncogenic effects. PDE4D may thus represent a new biomarker for diagnosis and a potential adjuvant target for HCC therapy.
Collapse
|
6
|
Yang Z, Zhang T, Han S, Kusumanchi P, Huda N, Jiang Y, Liangpunsakul S. Long noncoding RNA H19 - a new player in the pathogenesis of liver diseases. Transl Res 2021; 230:139-150. [PMID: 33227504 PMCID: PMC9330166 DOI: 10.1016/j.trsl.2020.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
The liver is a vital organ that controls glucose and lipid metabolism, hormone regulation, and bile secretion. Liver injury can occur from various insults such as viruses, metabolic diseases, and alcohol, which lead to acute and chronic liver diseases. Recent studies have demonstrated the implications of long noncoding RNAs (lncRNAs) in the pathogenesis of liver diseases. These newly discovered lncRNAs have various functions attributing to many cellular biological processes via distinct and diverse mechanisms. LncRNA H19, one of the first lncRNAs being identified, is highly expressed in fetal liver but not in adult normal liver. Its expression, however, is increased in liver diseases with various etiologies. In this review, we focused on the roles of H19 in the pathogenesis of liver diseases. This comprehensive review is aimed to provide useful perspectives and translational applications of H19 as a potential therapeutic target of liver diseases.
Collapse
Affiliation(s)
- Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Ting Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sen Han
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Praveen Kusumanchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nazmul Huda
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yanchao Jiang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Roudebush Veterans Administration Medical Center, Indianapolis, Indiana; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
7
|
Manipulation of Focal Adhesion Signaling by Pathogenic Microbes. Int J Mol Sci 2021; 22:ijms22031358. [PMID: 33572997 PMCID: PMC7866387 DOI: 10.3390/ijms22031358] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Focal adhesions (FAs) serve as dynamic signaling hubs within the cell. They connect intracellular actin to the extracellular matrix (ECM) and respond to environmental cues. In doing so, these structures facilitate important processes such as cell-ECM adhesion and migration. Pathogenic microbes often modify the host cell actin cytoskeleton in their pursuit of an ideal replicative niche or during invasion to facilitate uptake. As actin-interfacing structures, FA dynamics are also intimately tied to actin cytoskeletal organization. Indeed, exploitation of FAs is another avenue by which pathogenic microbes ensure their uptake, survival and dissemination. This is often achieved through the secretion of effector proteins which target specific protein components within the FA. Molecular mimicry of the leucine-aspartic acid (LD) motif or vinculin-binding domains (VBDs) commonly found within FA proteins is a common microbial strategy. Other effectors may induce post-translational modifications to FA proteins through the regulation of phosphorylation sites or proteolytic cleavage. In this review, we present an overview of the regulatory mechanisms governing host cell FAs, and provide examples of how pathogenic microbes have evolved to co-opt them to their own advantage. Recent technological advances pose exciting opportunities for delving deeper into the mechanistic details by which pathogenic microbes modify FAs.
Collapse
|
8
|
Griffith BGC, Upstill-Goddard R, Brunton H, Grimes GR, Biankin AV, Serrels B, Byron A, Frame MC. FAK regulates IL-33 expression by controlling chromatin accessibility at c-Jun motifs. Sci Rep 2021; 11:229. [PMID: 33420223 PMCID: PMC7794255 DOI: 10.1038/s41598-020-80111-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/10/2020] [Indexed: 01/29/2023] Open
Abstract
Focal adhesion kinase (FAK) localizes to focal adhesions and is overexpressed in many cancers. FAK can also translocate to the nucleus, where it binds to, and regulates, several transcription factors, including MBD2, p53 and IL-33, to control gene expression by unknown mechanisms. We have used ATAC-seq to reveal that FAK controls chromatin accessibility at a subset of regulated genes. Integration of ATAC-seq and RNA-seq data showed that FAK-dependent chromatin accessibility is linked to differential gene expression, including of the FAK-regulated cytokine and transcriptional regulator interleukin-33 (Il33), which controls anti-tumor immunity. Analysis of the accessibility peaks on the Il33 gene promoter/enhancer regions revealed sequences for several transcription factors, including ETS and AP-1 motifs, and we show that c-Jun, a component of AP-1, regulates Il33 gene expression by binding to its enhancer in a FAK kinase-dependent manner. This work provides the first demonstration that FAK controls transcription via chromatin accessibility, identifying a novel mechanism by which nuclear FAK regulates biologically important gene expression.
