1
|
Hernández Sánchez-Rebato M, Schubert V, White CI. Meiotic double-strand break repair DNA synthesis tracts in Arabidopsis thaliana. PLoS Genet 2024; 20:e1011197. [PMID: 39012914 PMCID: PMC11280534 DOI: 10.1371/journal.pgen.1011197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/26/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
We report here the successful labelling of meiotic prophase I DNA synthesis in the flowering plant, Arabidopsis thaliana. Incorporation of the thymidine analogue, EdU, enables visualisation of the footprints of recombinational repair of programmed meiotic DNA double-strand breaks (DSB), with ~400 discrete, SPO11-dependent, EdU-labelled chromosomal foci clearly visible at pachytene and later stages of meiosis. This number equates well with previous estimations of 200-300 DNA double-strand breaks per meiosis in Arabidopsis, confirming the power of this approach to detect the repair of most or all SPO11-dependent meiotic DSB repair events. The chromosomal distribution of these DNA-synthesis foci accords with that of early recombination markers and MLH1, which marks Class I crossover sites. Approximately 10 inter-homologue cross-overs (CO) have been shown to occur in each Arabidopsis male meiosis and, athough very probably under-estimated, an equivalent number of inter-homologue gene conversions (GC) have been described. Thus, at least 90% of meiotic recombination events, and very probably more, have not previously been accessible for analysis. Visual examination of the patterns of the foci on the synapsed pachytene chromosomes corresponds well with expectations from the different mechanisms of meiotic recombination and notably, no evidence for long Break-Induced Replication DNA synthesis tracts was found. Labelling of meiotic prophase I, SPO11-dependent DNA synthesis holds great promise for further understanding of the molecular mechanisms of meiotic recombination, at the heart of reproduction and evolution of eukaryotes.
Collapse
Affiliation(s)
- Miguel Hernández Sánchez-Rebato
- Institut de Génétique, Reproduction et Développement, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Charles I. White
- Institut de Génétique, Reproduction et Développement, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
2
|
Simon L, Probst AV. Maintenance and dynamic reprogramming of chromatin organization during development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:657-670. [PMID: 36700345 DOI: 10.1111/tpj.16119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 06/17/2023]
Abstract
Controlled transcription of genes is critical for cell differentiation and development. Gene expression regulation therefore involves a multilayered control from nucleosome composition in histone variants and their post-translational modifications to higher-order folding of chromatin fibers and chromatin interactions in nuclear space. Recent technological advances have allowed gaining insight into these mechanisms, the interplay between local and higher-order chromatin organization, and the dynamic changes that occur during stress response and developmental transitions. In this review, we will discuss chromatin organization from the nucleosome to its three-dimensional structure in the nucleus, and consider how these different layers of organization are maintained during the cell cycle or rapidly reprogrammed during development.
Collapse
Affiliation(s)
- Lauriane Simon
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Aline V Probst
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| |
Collapse
|
3
|
Valeeva LR, Abdulkina LR, Agabekian IA, Shakirov EV. Telomere biology and ribosome biogenesis: structural and functional interconnections. Biochem Cell Biol 2023; 101:394-409. [PMID: 36989538 DOI: 10.1139/bcb-2022-0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Telomeres are nucleoprotein structures that play a pivotal role in the protection and maintenance of eukaryotic chromosomes. Telomeres and the enzyme telomerase, which replenishes telomeric DNA lost during replication, are important factors necessary to ensure continued cell proliferation. Cell proliferation is also dependent on proper and efficient protein synthesis, which is carried out by ribosomes. Mutations in genes involved in either ribosome biogenesis or telomere biology result in cellular abnormalities and can cause human genetic diseases, defined as ribosomopathies and telomeropathies, respectively. Interestingly, recent discoveries indicate that many of the ribosome assembly and rRNA maturation factors have additional noncanonical functions in telomere biology. Similarly, several key proteins and enzymes involved in telomere biology, including telomerase, have unexpected roles in rRNA transcription and maturation. These observations point to an intriguing cross-talk mechanism potentially explaining the multiple pleiotropic symptoms of mutations in many causal genes identified in various telomeropathy and ribosomopathy diseases. In this review, we provide a brief summary of eukaryotic telomere and rDNA loci structures, highlight several universal features of rRNA and telomerase biogenesis, evaluate intriguing interconnections between telomere biology and ribosome assembly, and conclude with an assessment of overlapping features of human diseases of telomeropathies and ribosomopathies.
