1
|
Ma L, Acuff NV, Joseph IB, Ptacin JL, Caffaro CE, San Jose KM, Aerni HR, Carrio R, Byers AM, Herman RW, Pavlova Y, Pena MJ, Chen DB, Buetz C, Ismaili TK, Pham HV, Cucchetti M, Sassoon I, Koriazova LK, Leveque JA, Shawver LK, Mooney JM, Milla ME. A Precision Engineered Interleukin-2 for Bolstering CD8+ T- and NK-cell Activity without Eosinophilia and Vascular Leak Syndrome in Nonhuman Primates. CANCER RESEARCH COMMUNICATIONS 2024; 4:2799-2814. [PMID: 39320047 PMCID: PMC11503527 DOI: 10.1158/2767-9764.crc-24-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/03/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
We have created a precisely pegylated IL-2 [SAR-444245 (SAR'245) or pegenzileukin, previously THOR-707] designed for proliferation of target CD8+ T and NK cells for anticancer activity, with minimal expansion of anti-target regulatory CD4+ T cells (Treg) that counter their action, or eosinophils that trigger vascular leak syndrome (VLS). We performed in vivo studies in nonhuman primates (NHP) to monitor the safety of SAR'245, pharmacokinetic profile, and pharmacodynamic parameters including expansion of peripheral CD8+ T and NK cells, and effects on Tregs and eosinophils. Studies included multiple ascending dosing and repeat dosing with different regimens (QW, Q2W, Q3W and Q4W). We also conducted ex vivo studies using human primary cells to further evaluate SAR'245 stimulation of target cells alone and in combination with programmed cell-death 1 (PD-1) checkpoint inhibitors. The pharmacokinetic profile of SAR'245 in NHP demonstrated dose-proportional exposure that was comparable with redosing. It elicited expansion of peripheral CD8+ T and NK cells that was comparable with each dose and with multiple dosing regimens. Once-weekly dosing showed no significant adverse effects, including no hallmark signs of VLS at dosing levels up to 1 mg/kg. Ex vivo, SAR'245 enhanced T-cell receptor responses alone and in combination with PD-1 inhibitors without inducing cytokines associated with cytokine release syndrome or VLS. Results support the clinical development of SAR'245 as a drug candidate for the treatment of solid tumors, alone or in combination with PD-1 inhibitory agents. SIGNIFICANCE SAR-444245 (SAR'245, pegenzileukin) is an extended half-life IL-2 that targets effector CD8+ T and NK cells, with little effect on regulatory T cells. We show that in the nonhuman primate model that closely approximates human immune function and response to IL-2, SAR'245 selectively activates CD8+ T and NK effectors without significant serious side effects (vascular leak syndrome or cytokine release syndrome), suggesting its potential for the treatment of solid tumors in humans.
Collapse
Affiliation(s)
- Lina Ma
- Synthorx, Inc., A Sanofi Company, La Jolla, California
| | | | | | | | | | | | - Hans R. Aerni
- Synthorx, Inc., A Sanofi Company, La Jolla, California
| | | | | | - Rob W. Herman
- Synthorx, Inc., A Sanofi Company, La Jolla, California
| | | | | | - David B. Chen
- Synthorx, Inc., A Sanofi Company, La Jolla, California
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Pelosi G, Travis WD. Head-to-head: Should Ki67 proliferation index be included in the formal classification of pulmonary neuroendocrine neoplasms? Histopathology 2024; 85:535-548. [PMID: 38728050 DOI: 10.1111/his.15206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 08/31/2024]
Abstract
The reporting of lung neuroendocrine neoplasms (NENs) according to the 2021 World Health Organisation (WHO) is based on mitotic count per 2 mm2, necrosis assessment and a constellation of cytological and immunohistochemical details. Accordingly, typical carcinoid and atypical carcinoid are low- to intermediate-grade neuroendocrine tumours (NETs), while large-cell neuroendocrine carcinoma (NEC) and small-cell lung carcinoma are high-grade NECs. In small-sized diagnostic material (cytology and biopsy), the noncommittal term of carcinoid tumour/NET not otherwise specified (NOS) and metastatic carcinoid NOS have been introduced with regard to primary and metastatic diagnostic settings, respectively. Ki-67 antigen, a well-known marker of cell proliferation, has been included in the WHO classification as a non-essential but desirable criterion, especially to distinguish NETs from high-grade NECs and to delineate the provisional category of carcinoid tumours/NETs with elevated mitotic counts (> 10 mitoses per mm2) and/or Ki-67 proliferation index (≥ 30%). However, a wider use of this marker in the spectrum of lung NENs continues to be highly reported and debated, thus witnessing a never-subsided attention. Therefore, the arguments for and against incorporating Ki-67 in the classification and clinical practice of these neoplasms are discussed herein in detail.