Collapse
Affiliation(s)
- Billie G C Griffith
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Rosanna Upstill-Goddard
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Holly Brunton
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Graeme R Grimes
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Bryan Serrels
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
- NanoString Technologies, Inc, Seattle, WA, 98109, USA.
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK.
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK.
| |
Collapse
|
9
|
Rovina D, La Vecchia M, Cortesi A, Fontana L, Pesant M, Maitz S, Tabano S, Bodega B, Miozzo M, Sirchia SM. Profound alterations of the chromatin architecture at chromosome 11p15.5 in cells from Beckwith-Wiedemann and Silver-Russell syndromes patients. Sci Rep 2020; 10:8275. [PMID: 32427849 PMCID: PMC7237657 DOI: 10.1038/s41598-020-65082-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/24/2020] [Indexed: 01/12/2023] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS) are imprinting-related disorders associated with genetic/epigenetic alterations of the 11p15.5 region, which harbours two clusters of imprinted genes (IGs). 11p15.5 IGs are regulated by the methylation status of imprinting control regions ICR1 and ICR2. 3D chromatin structure is thought to play a pivotal role in gene expression control; however, chromatin architecture models are still poorly defined in most cases, particularly for IGs. Our study aimed at elucidating 11p15.5 3D structure, via 3C and 3D FISH analyses of cell lines derived from healthy, BWS or SRS children. We found that, in healthy cells, IGF2/H19 and CDKN1C/KCNQ1OT1 domains fold in complex chromatin conformations, that facilitate the control of IGs mediated by distant enhancers. In patient-derived cell lines, we observed a profound impairment of such a chromatin architecture. Specifically, we identified a cross-talk between IGF2/H19 and CDKN1C/KCNQ1OT1 domains, consisting in in cis, monoallelic interactions, that are present in healthy cells but lost in patient cell lines: an inter-domain association that sees ICR2 move close to IGF2 on one allele, and to H19 on the other. Moreover, an intra-domain association within the CDKN1C/KCNQ1OT1 locus seems to be crucial for maintaining the 3D organization of the region.
Collapse
Affiliation(s)
- Davide Rovina
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142, Milano, Italy
| | - Marta La Vecchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142, Milano, Italy
| | - Alice Cortesi
- Genome Biology Unit, Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), 20122, Milano, Italy
| | - Laura Fontana
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milano, Italy.,Medical Genetics, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122, Milano, Italy
| | - Matthieu Pesant
- Genome Biology Unit, Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), 20122, Milano, Italy
| | - Silvia Maitz
- Clinical Pediatric, Genetics Unit, MBBM Foundation, San Gerardo di Monza, 20900, Monza, Italy
| | - Silvia Tabano
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milano, Italy.,Medical Genetics, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122, Milano, Italy
| | - Beatrice Bodega
- Genome Biology Unit, Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), 20122, Milano, Italy
| | - Monica Miozzo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milano, Italy.,Medical Genetics, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122, Milano, Italy
| | - Silvia M Sirchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142, Milano, Italy.
