1
|
Foglio E, D'Avorio E, Nieri R, Russo MA, Limana F. Epicardial EMT and cardiac repair: an update. Stem Cell Res Ther 2024; 15:219. [PMID: 39026298 PMCID: PMC11264588 DOI: 10.1186/s13287-024-03823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024] Open
Abstract
Epicardial epithelial-to-mesenchymal transition (EMT) plays a pivotal role in both heart development and injury response and involves dynamic cellular changes that are essential for cardiogenesis and myocardial repair. Specifically, epicardial EMT is a crucial process in which epicardial cells lose polarity, migrate into the myocardium, and differentiate into various cardiac cell types during development and repair. Importantly, following EMT, the epicardium becomes a source of paracrine factors that support cardiac growth at the last stages of cardiogenesis and contribute to cardiac remodeling after injury. As such, EMT seems to represent a fundamental step in cardiac repair. Nevertheless, endogenous EMT alone is insufficient to stimulate adequate repair. Redirecting and amplifying epicardial EMT pathways offers promising avenues for the development of innovative therapeutic strategies and treatment approaches for heart disease. In this review, we present a synthesis of recent literature highlighting the significance of epicardial EMT reactivation in adult heart disease patients.
Collapse
Affiliation(s)
- Eleonora Foglio
- Technoscience, Parco Scientifico e Tecnologico Pontino, Latina, Italy
| | - Erica D'Avorio
- Dipartimento di Promozione delle Scienze Umane e della Qualità della Vita, San Raffaele University of Rome, Rome, Italy
| | - Riccardo Nieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Federica Limana
- Dipartimento di Promozione delle Scienze Umane e della Qualità della Vita, San Raffaele University of Rome, Rome, Italy.
- Laboratorio di Patologia Cellulare e Molecolare, IRCCS San Raffaele Roma, Rome, Italy.
| |
Collapse
|
2
|
Wang R, Lu D, Song R, Du L, Yang X, Wu ST, Wang X, Wong J, Xu Z, Zhao Q, Liu R, Zheng X. Epicardial CCM2 Promotes Cardiac Development and Repair Via its Regulation on Cytoskeletal Reorganization. JACC Basic Transl Sci 2024; 9:203-219. [PMID: 38510716 PMCID: PMC10950406 DOI: 10.1016/j.jacbts.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 03/22/2024]
Abstract
The epicardium provides epicardial-derived cells and molecular signals to support cardiac development and regeneration. Zebrafish and mouse studies have shown that ccm2, a cerebral cavernous malformation disease gene, is essential for cardiac development. Endocardial cell-specific deletion of Ccm2 in mice has previously established that Ccm2 is essential for maintenance of the cardiac jelly for cardiac development during early gestation. The current study aimed to explore the function of Ccm2 in epicardial cells for heart development and regeneration. Through genetic deletion of Ccm2 in epicardial cells, our in vivo and ex vivo experiments revealed that Ccm2 is required by epicardial cells to support heart development. Ccm2 regulates epicardial cell adhesion, cell polarity, cell spreading, and migration. Importantly, the loss of Ccm2 in epicardial cells delays cardiac function recovery and aggravates cardiac fibrosis following myocardial infarction. Molecularly, Ccm2 targets the production of cytoskeletal and matrix proteins to maintain epicardial cell function and behaviors. Epicardial Ccm2 plays a critical role in heart development and regeneration via its regulation of cytoskeleton reorganization.
