1
|
Donà F, Eli S, Mapelli M. Insights Into Mechanisms of Oriented Division From Studies in 3D Cellular Models. Front Cell Dev Biol 2022; 10:847801. [PMID: 35356279 PMCID: PMC8959941 DOI: 10.3389/fcell.2022.847801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
In multicellular organisms, epithelial cells are key elements of tissue organization. In developing tissues, cellular proliferation and differentiation are under the tight regulation of morphogenetic programs, that ensure the correct organ formation and functioning. In these processes, mitotic rates and division orientation are crucial in regulating the velocity and the timing of the forming tissue. Division orientation, specified by mitotic spindle placement with respect to epithelial apico-basal polarity, controls not only the partitioning of cellular components but also the positioning of the daughter cells within the tissue, and hence the contacts that daughter cells retain with the surrounding microenvironment. Daughter cells positioning is important to determine signal sensing and fate, and therefore the final function of the developing organ. In this review, we will discuss recent discoveries regarding the mechanistics of planar divisions in mammalian epithelial cells, summarizing technologies and model systems used to study oriented cell divisions in vitro such as three-dimensional cysts of immortalized cells and intestinal organoids. We also highlight how misorientation is corrected in vivo and in vitro, and how it might contribute to the onset of pathological conditions.
Collapse
Affiliation(s)
- Federico Donà
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Susanna Eli
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | |
Collapse
|
2
|
Zhang Y, Knatko EV, Higgins M, Dayalan Naidu S, Smith G, Honda T, de la Vega L, Dinkova-Kostova AT. Pirin, an Nrf2-Regulated Protein, Is Overexpressed in Human Colorectal Tumors. Antioxidants (Basel) 2022; 11:262. [PMID: 35204145 PMCID: PMC8868368 DOI: 10.3390/antiox11020262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/31/2022] Open
Abstract
The evolutionary conserved non-heme Fe-containing protein pirin has been implicated as an important factor in cell proliferation, migration, invasion, and tumour progression of melanoma, breast, lung, cervical, prostate, and oral cancers. Here we found that pirin is overexpressed in human colorectal cancer in comparison with matched normal tissue. The overexpression of pirin correlates with activation of transcription factor nuclear factor erythroid 2 p45-related factor 2 (Nrf2) and increased expression of the classical Nrf2 target NAD(P)H:quinone oxidoreductase 1 (NQO1), but interestingly and unexpectedly, not with expression of the aldo-keto reductase (AKR) family members AKR1B10 and AKR1C1, which are considered to be the most overexpressed genes in response to Nrf2 activation in humans. Using pharmacologic and genetic approaches to either downregulate or upregulate Nrf2, we show that pirin is regulated by Nrf2 in human and mouse cells and in the mouse colon in vivo. The small molecule pirin inhibitor TPhA decreased the viability of human colorectal cancer (DLD1) cells, but this decrease was independent of the levels of pirin. Our study demonstrates the Nrf2-dependent regulation of pirin and encourages the pursuit for specific pirin inhibitors.
Collapse
Affiliation(s)
- Ying Zhang
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (Y.Z.); (E.V.K.); (M.H.); (S.D.N.); (G.S.); (L.d.l.V.)
| | - Elena V. Knatko
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (Y.Z.); (E.V.K.); (M.H.); (S.D.N.); (G.S.); (L.d.l.V.)
| | - Maureen Higgins
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (Y.Z.); (E.V.K.); (M.H.); (S.D.N.); (G.S.); (L.d.l.V.)
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (Y.Z.); (E.V.K.); (M.H.); (S.D.N.); (G.S.); (L.d.l.V.)
| | - Gillian Smith
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (Y.Z.); (E.V.K.); (M.H.); (S.D.N.); (G.S.); (L.d.l.V.)
| | - Tadashi Honda
- Department of Chemistry, Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York, NY 11794, USA;
| | - Laureano de la Vega
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (Y.Z.); (E.V.K.); (M.H.); (S.D.N.); (G.S.); (L.d.l.V.)
| | - Albena T. Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (Y.Z.); (E.V.K.); (M.H.); (S.D.N.); (G.S.); (L.d.l.V.)