| |
Collapse
|
10
|
Chen Y, Hesla AC, Lin Y, Ghaderi M, Liu M, Yang C, Zhang Y, Tsagkozis P, Larsson O, Haglund F. Transcriptome profiling of Ewing sarcomas - treatment resistance pathways and IGF-dependency. Mol Oncol 2020; 14:1101-1117. [PMID: 32115849 PMCID: PMC7191197 DOI: 10.1002/1878-0261.12655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 02/11/2020] [Accepted: 02/27/2020] [Indexed: 11/06/2022] Open
Abstract
Ewing sarcomas (ESs) are aggressive sarcomas driven by EWS fusion genes. We sought to investigate whether whole-transcriptome sequencing (RNA-seq) could be used to detect patterns associated with chemotherapy response or tumor progression after first-line treatment. Transcriptome sequencing (RNA-seq) of 13 ES cases was performed. Among the differentially expressed pathways, we identified IGF2 expression as a potential driver of chemotherapy response and progression. We investigated the effect of IGF2 on proliferation, radioresistance, apoptosis, and the transcriptome pattern in four ES cell lines and the effect of IGF2 expression in a validation series of 14 patients. Transcriptome analysis identified differentially expressed genes (adj. P < 0.005) and pathways associated with chemotherapy response (285 genes), short overall survival (662 genes), and progression after treatment (447 genes). Imprinting independent promoter P3-mediated IGF2 expression was identified in a subset of cases with aggressive clinical course. In ES cell lines, IGF2 induced proliferation, but promoted radioresistance only in CADO cells. High IGF2 expression was also significantly associated with shorter overall survival in patients with ES. Transcriptome analysis of the clinical samples and the cell lines revealed an IGF-dependent signature, potentially related to a stem cell-like phenotype. Transcriptome analysis is a potentially powerful complementary tool to predict the clinical behavior of ES and may be utilized for clinical trial stratification strategies and personalized oncology. Certain gene signatures, for example, IGF-related pathways, are coupled to biological functions that could be of clinical importance. Finally, our results indicate that IGF inhibition may be successful as a first-line therapy in conjunction with conventional radiochemotherapy for a subset of patients.
Collapse
Affiliation(s)
- Yi Chen
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Asle C Hesla
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Orthopedic Surgery, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mehran Ghaderi
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mingzhi Liu
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Chen Yang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Yifan Zhang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Panagiotis Tsagkozis
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Orthopedic Surgery, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Olle Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Pathology and Cytology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Felix Haglund
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Pathology and Cytology, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
11
|
Torrente Y, Bella P, Tripodi L, Villa C, Farini A. Role of Insulin-Like Growth Factor Receptor 2 across Muscle Homeostasis: Implications for Treating Muscular Dystrophy. Cells 2020; 9:cells9020441. [PMID: 32075092 PMCID: PMC7072799 DOI: 10.3390/cells9020441] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
The insulin-like growth factor 2 receptor (IGF2R) plays a major role in binding and regulating the circulating and tissue levels of the mitogenic peptide insulin-like growth factor 2 (IGF2). IGF2/IGF2R interaction influences cell growth, survival, and migration in normal tissue development, and the deregulation of IGF2R expression has been associated with growth-related disease and cancer. IGF2R overexpression has been implicated in heart and muscle disease progression. Recent research findings suggest novel approaches to target IGF2R action. This review highlights recent advances in the understanding of the IGF2R structure and pathways related to muscle homeostasis.
Collapse
Affiliation(s)
- Yvan Torrente
- Correspondence: (Y.T.); (A.F.); Tel.: +39-0255033874 (Y.T.); +39-0255033852 (A.F.)
| | | | | | | | - Andrea Farini
- Correspondence: (Y.T.); (A.F.); Tel.: +39-0255033874 (Y.T.); +39-0255033852 (A.F.)
| |
Collapse
|
12
|
Ma X, Biswas A, Hammes SR. Paxillin regulated genomic networks in prostate cancer. Steroids 2019; 151:108463. [PMID: 31344408 PMCID: PMC6802295 DOI: 10.1016/j.steroids.2019.108463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 01/26/2023]
Abstract
Paxillin is extensively involved in focal adhesion signaling and kinase signaling throughout the plasma membrane and cytoplasm. However, recent studies in prostate cancer suggest that paxillin also plays a critical role in regulating gene expression within the nucleus, serving as a liaison between cytoplasmic and nuclear MAPK and Androgen Receptor (AR) signaling. Here we used RNA-seq to examine the paxillin-regulated transcriptome in several human prostate cancer cell lines. First, we examined paxillin effects on androgen-mediated transcription in control or paxillin-depleted AR-positive LNCaP and C4-2 human prostate cancer cells. In androgen-dependent LNCaP cells, we found over 1000 paxillin-dependent androgen-responsive genes, some of which are involved in endocrine therapy resistance. Most paxillin-dependent AR-mediated genes in LNCaP cells were no longer paxillin-dependent in androgen-sensitive, castration-resistant C4-2 cells, suggesting that castration-resistance may markedly alter paxillin effects on genomic AR signaling. To examine the paxillin-regulated transcriptome in the absence of androgen signaling, we performed RNA-seq in AR-negative PC3 human prostate cancer cells. Paxillin enhanced several pro-proliferative pathways, including the CyclinD/Rb/E2F and DNA replication/repair pathways. Additionally, paxillin suppressed pro-apoptotic genes, including CASP1 and TNFSF10. Quantitative PCR confirmed that these pathways are similarly regulated by paxillin in LNCaP and C4-2 cells. Functional studies showed that, while paxillin stimulated cell proliferation, it had minimum effect on apoptosis. Thus, paxillin appears to be an important transcriptional regulator in prostate cancer, and analysis of its transcriptome might lead to novel approaches toward the diagnosis and treatment of this important disease.