Collapse
Affiliation(s)
- Liia R Valeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
| | - Liliia R Abdulkina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia
| | - Inna A Agabekian
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia
| | - Eugene V Shakirov
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
4
|
Kutashev KO, Franek M, Diamanti K, Komorowski J, Olšinová M, Dvořáčková M. Nucleolar rDNA folds into condensed foci with a specific combination of epigenetic marks. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1534-1548. [PMID: 33314374 DOI: 10.1111/tpj.15130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/30/2020] [Indexed: 05/15/2023]
Abstract
Arabidopsis thaliana 45S ribosomal genes (rDNA) are located in tandem arrays called nucleolus organizing regions on the termini of chromosomes 2 and 4 (NOR2 and NOR4) and encode rRNA, a crucial structural element of the ribosome. The current model of rDNA organization suggests that inactive rRNA genes accumulate in the condensed chromocenters in the nucleus and at the nucleolar periphery, while the nucleolus delineates active genes. We challenge the perspective that all intranucleolar rDNA is active by showing that a subset of nucleolar rDNA assembles into condensed foci marked by H3.1 and H3.3 histones that also contain the repressive H3K9me2 histone mark. By using plant lines containing a low number of rDNA copies, we further found that the condensed foci relate to the folding of rDNA, which appears to be a common mechanism of rDNA regulation inside the nucleolus. The H3K9me2 histone mark found in condensed foci represents a typical modification of bulk inactive rDNA, as we show by genome-wide approaches, similar to the H2A.W histone variant. The euchromatin histone marks H3K27me3 and H3K4me3, in contrast, do not colocalize with nucleolar foci and their overall levels in the nucleolus are very low. We further demonstrate that the rDNA promoter is an important regulatory region of the rDNA, where the distribution of histone variants and histone modifications are modulated in response to rDNA activity.
Collapse
Affiliation(s)
- Konstantin O Kutashev
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 61137, Czech Republic
| | - Michal Franek
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Klev Diamanti
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, 751 24, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 751 08, Sweden
| | - Jan Komorowski
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, 751 24, Sweden
- Institute of Computer Science, Polish Academy of Sciences, Warsaw, 012-48, Poland
| | - Marie Olšinová
- BioCEV Imaging Methods Core Facility, Průmyslová 595, Vestec, 252 50, Czech Republic
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| |
Collapse
|
5
|
Goffová I, Fajkus J. The rDNA Loci-Intersections of Replication, Transcription, and Repair Pathways. Int J Mol Sci 2021; 22:1302. [PMID: 33525595 PMCID: PMC7865372 DOI: 10.3390/ijms22031302] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/28/2022] Open
Abstract
Genes encoding ribosomal RNA (rDNA) are essential for cell survival and are particularly sensitive to factors leading to genomic instability. Their repetitive character makes them prone to inappropriate recombinational events arising from collision of transcriptional and replication machineries, resulting in unstable rDNA copy numbers. In this review, we summarize current knowledge on the structure and organization of rDNA, its role in sensing changes in the genome, and its linkage to aging. We also review recent findings on the main factors involved in chromatin assembly and DNA repair in the maintenance of rDNA stability in the model plants Arabidopsis thaliana and the moss Physcomitrella patens, providing a view across the plant evolutionary tree.