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Xu ZY, Huang JJ, Liu Y, Zhao Y, Wu XW, Ren JA. Current knowledge on the multiform reconstitution of intestinal stem cell niche. World J Stem Cells 2021; 13:1564-1579. [PMID: 34786158 PMCID: PMC8567451 DOI: 10.4252/wjsc.v13.i10.1564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/02/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
The development of “mini-guts” organoid originates from the identification of Lgr5+ intestinal stem cells (ISCs) and circumambient signalings within their specific niche at the crypt bottom. These in vitro self-renewing “mini-guts”, also named enteroids or colonoids, undergo perpetual proliferation and regulated differentiation, which results in a high-performance, self-assembling and physiological organoid platform in diverse areas of intestinal research and therapy. The triumphant reconstitution of ISC niche in vitro also relies on Matrigel, a heterogeneous sarcoma extract. Despite the promising prospect of organoids research, their expanding applications are hampered by the canonical culture pattern, which reveals limitations such as inaccessible lumen, confine scale, batch to batch variation and low reproducibility. The tumor-origin of Matrigel also raises biosafety concerns in clinical treatment. However, the convergence of breakthroughs in cellular biology and bioengineering contribute to multiform reconstitution of the ISC niche. Herein, we review the recent advances in the microfabrication of intestinal organoids on hydrogel systems.
Collapse
Affiliation(s)
- Zi-Yan Xu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Jin-Jian Huang
- Medical School, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Ye Liu
- Medical School, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, Nanjing 210019, Jiangsu Province, China
| | - Xiu-Wen Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Jian-An Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
4
|
Lechler T, Mapelli M. Spindle positioning and its impact on vertebrate tissue architecture and cell fate. Nat Rev Mol Cell Biol 2021; 22:691-708. [PMID: 34158639 PMCID: PMC10544824 DOI: 10.1038/s41580-021-00384-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 12/18/2022]
Abstract
In multicellular systems, oriented cell divisions are essential for morphogenesis and homeostasis as they determine the position of daughter cells within the tissue and also, in many cases, their fate. Early studies in invertebrates led to the identification of conserved core mechanisms of mitotic spindle positioning centred on the Gαi-LGN-NuMA-dynein complex. In recent years, much has been learnt about the way this complex functions in vertebrate cells. In particular, studies addressed how the Gαi-LGN-NuMA-dynein complex dynamically crosstalks with astral microtubules and the actin cytoskeleton, and how it is regulated to orient the spindle according to cellular and tissue-wide cues. We have also begun to understand how dynein motors and actin regulators interact with mechanosensitive adhesion molecules sensing extracellular mechanical stimuli, such as cadherins and integrins, and with signalling pathways so as to respond to extracellular cues instructing the orientation of the division axis in vivo. In this Review, with the focus on epithelial tissues, we discuss the molecular mechanisms of mitotic spindle orientation in vertebrate cells, and how this machinery is regulated by epithelial cues and extracellular signals to maintain tissue cohesiveness during mitosis. We also outline recent knowledge of how spindle orientation impacts tissue architecture in epithelia and its emerging links to the regulation of cell fate decisions. Finally, we describe how defective spindle orientation can be corrected or its effects eliminated in tissues under physiological conditions, and the pathological implications associated with spindle misorientation.
Collapse
Affiliation(s)
- Terry Lechler
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| | - Marina Mapelli
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
5
|
Chen T, Zeineldin M, Johnson BA, Dong Y, Narkar A, Li T, Zhu J, Li R, Larman TC. Colonic epithelial adaptation to EGFR-independent growth induces chromosomal instability and is accelerated by prior injury. Neoplasia 2021; 23:488-501. [PMID: 33906087 PMCID: PMC8099723 DOI: 10.1016/j.neo.2021.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022]
Abstract
Although much is known about the gene mutations required to drive colorectal cancer (CRC) initiation, the tissue-specific selective microenvironments in which neoplasia arises remains less characterized. Here, we determined whether modulation of intestinal stem cell niche morphogens alone can exert a neoplasia-relevant selective pressure on normal colonic epithelium. Using adult stem cell-derived murine colonic epithelial organoids (colonoids), we employed a strategy of sustained withdrawal of epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR) inhibition to select for and expand survivors. EGFR-signaling-independent (iEGFR) colonoids emerged over rounds of selection and expansion. Colonoids derived from a mouse model of chronic mucosal injury showed an enhanced ability to adapt to EGFR inhibition. Whole-exome and transcriptomic analyses of iEGFR colonoids demonstrated acquisition of deleterious mutations and altered expression of genes implicated in EGF signaling, pyroptosis, and CRC. iEGFR colonoids acquired dysplasia-associated cytomorphologic changes, an increased proliferative rate, and the ability to survive independently of other required niche factors. These changes were accompanied by emergence of aneuploidy and chromosomal instability; further, the observed mitotic segregation errors were significantly associated with loss of interkinetic nuclear migration, a fundamental and dynamic process underlying intestinal epithelial homeostasis. This study provides key evidence that chromosomal instability and other phenotypes associated with neoplasia can be induced ex vivo via adaptation to EGF withdrawal in normal and stably euploid colonic epithelium, without introducing cancer-associated driver mutations. In addition, prior mucosal injury accelerates this evolutionary process.