Collapse
Affiliation(s)
- Giuseppe Pelosi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Inter-Hospital Pathology Division, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - William D Travis
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York City, NY, USA
| |
Collapse
|
3
|
Hatoyama Y, Islam M, Bond AG, Hayashi KI, Ciulli A, Kanemaki MT. Combination of AID2 and BromoTag expands the utility of degron-based protein knockdowns. EMBO Rep 2024; 25:4062-4077. [PMID: 39179892 PMCID: PMC11387839 DOI: 10.1038/s44319-024-00224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/26/2024] Open
Abstract
Acute protein knockdown is a powerful approach to dissecting protein function in dynamic cellular processes. We previously reported an improved auxin-inducible degron system, AID2, but recently noted that its ability to induce degradation of some essential replication factors, such as ORC1 and CDC6, was not enough to induce lethality. Here, we present combinational degron technologies to control two proteins or enhance target depletion. For this purpose, we initially compare PROTAC-based degrons, dTAG and BromoTag, with AID2 to reveal their key features and then demonstrate control of cohesin and condensin with AID2 and BromoTag, respectively. We develop a double-degron system with AID2 and BromoTag to enhance target depletion and accelerate depletion kinetics and demonstrate that both ORC1 and CDC6 are pivotal for MCM loading. Finally, we show that co-depletion of ORC1 and CDC6 by the double-degron system completely suppresses DNA replication, and the cells enter mitosis with single-chromatid chromosomes, indicating that DNA replication is uncoupled from cell cycle control. Our combinational degron technologies will expand the application scope for functional analyses.
Collapse
Affiliation(s)
- Yuki Hatoyama
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka, 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Moutushi Islam
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka, 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Adam G Bond
- Centre for Targeted Protein Degradation, School of Life Science, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, Scotland, UK
| | - Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Ridai-cho 1-1, Okayama, 700-0005, Japan
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Science, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, Scotland, UK
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka, 411-8540, Japan.
- Graduate Institute for Advanced Studies, SOKENDAI, Yata 1111, Mishima, Shizuoka, 411-8540, Japan.
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
4
|
Hibino K, Sakai Y, Tamura S, Takagi M, Minami K, Natsume T, Shimazoe MA, Kanemaki MT, Imamoto N, Maeshima K. Single-nucleosome imaging unveils that condensins and nucleosome-nucleosome interactions differentially constrain chromatin to organize mitotic chromosomes. Nat Commun 2024; 15:7152. [PMID: 39169041 PMCID: PMC11339268 DOI: 10.1038/s41467-024-51454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
For accurate mitotic cell division, replicated chromatin must be assembled into chromosomes and faithfully segregated into daughter cells. While protein factors like condensin play key roles in this process, it is unclear how chromosome assembly proceeds as molecular events of nucleosomes in living cells and how condensins act on nucleosomes to organize chromosomes. To approach these questions, we investigate nucleosome behavior during mitosis of living human cells using single-nucleosome tracking, combined with rapid-protein depletion technology and computational modeling. Our results show that local nucleosome motion becomes increasingly constrained during mitotic chromosome assembly, which is functionally distinct from condensed apoptotic chromatin. Condensins act as molecular crosslinkers, locally constraining nucleosomes to organize chromosomes. Additionally, nucleosome-nucleosome interactions via histone tails constrain and compact whole chromosomes. Our findings elucidate the physical nature of the chromosome assembly process during mitosis.
Collapse
Affiliation(s)
- Kayo Hibino
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
| | - Yuji Sakai
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Sachiko Tamura
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Masatoshi Takagi
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Katsuhiko Minami
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
| | - Toyoaki Natsume
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
- Molecular Cell Engineering Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masa A Shimazoe
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
| | - Masato T Kanemaki
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
- Molecular Cell Engineering Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Graduate School of Medical Safety Management, Jikei University of Health Care Sciences, Osaka, Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan.