Collapse
Affiliation(s)
- Xiaoting Ma
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical School, Rochester, NY, United States
| | - Anindita Biswas
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, Lansing, MI, United States
| | - Stephen R Hammes
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical School, Rochester, NY, United States.
| |
Collapse
|
13
|
Sequence variants with large effects on cardiac electrophysiology and disease. Nat Commun 2019; 10:4803. [PMID: 31641117 PMCID: PMC6805929 DOI: 10.1038/s41467-019-12682-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022] Open
Abstract
Features of the QRS complex of the electrocardiogram, reflecting ventricular depolarisation, associate with various physiologic functions and several pathologic conditions. We test 32.5 million variants for association with ten measures of the QRS complex in 12 leads, using 405,732 electrocardiograms from 81,192 Icelanders. We identify 190 associations at 130 loci, the majority of which have not been reported before, including associations with 21 rare or low-frequency coding variants. Assessment of genes expressed in the heart yields an additional 13 rare QRS coding variants at 12 loci. We find 51 unreported associations between the QRS variants and echocardiographic traits and cardiovascular diseases, including atrial fibrillation, complete AV block, heart failure and supraventricular tachycardia. We demonstrate the advantage of in-depth analysis of the QRS complex in conjunction with other cardiovascular phenotypes to enhance our understanding of the genetic basis of myocardial mass, cardiac conduction and disease. Aberrant morphology of the QRS complex in an electrocardiogram can be associated with cardiac morbidity and mortality. Here, the authors perform genome-wide association studies for ten measures of the QRS complex in 81,192 individuals and find 86 previously unreported loci that associate with at least one parameter.
Collapse
|
14
|
Rafiee A, Riazi-Rad F, Havaskary M, Nuri F. Long noncoding RNAs: regulation, function and cancer. Biotechnol Genet Eng Rev 2018; 34:153-180. [PMID: 30071765 DOI: 10.1080/02648725.2018.1471566] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) are non-protein-coding RNA transcripts that exert a key role in many cellular processes and have potential toward addressing disease etiology. Here, we review existing noncoding RNA classes and then describe a variety of mechanisms and functions by which lncRNAs regulate gene expression such as chromatin remodeling, genomic imprinting, gene transcription and post-transcriptional processing. We also examine several lncRNAs that contribute significantly to pathogenesis, oncogenesis, tumor suppression and cell cycle arrest of diverse cancer types and also give a summary of the pathways that lncRNAs might be involved in.
Collapse
Affiliation(s)
- Aras Rafiee
- a Department of Biology , Central Tehran Branch, Islamic Azad University , Tehran , Iran
| | - Farhad Riazi-Rad
- b Immunology Department , Pasteur institute of Iran , Tehran , Iran
| | - Mohammad Havaskary
- c Young Researchers Club, Central Tehran Branch, Islamic Azad University , Tehran , Iran
| | - Fatemeh Nuri
- d Department of Biology , Central Tehran Branch, Islamic Azad University , Tehran , Iran
| |
Collapse
|
15
|
Abstract
Paxillin is a group III LIM domain protein that is best characterized as a cytoplasmic scaffold/adaptor protein that functions primarily as a mediator of focal adhesion. However, emerging studies indicate that paxillin's functions are far broader. Not only does paxillin appear to regulate cytoplasmic kinase signaling, but it also cycles between the cytoplasm and nucleus, and may serve as an important regulator of mRNA trafficking and subsequent translation. Herein, we provide some insights suggesting that paxillin, like its relative Hic-5, has nuclear binding partners and mediates critical processes within the nucleus, at least in part functioning as coregulator of nuclear receptors and nuclear kinases to mediate genomic signaling.