Collapse
Affiliation(s)
- Tiane Chen
- Department of Pathology, Division of GI/Liver Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Maged Zeineldin
- Department of Pathology, Division of GI/Liver Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Blake A Johnson
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD USA; Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Yi Dong
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Akshay Narkar
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Taibo Li
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Jin Zhu
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Rong Li
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD USA; Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore
| | - Tatianna C Larman
- Department of Pathology, Division of GI/Liver Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD USA.
| |
Collapse
|
6
|
Fumagalli A, Bruens L, Scheele CLGJ, van Rheenen J. Capturing Stem Cell Behavior Using Intravital and Live Cell Microscopy. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035949. [PMID: 31767651 DOI: 10.1101/cshperspect.a035949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stem cells maintain tissue homeostasis by driving cellular turnover and regeneration upon damage. They reside within specialized niches that provide the signals required for stem cell maintenance. Stem cells have been identified in many tissues and cancer types, but their behavior within the niche and their reaction to microenvironmental signals were inferred from limited static observations. Recent advances in live imaging techniques, such as live cell imaging and intravital microscopy, have allowed the visualization of stem cell behavior and dynamics over time in their (near) native environment. Through these recent technological advances, it is now evident that stem cells are much more dynamic than previously anticipated, resulting in a model in which stemness is a state that can be gained or lost over time. In this review, we will highlight how live imaging and intravital microscopy have unraveled previously unanticipated stem cell dynamics and plasticity during development, homeostasis, regeneration, and tumor formation.
Collapse
Affiliation(s)
- Arianna Fumagalli
- Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, Amsterdam 1066CX, Netherlands
| | - Lotte Bruens
- Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, Amsterdam 1066CX, Netherlands
| | - Colinda L G J Scheele
- Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, Amsterdam 1066CX, Netherlands
| | - Jacco van Rheenen
- Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, Amsterdam 1066CX, Netherlands
| |
Collapse
|
7
|
Abstract
New work reveals that interkinetic nuclear migration - the movement of nuclei towards the apical surface of dividing epithelial cells - is mechanically regulated, relying on a balance of forces between the mitotic cell and the surrounding tissue.
Collapse
Affiliation(s)
- Christian M Cammarota
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
| | - Dan Bergstralh
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA; Department of Biology, University of Rochester, Rochester, NY 14627, USA; Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14627, USA.
| |
Collapse
|
8
|
Middelhoff M, Nienhüser H, Valenti G, Maurer HC, Hayakawa Y, Takahashi R, Kim W, Jiang Z, Malagola E, Cuti K, Tailor Y, Zamechek LB, Renz BW, Quante M, Yan KS, Wang TC. Prox1-positive cells monitor and sustain the murine intestinal epithelial cholinergic niche. Nat Commun 2020; 11:111. [PMID: 31913277 PMCID: PMC6949263 DOI: 10.1038/s41467-019-13850-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/26/2019] [Indexed: 02/08/2023] Open
Abstract
The enteric neurotransmitter acetylcholine governs important intestinal epithelial secretory and immune functions through its actions on epithelial muscarinic Gq-coupled receptors such as M3R. Its role in the regulation of intestinal stem cell function and differentiation, however, has not been clarified. Here, we find that nonselective muscarinic receptor antagonism in mice as well as epithelial-specific ablation of M3R induces a selective expansion of DCLK1-positive tuft cells, suggesting a model of feedback inhibition. Cholinergic blockade reduces Lgr5-positive intestinal stem cell tracing and cell number. In contrast, Prox1-positive endocrine cells appear as primary sensors of cholinergic blockade inducing the expansion of tuft cells, which adopt an enteroendocrine phenotype and contribute to increased mucosal levels of acetylcholine. This compensatory mechanism is lost with acute irradiation injury, resulting in a paucity of tuft cells and acetylcholine production. Thus, enteroendocrine tuft cells appear essential to maintain epithelial homeostasis following modifications of the cholinergic intestinal niche.