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan.
| |
Collapse
|
5
|
Stamatiou K, Huguet F, Serapinas LV, Spanos C, Rappsilber J, Vagnarelli P. Ki-67 is necessary during DNA replication for fork protection and genome stability. Genome Biol 2024; 25:105. [PMID: 38649976 PMCID: PMC11034166 DOI: 10.1186/s13059-024-03243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The proliferation antigen Ki-67 has been widely used in clinical settings for cancer staging for many years, but investigations on its biological functions have lagged. Recently, Ki-67 has been shown to regulate both the composition of the chromosome periphery and chromosome behaviour in mitosis as well as to play a role in heterochromatin organisation and gene transcription. However, how the different roles for Ki-67 across the cell cycle are regulated and coordinated remain poorly understood. The progress towards understanding Ki-67 function have been limited by the tools available to deplete the protein, coupled to its abundance and fluctuation during the cell cycle. RESULTS Here, we use a doxycycline-inducible E3 ligase together with an auxin-inducible degron tag to achieve a rapid, acute and homogeneous degradation of Ki-67 in HCT116 cells. This system, coupled with APEX2 proteomics and phospho-proteomics approaches, allows us to show that Ki-67 plays a role during DNA replication. In its absence, DNA replication is severely delayed, the replication machinery is unloaded, causing DNA damage that is not sensed by the canonical pathways and dependent on HUWE1 ligase. This leads to defects in replication and sister chromatids cohesion, but it also triggers an interferon response mediated by the cGAS/STING pathway in all the cell lines tested. CONCLUSIONS We unveil a new function of Ki-67 in DNA replication and genome maintenance that is independent of its previously known role in mitosis and gene regulation.
Collapse
Affiliation(s)
- Konstantinos Stamatiou
- College of Health, Medicine and Life Science, Brunel University London, London, UB8 3PH, UK
| | - Florentin Huguet
- College of Health, Medicine and Life Science, Brunel University London, London, UB8 3PH, UK
| | - Lukas V Serapinas
- College of Health, Medicine and Life Science, Brunel University London, London, UB8 3PH, UK
| | - Christos Spanos
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Technische Universitat Berlin, Berlin, 13355, Germany
| | - Paola Vagnarelli
- College of Health, Medicine and Life Science, Brunel University London, London, UB8 3PH, UK.
| |
Collapse
|
6
|
Ando R, Shimozono S, Ago H, Takagi M, Sugiyama M, Kurokawa H, Hirano M, Niino Y, Ueno G, Ishidate F, Fujiwara T, Okada Y, Yamamoto M, Miyawaki A. StayGold variants for molecular fusion and membrane-targeting applications. Nat Methods 2024; 21:648-656. [PMID: 38036853 PMCID: PMC11009113 DOI: 10.1038/s41592-023-02085-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/12/2023] [Indexed: 12/02/2023]
Abstract
Although StayGold is a bright and highly photostable fluorescent protein, its propensity for obligate dimer formation may hinder applications in molecular fusion and membrane targeting. To attain monovalent as well as bright and photostable labeling, we engineered tandem dimers of StayGold to promote dispersibility. On the basis of the crystal structure of this fluorescent protein, we disrupted the dimerization to generate a monomeric variant that offers improved photostability and brightness compared to StayGold. We applied the new monovalent StayGold tools to live-cell imaging experiments using spinning-disk laser-scanning confocal microscopy or structured illumination microscopy. We achieved cell-wide, high-spatiotemporal resolution and sustained imaging of dynamic subcellular events, including the targeting of endogenous condensin I to mitotic chromosomes, the movement of the Golgi apparatus and its membranous derivatives along microtubule networks, the distribution of cortical filamentous actin and the remolding of cristae membranes within mobile mitochondria.
Collapse
Affiliation(s)
- Ryoko Ando
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako-city, Japan
- Biotechnological Optics Research Team, RIKEN Center for Advanced Photonics, Wako-city, Japan
- Department of Optical Biomedical Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Satoshi Shimozono
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako-city, Japan
| | - Hideo Ago
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Japan
| | - Masatoshi Takagi
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research (CPR), Saitama, Japan
| | - Mayu Sugiyama
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako-city, Japan
| | - Hiroshi Kurokawa
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako-city, Japan
| | - Masahiko Hirano
- Biotechnological Optics Research Team, RIKEN Center for Advanced Photonics, Wako-city, Japan
| | - Yusuke Niino
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako-city, Japan
| | - Go Ueno
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Japan
| | - Fumiyoshi Ishidate
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takahiro Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yasushi Okada
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research, Suita, Japan
- Department of Cell Biology, Department of Physics, UBI and WPI-IRCN, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masaki Yamamoto
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako-city, Japan.