Collapse
Affiliation(s)
- Ivana Goffová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, CZ-61137 Brno, Czech Republic;
- Chromatin Molecular Complexes, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, CZ-61137 Brno, Czech Republic;
- Chromatin Molecular Complexes, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
| |
Collapse
|
6
|
Abstract
Flow cytometry and sorting represents a valuable and mature experimental platform for the analysis of cellular populations. Applications involving higher plants started to emerge around 40 years ago and are now widely employed both to provide unique information regarding basic and applied questions in the biosciences and to advance agricultural productivity in practical ways. Further development of this platform is being actively pursued, and this promises additional progress in our understanding of the interactions of cells within complex tissues and organs. Higher plants offer unique challenges in terms of flow cytometric analysis, first since their organs and tissues are, almost without exception, three-dimensional assemblies of different cell types held together by tough cell walls, and, second, because individual plant cells are generally larger than those of mammals.This chapter, which updates work last reviewed in 2014 [Galbraith DW (2014) Flow cytometry and sorting in Arabidopsis. In: Sanchez Serrano JJ, Salinas J (eds) Arabidopsis Protocols, 3rd ed. Methods in molecular biology, vol 1062. Humana Press, Totowa, pp 509-537], describes the application of techniques of flow cytometry and sorting to the model plant species Arabidopsis thaliana, in particular emphasizing (a) fluorescence labeling in vivo of specific cell types and of subcellular components, (b) analysis using both conventional cytometers and spectral analyzers, (c) fluorescence-activated sorting of protoplasts and nuclei, and (d) transcriptome analyses using sorted protoplasts and nuclei, focusing on population analyses at the level of single protoplasts and nuclei. Since this is an update, details of new experimental methods are emphasized.
Collapse
Affiliation(s)
- David W Galbraith
- University of Arizona, School of Plant Sciences and Bio5 Institute, Tucson, AZ, USA. .,Henan University, Institute of Plant Stress Biology, School of Life Sciences, Kaifeng, China.
| | - Guiling Sun
- Henan University, Institute of Plant Stress Biology, School of Life Sciences, Kaifeng, China
| |
Collapse
|
7
|
Baez M, Kuo YT, Dias Y, Souza T, Boudichevskaia A, Fuchs J, Schubert V, Vanzela ALL, Pedrosa-Harand A, Houben A. Analysis of the small chromosomal Prionium serratum (Cyperid) demonstrates the importance of reliable methods to differentiate between mono- and holocentricity. Chromosoma 2020; 129:285-297. [PMID: 33165742 PMCID: PMC7665975 DOI: 10.1007/s00412-020-00745-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022]
Abstract
For a long time, the Cyperid clade (Thurniceae-Juncaceae-Cyperaceae) was considered a group of species possessing holocentromeres exclusively. The basal phylogenetic position of Prionium serratum (Thunb.) Drège (Thurniceae) within Cyperids makes this species an important specimen to understand the centromere evolution within this clade. In contrast to the expectation, the chromosomal distribution of the centromere-specific histone H3 (CENH3), alpha-tubulin and different centromere-associated post-translational histone modifications (H3S10ph, H3S28ph and H2AT120ph) demonstrate a monocentromeric organisation of P. serratum chromosomes. Analysis of the high-copy repeat composition resulted in the identification of two centromere-localised satellite repeats. Hence, monocentricity was the ancestral condition for the Juncaceae-Cyperaceae-Thurniaceae Cyperid clade, and holocentricity in this clade has independently arisen at least twice after differentiation of the three families, once in Juncaceae and the other one in Cyperaceae. In this context, methods suitable for the identification of holocentromeres are discussed.
Collapse
Affiliation(s)
- M Baez
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany.,Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Y T Kuo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
| | - Y Dias
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany.,Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - T Souza
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany.,Laboratory of Cytogenetics and Plant Diversity, Department of General Biology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, 86057-970, Brazil
| | - A Boudichevskaia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany.,KWS SAAT SE & Co. KGaA, 37574, Einbeck, Germany
| | - J Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
| | - V Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
| | - A L L Vanzela
- Laboratory of Cytogenetics and Plant Diversity, Department of General Biology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, 86057-970, Brazil
| | - A Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - A Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany.