Collapse
Affiliation(s)
- Rui Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Dongbo Lu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Renhua Song
- Epigenetics and RNA Biology Program, Centenary Institute and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Luping Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xi Yang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shi-ting Wu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohong Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Justin Wong
- Epigenetics and RNA Biology Program, Centenary Institute and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiang Zhao
- Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Renjing Liu
- Vascular Epigenetics Laboratory, Victor Chang Cardiac Research Institute and School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Yuan Y, Zhu C, Liu M, Ke B. Comparative proteome analysis of form-deprivation myopia in sclera with iTRAQ-based quantitative proteomics. Mol Vis 2021; 27:494-505. [PMID: 34526757 PMCID: PMC8410231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/30/2021] [Indexed: 11/10/2022] Open
Abstract
Objective Scleral remodeling plays a key role in axial elongation in myopia. The aim of the present study was to identify the proteomics changes and specific signaling networks to gain insight into the molecular basis of scleral remodeling in myopic eyes. Methods Guinea pig form-deprivation myopia was induced with a translucent diffuser on a random eye for 4 weeks, while the other eye served as the contralateral control group. The axial length and refraction were measured at the beginning and end of the treatment. The proteins were extracted from the sclerae of each group and prepared for quantitative isobaric tags for relative and absolute quantification (iTRAQ) labeling combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The coexpression networks and protein functions were analyzed using Gene Ontology (GO) and Ingenuity Pathway Analysis (IPA). Quantitative real-time PCR (qRT-PCR) and western blotting were performed to confirm the authenticity and accuracy of the iTRAQ results. Results After 4 weeks, the form-deprivation eyes developed significant degrees of myopia, and the axial length increased statistically significantly (p<0.05). A total of 2,579 unique proteins with <1% false discovery rate (FDR) were identified. Furthermore, 56 proteins were found to be upregulated, and 84 proteins were found to be downregulated, with a threshold of a 1.2-fold change and p<0.05 in the myopia group, when compared to the control group. Further bioinformatics analysis indicated that 44 of 140 differentially expressed proteins were involved in cellular movement and cellular assembly and organization. The qRT-PCR or western blotting results confirmed that myosin IIB, ACTIN3, and cellular cytoskeletons were downregulated, while RhoA and RAP1A were upregulated in the sclera in myopic eyes. These results were consistent with the proteomics results. Conclusions Proteomics and bioinformatics results can be helpful for identifying proteins and providing new insights for better understanding of the molecular mechanism underlying scleral remodeling. These results revealed that the proteins associated with cellular movement and cellular assembly and organization are altered during the development of myopia. Furthermore, RhoA plays a key role in the pathways involved in cellular movement and cellular assembly and organization.
Collapse
Affiliation(s)
- Ying Yuan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai, China,National Clinical Research Center for Eye Diseases; Shanghai, China,Shanghai Key Laboratory of Fundus Disease, Shanghai, China
| | - Chengcheng Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai, China,Shanghai Key Laboratory of Fundus Disease, Shanghai, China,Shanghai engineering center for visual science and photomedicine, Shanghai, China
| | - Mingming Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai, China,Shanghai Key Laboratory of Fundus Disease, Shanghai, China,Shanghai engineering center for precise diagnosis and treatment of eye diseases, Shanghai, China
| | - Bilian Ke
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai, China,National Clinical Research Center for Eye Diseases; Shanghai, China,Shanghai Key Laboratory of Fundus Disease, Shanghai, China
| |
Collapse
|
4
|
Ma X, Uchida Y, Wei T, Liu C, Adams RH, Kubota Y, Gutkind JS, Mukouyama YS, Adelstein RS. Nonmuscle myosin 2 regulates cortical stability during sprouting angiogenesis. Mol Biol Cell 2020; 31:1974-1987. [PMID: 32583739 PMCID: PMC7543065 DOI: 10.1091/mbc.e20-03-0175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Among the three nonmuscle myosin 2 (NM2) paralogs, NM 2A and 2B, but not 2C, are detected in endothelial cells. To study the role of NM2 in vascular formation, we ablate NM2 in endothelial cells in mice. Ablating NM2A, but not NM2B, results in reduced blood vessel coverage and increased vascular branching in the developing mouse skin and coronary vasculature. NM2B becomes essential for vascular formation when NM2A expression is limited. Mice ablated for NM2B and one allele of NM2A develop vascular abnormalities similar to those in NM2A ablated mice. Using the embryoid body angiogenic sprouting assay in collagen gels reveals that NM2A is required for persistent angiogenic sprouting by stabilizing the endothelial cell cortex, and thereby preventing excessive branching and ensuring persistent migration of the endothelial sprouts. Mechanistically, NM2 promotes focal adhesion formation and cortical protrusion retraction during angiogenic sprouting. Further studies demonstrate the critical role of Rho kinase–activated NM2 signaling in the regulation of angiogenic sprouting in vitro and in vivo.
Collapse
Affiliation(s)
- Xuefei Ma
- Laboratory of Molecular Cardiology, National Institutes of Health, Bethesda, MD 20892-1762
| | - Yutaka Uchida
- Laboratory of Stem Cell and Neurovascular Biology, National Institutes of Health, Bethesda, MD 20892-1762
| | - Tingyi Wei
- Laboratory of Molecular Cardiology, National Institutes of Health, Bethesda, MD 20892-1762
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1762
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and Faculty of Medicine, University of Munster, D-48149 Munster, Germany
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo160-8582, Japan
| | - J Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neurovascular Biology, National Institutes of Health, Bethesda, MD 20892-1762
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology, National Institutes of Health, Bethesda, MD 20892-1762
| |
Collapse
|
5
|
Shutova MS, Svitkina TM. Common and Specific Functions of Nonmuscle Myosin II Paralogs in Cells. BIOCHEMISTRY (MOSCOW) 2019; 83:1459-1468. [PMID: 30878021 DOI: 10.1134/s0006297918120040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Various forms of cell motility critically depend on pushing, pulling, and resistance forces generated by the actin cytoskeleton. Whereas pushing forces largely depend on actin polymerization, pulling forces responsible for cell contractility and resistance forces maintaining the cell shape require interaction of actin filaments with the multivalent molecular motor myosin II. In contrast to muscle-specific myosin II paralogs, nonmuscle myosin II (NMII) functions in virtually all mammalian cells, where it executes numerous mechanical tasks. NMII is expressed in mammalian cells as a tissue-specific combination of three paralogs, NMIIA, NMIIB, and NMIIC. Despite overall similarity, these paralogs differ in their molecular properties, which allow them to play both unique and common roles. Importantly, the three paralogs can also cooperate with each other by mixing and matching their unique capabilities. Through specialization and cooperation, NMII paralogs together execute a great variety of tasks in many different cell types. Here, we focus on mammalian NMII paralogs and review novel aspects of their kinetics, regulation, and functions in cells from the perspective of how distinct features of the three myosin II paralogs adapt them to perform specialized and joint tasks in the cells.