- Biotechnological Optics Research Team, RIKEN Center for Advanced Photonics, Wako-city, Japan.
- Laboratory of Bioresponse Analysis, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
7
|
Liu J, Rahim F, Zhou J, Fan S, Jiang H, Yu C, Chen J, Xu J, Yang G, Shah W, Zubair M, Khan A, Li Y, Shah B, Zhao D, Iqbal F, Jiang X, Guo T, Xu P, Xu B, Wu L, Ma H, Zhang Y, Zhang H, Shi Q. Loss-of-function variants in KCTD19 cause non-obstructive azoospermia in humans. iScience 2023; 26:107193. [PMID: 37485353 PMCID: PMC10362269 DOI: 10.1016/j.isci.2023.107193] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/19/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Azoospermia is a significant cause of male infertility, with non-obstructive azoospermia (NOA) being the most severe type of spermatogenic failure. NOA is mostly caused by congenital factors, but our understanding of its genetic causes is very limited. Here, we identified a frameshift variant (c.201_202insAC, p.Tyr68Thrfs∗17) and two nonsense variants (c.1897C>T, p.Gln633∗; c.2005C>T, p.Gln669∗) in KCTD19 (potassium channel tetramerization domain containing 19) from two unrelated infertile Chinese men and a consanguineous Pakistani family with three infertile brothers. Testicular histological analyses revealed meiotic metaphase I (MMI) arrest in the affected individuals. Mice modeling KCTD19 variants recapitulated the same MMI arrest phenotype due to severe disrupted individualization of MMI chromosomes. Further analysis showed a complete loss of KCTD19 protein in both Kctd19 mutant mouse testes and affected individual testes. Collectively, our findings demonstrate the pathogenicity of the identified KCTD19 variants and highlight an essential role of KCTD19 in MMI chromosome individualization.
Collapse
Affiliation(s)
- Junyan Liu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Fazal Rahim
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Jianteng Zhou
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Suixing Fan
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Hanwei Jiang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Changping Yu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Jing Chen
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Jianze Xu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Gang Yang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Wasim Shah
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Muhammad Zubair
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Asad Khan
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Yang Li
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Basit Shah
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Daren Zhao
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Furhan Iqbal
- Institute of Pure and Applied Biology, Zoology Division, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Xiaohua Jiang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Tonghang Guo
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Peng Xu
- Hainan Jinghua Hejing Hospital for Reproductive Medicine, Hainan 570125, China
| | - Bo Xu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Limin Wu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Hui Ma
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Yuanwei Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Huan Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
8
|
Sundararajan S, Park H, Kawano S, Johansson M, Lama B, Saito-Fujita T, Saitoh N, Arnaoutov A, Dasso M, Wang Z, Keifenheim D, Clarke DJ, Azuma Y. Methylated histones on mitotic chromosomes promote topoisomerase IIα function for high fidelity chromosome segregation. iScience 2023; 26:106743. [PMID: 37197327 PMCID: PMC10183659 DOI: 10.1016/j.isci.2023.106743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 04/21/2023] [Indexed: 05/19/2023] Open
Abstract
DNA Topoisomerase IIα (TopoIIα) decatenates sister chromatids, allowing their segregation in mitosis. Without the TopoIIα Strand Passage Reaction (SPR), chromosome bridges and ultra-fine DNA bridges (UFBs) arise in anaphase. The TopoIIα C-terminal domain is dispensable for the SPR in vitro but essential for mitotic functions in vivo. Here, we present evidence that the Chromatin Tether (ChT) within the CTD interacts with specific methylated nucleosomes and is crucial for high-fidelity chromosome segregation. Mutation of individual αChT residues disrupts αChT-nucleosome interaction, induces loss of segregation fidelity and reduces association of TopoIIα with chromosomes. Specific methyltransferase inhibitors reducing histone H3 or H4 methylation decreased TopoIIα at centromeres and increased segregation errors. Methyltransferase inhibition did not further increase aberrant anaphases in the ChT mutants, indicating a functional connection. The evidence reveals novel cellular regulation whereby TopoIIα specifically interacts with methylated nucleosomes via the αChT to ensure high-fidelity chromosome segregation.