| |
Collapse
|
8
|
Němečková A, Koláčková V, Vrána J, Doležel J, Hřibová E. DNA replication and chromosome positioning throughout the interphase in three-dimensional space of plant nuclei. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6262-6272. [PMID: 32805034 DOI: 10.1093/jxb/eraa370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/31/2020] [Indexed: 05/23/2023]
Abstract
Despite much recent progress, our understanding of the principles of plant genome organization and its dynamics in three-dimensional space of interphase nuclei remains surprisingly limited. Notably, it is not clear how these processes could be affected by the size of a plant's nuclear genome. In this study, DNA replication timing and interphase chromosome positioning were analyzed in seven Poaceae species that differ in their genome size. To provide a comprehensive picture, a suite of advanced, complementary methods was used: labeling of newly replicated DNA by ethynyl-2'-deoxyuridine, isolation of nuclei at particular cell cycle phases by flow cytometric sorting, three-dimensional immunofluorescence in situ hybridization, and confocal microscopy. Our results revealed conserved dynamics of DNA replication in all species, and a similar replication timing order for telomeres and centromeres, as well as for euchromatin and heterochromatin regions, irrespective of genome size. Moreover, stable chromosome positioning was observed while transitioning through different stages of interphase. These findings expand upon earlier studies in suggesting that a more complex interplay exists between genome size, organization of repetitive DNA sequences along chromosomes, and higher order chromatin structure and its maintenance in interphase, albeit controlled by currently unknown factors.
Collapse
Affiliation(s)
- Alžběta Němečková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Veronika Koláčková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Eva Hřibová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| |
Collapse
|
9
|
Duan Z, Wei B, Deng J, Mi Y, Dong Y, Zhu C, Fu R, Qu L, Fan D. The anti-tumor effect of ginsenoside Rh4 in MCF-7 breast cancer cells in vitro and in vivo. Biochem Biophys Res Commun 2018; 499:482-487. [PMID: 29596831 DOI: 10.1016/j.bbrc.2018.03.174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/22/2018] [Indexed: 01/27/2023]
Abstract
Breast cancer is a tremendous threat to humans in many countries, and thus we need to find safe and effective drugs for treatment. Ginsenoside Rh4 has been reported to be present in processed ginseng. However, few studies have focused on its anti-tumor activity. In this study, we investigated the inhibitory effects of ginsenoside Rh4 on MCF-7 breast cancer cells and the pathways that promote apoptosis in vitro. To study the effect of ginsenoside Rh4 in vivo, xenograft models were randomly divided into 3 groups (the control group, 10 mg/kg/d Rh4, 20 mg/kg/d Rh4, n = 10 per group), the ginsenoside Rh4 injection method was i.p. The results showed that ginsenoside Rh4 effectively inhibited proliferation, arrested the cell cycle in S phase and induced apoptosis in MCF-7 cells by flow cytometry. Morphological changes caused by ginsenoside Rh4-induced apoptosis were also observed by Hoechst 33342 staining. Western-blot analyses indicated that the apoptosis-inducing effects of ginsenoside Rh4 were associated with the external pathway by decreasing Bcl-2, increasing Bax, and activating caspase-8, -3 and PARP. Moreover, ginsenoside Rh4 significantly inhibited the growth of MCF-7 tumor cells in vivo. These results suggested that ginsenoside Rh4 could be a potentially effective anti-tumor drug for breast cancer.
Collapse
Affiliation(s)
- Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China.
| | - Bo Wei
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China.
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Yu Mi
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Yangfang Dong
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
10
|
Dvořáčková M, Fajkus J. Visualization of the Nucleolus Using Ethynyl Uridine. FRONTIERS IN PLANT SCIENCE 2018; 9:177. [PMID: 29503656 PMCID: PMC5820300 DOI: 10.3389/fpls.2018.00177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/30/2018] [Indexed: 05/04/2023]
Abstract
Thanks to recent innovative methodologies, key cellular processes such as replication or transcription can be visualized directly in situ in intact tissues. Many studies use so-called click iT chemistry where nascent DNA can be tracked by 5-ethynyl-2'-deoxyuridine (EdU), and nascent RNA by 5-ethynyl uridine (EU). While the labeling of replicating DNA by EdU has already been well established and further exploited in plants, the use of EU to reveal nascent RNA has not been developed to such an extent. In this article, we present a protocol for labeling of nucleolar RNA transcripts using EU and show that EU effectively highlights the nucleolus. The method is advantageous, because the need to prepare transgenic plants expressing fluorescently tagged nucleolar components when the nucleolus has to be visualized can be avoided.