Collapse
Affiliation(s)
- M S Shutova
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - T M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Shutova MS, Svitkina TM. Mammalian nonmuscle myosin II comes in three flavors. Biochem Biophys Res Commun 2018; 506:394-402. [PMID: 29550471 DOI: 10.1016/j.bbrc.2018.03.103] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 12/16/2022]
Abstract
Nonmuscle myosin II is an actin-based motor that executes numerous mechanical tasks in cells including spatiotemporal organization of the actin cytoskeleton, adhesion, migration, cytokinesis, tissue remodeling, and membrane trafficking. Nonmuscle myosin II is ubiquitously expressed in mammalian cells as a tissue-specific combination of three paralogs. Recent studies reveal novel specific aspects of their kinetics, intracellular regulation and functions. On the other hand, the three paralogs also can copolymerize and cooperate in cells. Here we review the recent advances from the prospective of how distinct features of the three myosin II paralogs adapt them to perform specialized and joint tasks in the cell.
Collapse
Affiliation(s)
- Maria S Shutova
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
7
|
Ridge LA, Mitchell K, Al-Anbaki A, Shaikh Qureshi WM, Stephen LA, Tenin G, Lu Y, Lupu IE, Clowes C, Robertson A, Barnes E, Wright JA, Keavney B, Ehler E, Lovell SC, Kadler KE, Hentges KE. Non-muscle myosin IIB (Myh10) is required for epicardial function and coronary vessel formation during mammalian development. PLoS Genet 2017; 13:e1007068. [PMID: 29084269 PMCID: PMC5697871 DOI: 10.1371/journal.pgen.1007068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/21/2017] [Accepted: 10/11/2017] [Indexed: 01/01/2023] Open
Abstract
The coronary vasculature is an essential vessel network providing the blood supply to the heart. Disruptions in coronary blood flow contribute to cardiac disease, a major cause of premature death worldwide. The generation of treatments for cardiovascular disease will be aided by a deeper understanding of the developmental processes that underpin coronary vessel formation. From an ENU mutagenesis screen, we have isolated a mouse mutant displaying embryonic hydrocephalus and cardiac defects (EHC). Positional cloning and candidate gene analysis revealed that the EHC phenotype results from a point mutation in a splice donor site of the Myh10 gene, which encodes NMHC IIB. Complementation testing confirmed that the Myh10 mutation causes the EHC phenotype. Characterisation of the EHC cardiac defects revealed abnormalities in myocardial development, consistent with observations from previously generated NMHC IIB null mouse lines. Analysis of the EHC mutant hearts also identified defects in the formation of the coronary vasculature. We attribute the coronary vessel abnormalities to defective epicardial cell function, as the EHC epicardium displays an abnormal cell morphology, reduced capacity to undergo epithelial-mesenchymal transition (EMT), and impaired migration of epicardial-derived cells (EPDCs) into the myocardium. Our studies on the EHC mutant demonstrate a requirement for NMHC IIB in epicardial function and coronary vessel formation, highlighting the importance of this protein in cardiac development and ultimately, embryonic survival.
Collapse
Affiliation(s)
- Liam A. Ridge
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Karen Mitchell
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Ali Al-Anbaki
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Wasay Mohiuddin Shaikh Qureshi
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Louise A. Stephen
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Gennadiy Tenin
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Yinhui Lu
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Irina-Elena Lupu
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Christopher Clowes
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Abigail Robertson
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Emma Barnes
- Syngenta Ltd, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Jayne A. Wright
- Syngenta Ltd, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Bernard Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Manchester Heart Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Elisabeth Ehler
- The Randall Division of Cell and Molecular Biophysics and the Cardiovascular Division, Kings College London, London, United Kingdom
| | - Simon C. Lovell
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Karl E. Kadler
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Kathryn E. Hentges
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|