Collapse
Affiliation(s)
- Moritz Middelhoff
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Henrik Nienhüser
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Giovanni Valenti
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - H Carlo Maurer
- Klinikum rechts der Isar, II. Medizinische Klinik, Technische Universität München, 81675, Munich, Germany
| | - Yoku Hayakawa
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Ryota Takahashi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Woosook Kim
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Zhengyu Jiang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Krystle Cuti
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Yagnesh Tailor
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Leah B Zamechek
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Bernhard W Renz
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Michael Quante
- Klinikum rechts der Isar, II. Medizinische Klinik, Technische Universität München, 81675, Munich, Germany
| | - Kelley S Yan
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
9
|
Dealing with apical–basal polarity and intercellular junctions: a multidimensional challenge for epithelial cell division. Curr Opin Cell Biol 2019; 60:75-83. [DOI: 10.1016/j.ceb.2019.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 02/01/2023]
|
10
|
Serra D, Mayr U, Boni A, Lukonin I, Rempfler M, Challet Meylan L, Stadler MB, Strnad P, Papasaikas P, Vischi D, Waldt A, Roma G, Liberali P. Self-organization and symmetry breaking in intestinal organoid development. Nature 2019; 569:66-72. [PMID: 31019299 PMCID: PMC6544541 DOI: 10.1038/s41586-019-1146-y] [Citation(s) in RCA: 337] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 03/27/2019] [Indexed: 01/08/2023]
Abstract
Intestinal organoids are complex three-dimensional structures that mimic the cell-type composition and tissue organization of the intestine by recapitulating the self-organizing ability of cell populations derived from a single intestinal stem cell. Crucial in this process is a first symmetry-breaking event, in which only a fraction of identical cells in a symmetrical sphere differentiate into Paneth cells, which generate the stem-cell niche and lead to asymmetric structures such as the crypts and villi. Here we combine single-cell quantitative genomic and imaging approaches to characterize the development of intestinal organoids from single cells. We show that their development follows a regeneration process that is driven by transient activation of the transcriptional regulator YAP1. Cell-to-cell variability in YAP1, emerging in symmetrical spheres, initiates Notch and DLL1 activation, and drives the symmetry-breaking event and formation of the first Paneth cell. Our findings reveal how single cells exposed to a uniform growth-promoting environment have the intrinsic ability to generate emergent, self-organized behaviour that results in the formation of complex multicellular asymmetric structures.
Collapse
Affiliation(s)
- Denise Serra
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Urs Mayr
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Andrea Boni
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- Viventis Microscopy Sàrl, EPFL Innovation Park, Lausanne, Switzerland
| | - Ilya Lukonin
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Markus Rempfler
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | | | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Petr Strnad
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- Viventis Microscopy Sàrl, EPFL Innovation Park, Lausanne, Switzerland
| | - Panagiotis Papasaikas
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Dario Vischi
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Annick Waldt
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Guglielmo Roma
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
11
|
Zwick RK, Ohlstein B, Klein OD. Intestinal renewal across the animal kingdom: comparing stem cell activity in mouse and Drosophila. Am J Physiol Gastrointest Liver Physiol 2019; 316:G313-G322. [PMID: 30543448 PMCID: PMC6415738 DOI: 10.1152/ajpgi.00353.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gastrointestinal (GI) tract renews frequently to sustain nutrient digestion and absorption in the face of consistent tissue stress. In many species, proliferative intestinal stem cells (ISCs) are responsible for the repair of the damage arising from chemical and mechanical aspects of food breakdown and exposure to pathogens. As the cellular source of all mature cell types of the intestinal epithelium throughout adulthood, ISCs hold tremendous therapeutic potential for understanding and treating GI disease in humans. This review focuses on recent advances in our understanding of ISC identity, behavior, and regulation during homeostasis and injury-induced repair, as revealed by two major animal models used to study regeneration of the small intestine: Drosophila melanogaster and Mus musculus. We emphasize recent findings from Drosophila that are likely to translate to the mammalian GI system, as well as challenging topics in mouse ISC biology that may be ideally suited for investigation in flies. For context, we begin by reviewing major physiological similarities and distinctions between the Drosophila midgut and mouse small intestine.