Collapse
Affiliation(s)
- Xiaoting Ma
- Department of Medicine, Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States; Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States.
| | - Stephen R Hammes
- Department of Medicine, Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States; Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States.
| |
Collapse
|
16
|
Yuan JH, Liu XN, Wang TT, Pan W, Tao QF, Zhou WP, Wang F, Sun SH. The MBNL3 splicing factor promotes hepatocellular carcinoma by increasing PXN expression through the alternative splicing of lncRNA-PXN-AS1. Nat Cell Biol 2017; 19:820-832. [PMID: 28553938 DOI: 10.1038/ncb3538] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/25/2017] [Indexed: 02/07/2023]
Abstract
Understanding the roles of splicing factors and splicing events during tumorigenesis would open new avenues for targeted therapies. Here we identify an oncofetal splicing factor, MBNL3, which promotes tumorigenesis and indicates poor prognosis of hepatocellular carcinoma patients. MBNL3 knockdown almost completely abolishes hepatocellular carcinoma tumorigenesis. Transcriptomic analysis revealed that MBNL3 induces lncRNA-PXN-AS1 exon 4 inclusion. The transcript lacking exon 4 binds to coding sequences of PXN mRNA, causes dissociation of translation elongation factors from PXN mRNA, and thereby inhibits PXN mRNA translation. In contrast, the transcript containing exon 4 preferentially binds to the 3' untranslated region of PXN mRNA, protects PXN mRNA from microRNA-24-AGO2 complex-induced degradation, and thereby increases PXN expression. Through inducing exon 4 inclusion, MBNL3 upregulates PXN, which mediates the pro-tumorigenic roles of MBNL3. Collectively, these data demonstrate detailed mechanistic links between an oncofetal splicing factor, a splicing event and tumorigenesis, and establish splicing factors and splicing events as potential therapeutic targets.
Collapse
Affiliation(s)
- Ji-Hang Yuan
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, China
| | - Xiao-Ning Liu
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, China
| | - Tian-Tian Wang
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, China
| | - Wei Pan
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, China
| | - Qi-Fei Tao
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wei-Ping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Fang Wang
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, China
| | - Shu-Han Sun
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
17
|
Fišerová J, Efenberková M, Sieger T, Maninová M, Uhlířová J, Hozák P. Chromatin organization at the nuclear periphery as revealed by image analysis of structured illumination microscopy data. J Cell Sci 2017; 130:2066-2077. [PMID: 28476938 DOI: 10.1242/jcs.198424] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/02/2017] [Indexed: 12/28/2022] Open
Abstract
The nuclear periphery (NP) plays a substantial role in chromatin organization. Heterochromatin at the NP is interspersed with active chromatin surrounding nuclear pore complexes (NPCs); however, details of the peripheral chromatin organization are missing. To discern the distribution of epigenetic marks at the NP of HeLa nuclei, we used structured illumination microscopy combined with a new MATLAB software tool for automatic NP and NPC detection, measurements of fluorescent intensity and statistical analysis of measured data. Our results show that marks for both active and non-active chromatin associate differentially with NPCs. The incidence of heterochromatin marks, such as H3K27me2 and H3K9me2, was significantly lower around NPCs. In contrast, the presence of marks of active chromatin such as H3K4me2 was only decreased very slightly around the NPCs or not at all (H3K9Ac). Interestingly, the histone demethylases LSD1 (also known as KDM1A) and KDM2A were enriched within the NPCs, suggesting that there was a chromatin-modifying mechanism at the NPCs. Inhibition of transcription resulted in a larger drop in the distribution of H1, H3K9me2 and H3K23me2, which implies that transcription has a role in the organization of heterochromatin at the NP.
Collapse
Affiliation(s)
- Jindřiška Fišerová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, Prague 142 00, Czech Republic
| | - Michaela Efenberková
- Microscopy Centre - LM and EM, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, Prague 142 00, Czech Republic
| | - Tomáš Sieger
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, 121 35, Czech Republic
| | - Miloslava Maninová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, Prague 142 00, Czech Republic
| | - Jana Uhlířová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, Prague 142 00, Czech Republic
| | - Pavel Hozák
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, Prague 142 00, Czech Republic.,Division BIOCEV, Institute of Molecular Genetics CAS, v.v.i., Průmyslová 595, Vestec, Prague 252 50, Czech Republic
| |
Collapse
|