Collapse
Affiliation(s)
- Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
- *Correspondence: Martina Dvořáčková, Jiří Fajkus, ;
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
- *Correspondence: Martina Dvořáčková, Jiří Fajkus, ;
| |
Collapse
|
11
|
Macovei A, Faè M, Biggiogera M, de Sousa Araújo S, Carbonera D, Balestrazzi A. Ultrastructural and Molecular Analyses Reveal Enhanced Nucleolar Activity in Medicago truncatula Cells Overexpressing the MtTdp2α Gene. FRONTIERS IN PLANT SCIENCE 2018; 9:596. [PMID: 29868059 PMCID: PMC5958304 DOI: 10.3389/fpls.2018.00596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 04/16/2018] [Indexed: 05/15/2023]
Abstract
The role of tyrosyl-DNA phosphodiesterase 2 (Tdp2) involved in the repair of 5'-end-blocking DNA lesions is still poorly explored in plants. To gain novel insights, Medicago truncatula suspension cultures overexpressing the MtTdp2α gene (Tdp2α-13C and Tdp2α-28 lines, respectively) and a control (CTRL) line carrying the empty vector were investigated. Transmission electron microscopy (TEM) revealed enlarged nucleoli (up to 44% expansion of the area, compared to CTRL), the presence of nucleolar vacuoles, increased frequency of multinucleolate cells (up to 4.3-fold compared to CTRL) and reduced number of ring-shaped nucleoli in Tdp2α-13C and Tdp2α-28 lines. Ultrastructural data suggesting for enhanced nucleolar activity in MtTdp2α-overexpressing lines were integrated with results from bromouridine incorporation. The latter revealed an increase of labeled transcripts in both Tdp2α-13C and Tdp2α-28 cells, within the nucleolus and in the extra-nucleolar region. MtTdp2α-overexpressing cells showed tolerance to etoposide, a selective inhibitor of DNA topoisomerase II, as evidenced by DNA diffusion assay. TEM analysis revealed etoposide-induced rearrangements within the nucleolus, resembling the nucleolar caps observed in animal cells under transcription impairment. Based on these findings it is evident that MtTdp2α-overexpression enhances nucleolar activity in plant cells.
Collapse
Affiliation(s)
- Anca Macovei
- Department of Biology and Biotechnology ‘L. Spallanzani’, Pavia, Italy
| | - Matteo Faè
- Department of Biology and Biotechnology ‘L. Spallanzani’, Pavia, Italy
| | - Marco Biggiogera
- Department of Biology and Biotechnology ‘L. Spallanzani’, Pavia, Italy
| | - Susana de Sousa Araújo
- Instituto de Technologia Quìmica e Biologica António Xavier, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Daniela Carbonera
- Department of Biology and Biotechnology ‘L. Spallanzani’, Pavia, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology ‘L. Spallanzani’, Pavia, Italy
- *Correspondence: Alma Balestrazzi,
| |
Collapse
|
12
|
Schubert V. Super-resolution Microscopy - Applications in Plant Cell Research. FRONTIERS IN PLANT SCIENCE 2017; 8:531. [PMID: 28450874 PMCID: PMC5390026 DOI: 10.3389/fpls.2017.00531] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/24/2017] [Indexed: 05/10/2023]
Abstract
Most of the present knowledge about cell organization and function is based on molecular and genetic methods as well as cytological investigations. While electron microscopy allows identifying cell substructures until a resolution of ∼1 nm, the resolution of fluorescence microscopy is restricted to ∼200 nm due to the diffraction limit of light. However, the advantage of this technique is the possibility to identify and co-localize specifically labeled structures and molecules. The recently developed super-resolution microscopy techniques, such as Structured Illumination Microscopy, Photoactivated Localization Microscopy, Stochastic Optical Reconstruction Microscopy, and Stimulated Emission Depletion microscopy allow analyzing structures and molecules beyond the diffraction limit of light. Recently, there is an increasing application of these techniques in cell biology. This review evaluates and summarizes especially the data achieved until now in analyzing the organization and function of plant cells, chromosomes and interphase nuclei using super-resolution techniques.
Collapse
|