Collapse
Affiliation(s)
- Rachel K. Zwick
- 1Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, California
| | - Benjamin Ohlstein
- 2Department of Genetics and Development, Columbia University Medical Center, New York, New York
| | - Ophir D. Klein
- 1Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, California,3Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, California
| |
Collapse
|
12
|
Fousse J, Gautier E, Patti D, Dehay C. Developmental changes in interkinetic nuclear migration dynamics with respect to cell‐cycle progression in the mouse cerebral cortex ventricular zone. J Comp Neurol 2019; 527:1545-1557. [DOI: 10.1002/cne.24641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Julie Fousse
- Univ Lyon, Université Claude Bernard Lyon 1Inserm, Stem Cell and Brain Research Institute U1208 Bron France
| | - Elodie Gautier
- Univ Lyon, Université Claude Bernard Lyon 1Inserm, Stem Cell and Brain Research Institute U1208 Bron France
| | - Dorothée Patti
- Univ Lyon, Université Claude Bernard Lyon 1Inserm, Stem Cell and Brain Research Institute U1208 Bron France
| | - Colette Dehay
- Univ Lyon, Université Claude Bernard Lyon 1Inserm, Stem Cell and Brain Research Institute U1208 Bron France
| |
Collapse
|
13
|
McKinley KL, Stuurman N, Royer LA, Schartner C, Castillo-Azofeifa D, Delling M, Klein OD, Vale RD. Cellular aspect ratio and cell division mechanics underlie the patterning of cell progeny in diverse mammalian epithelia. eLife 2018; 7:36739. [PMID: 29897330 PMCID: PMC6023609 DOI: 10.7554/elife.36739] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/08/2018] [Indexed: 01/08/2023] Open
Abstract
Cell division is essential to expand, shape, and replenish epithelia. In the adult small intestine, cells from a common progenitor intermix with other lineages, whereas cell progeny in many other epithelia form contiguous patches. The mechanisms that generate these distinct patterns of progeny are poorly understood. Using light sheet and confocal imaging of intestinal organoids, we show that lineages intersperse during cytokinesis, when elongated interphase cells insert between apically displaced daughters. Reducing the cellular aspect ratio to minimize the height difference between interphase and mitotic cells disrupts interspersion, producing contiguous patches. Cellular aspect ratio is similarly a key parameter for division-coupled interspersion in the early mouse embryo, suggesting that this physical mechanism for patterning progeny may pertain to many mammalian epithelia. Our results reveal that the process of cytokinesis in elongated mammalian epithelia allows lineages to intermix and that cellular aspect ratio is a critical modulator of the progeny pattern.
Collapse
Affiliation(s)
- Kara L McKinley
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Nico Stuurman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Loic A Royer
- Chan Zuckerberg Biohub, San Francisco, United States
| | - Christoph Schartner
- Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - David Castillo-Azofeifa
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, United States.,Program in Craniofacial Biology, University of California, San Francisco, San Francisco, United States
| | - Markus Delling
- Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Ophir D Klein
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, United States.,Program in Craniofacial Biology, University of California, San Francisco, San Francisco, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, United States.,Institute for Human Genetics, University of California, San Francisco, San Francisco, United States
| | - Ronald D Vale
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
14
|
Fendrik AJ, Romanelli L, Rotondo E. Neutral dynamics and cell renewal of colonic crypts in homeostatic regime. Phys Biol 2018; 15:036003. [PMID: 29381141 DOI: 10.1088/1478-3975/aaab9f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The self renewal process in colonic crypts is the object of several studies. We present here a new compartment model with the following characteristics: (a) we distinguish different classes of cells: stem cells, six generations of transit amplifying cells and the differentiated cells; (b) in order to take into account the monoclonal character of crypts in homeostatic regimes we include symmetric divisions of the stem cells. We first consider the dynamic differential equations that describe the evolution of the mean values of the populations, but the small observed value of the total number of cells involved plus the huge dispersion of experimental data found in the literature leads us to study the stochastic discrete process. This analysis allows us to study fluctuations, the neutral drift that leads to monoclonality, and the effects of the fixation of mutant clones.
Collapse
Affiliation(s)
- A J Fendrik
- Instituto de Ciencias, Universidad Nacional de General Sarmiento-J.M.Gutierrez 1150, (1613) Los Polvorines, Buenos Aires, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas- Buenos Aires, Argentina. Author to whom any correspondence should be addressed
| | | | | |
Collapse
|