Collapse
Affiliation(s)
- Sanjana Sundararajan
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Hyewon Park
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Shinji Kawano
- Department of Biochemistry, Faculty of Science, Okayama University of Science, Okayama 700-0081, Japan
| | - Marnie Johansson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bunu Lama
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Tomoko Saito-Fujita
- Division of Cancer Biology, The Cancer Institute of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Noriko Saitoh
- Division of Cancer Biology, The Cancer Institute of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Alexei Arnaoutov
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4480, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4480, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel Keifenheim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Duncan J. Clarke
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yoshiaki Azuma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
9
|
Nakamura D. The evaluation of tumorigenicity and characterization of colonies in a soft agar colony formation assay using polymerase chain reaction. Sci Rep 2023; 13:5405. [PMID: 37012331 PMCID: PMC10070612 DOI: 10.1038/s41598-023-32442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
In regenerative medicine, the tumorigenic potency of cells in cellular therapy products (CTPs) is a major concern for their application to patients. This study presents a method-the soft agar colony formation assay using polymerase chain reaction (PCR)-to evaluate tumorigenicity. MRC-5 cells, contaminated with HeLa cells, were cultured for up to 4 weeks in soft agar medium. Cell-proliferation-related mRNAs, Ki-67 and cyclin B, could be detected in 0.01% of HeLa cells after 5 days of culture, whereas cyclin-dependent kinase 1 (CDK1) could be detected after 2 weeks. On the other hand, CDK2, proliferating cell nuclear antigen (PCNA), and minichromosome maintenance protein 7 (MCM7) were not useful to detect HeLa cells even after 4 weeks of culture. The cancer stem cell (CSC) markers, aldehyde dehydrogenase 1 (ALDH1) and CD133 in 0.01% of HeLa cells, could be detected 2 and 4 weeks after culture, respectively. However, another CSC marker CD44 was not useful because its expression was also detected in MRC-5 cells alone. This study suggests that the application of the PCR method to the soft agar colony formation assay could evaluate not only the tumorigenic potency in the short-term but also characterize the colonies, eventually improving the safety of CTPs.
Collapse
Affiliation(s)
- Daichi Nakamura
- BoZo Research Center Inc., Tsukuba Research Institute, 8 Okubo, Tsukuba, Ibaraki, 300-2611, Japan.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
10
|
de Wit E, Nora EP. New insights into genome folding by loop extrusion from inducible degron technologies. Nat Rev Genet 2023; 24:73-85. [PMID: 36180596 DOI: 10.1038/s41576-022-00530-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 01/24/2023]
Abstract
Chromatin folds into dynamic loops that often span hundreds of kilobases and physically wire distant loci together for gene regulation. These loops are continuously created, extended and positioned by structural maintenance of chromosomes (SMC) protein complexes, such as condensin and cohesin, and their regulators, including CTCF, in a highly dynamic process known as loop extrusion. Genetic loss of extrusion factors is lethal, complicating their study. Inducible protein degradation technologies enable the depletion of loop extrusion factors within hours, leading to the rapid reconfiguration of chromatin folding. Here, we review how these technologies have changed our understanding of genome organization, upsetting long-held beliefs on its role in transcription. Finally, we examine recent models that attempt to reconcile observations after chronic versus acute perturbations, and discuss future developments in this rapidly developing field of research.
Collapse
Affiliation(s)
- Elzo de Wit
- Division of Gene Regulation, Oncode Institute, Amsterdam, the Netherlands.
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Elphège P Nora
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
Macdonald L, Taylor GC, Brisbane JM, Christodoulou E, Scott L, von Kriegsheim A, Rossant J, Gu B, Wood AJ. Rapid and specific degradation of endogenous proteins in mouse models using auxin-inducible degrons. eLife 2022; 11:e77987. [PMID: 35736539 PMCID: PMC9273210 DOI: 10.7554/elife.77987] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Auxin-inducible degrons are a chemical genetic tool for targeted protein degradation and are widely used to study protein function in cultured mammalian cells. Here, we develop CRISPR-engineered mouse lines that enable rapid and highly specific degradation of tagged endogenous proteins in vivo. Most but not all cell types are competent for degradation. By combining ligand titrations with genetic crosses to generate animals with different allelic combinations, we show that degradation kinetics depend upon the dose of the tagged protein, ligand, and the E3 ligase substrate receptor TIR1. Rapid degradation of condensin I and II - two essential regulators of mitotic chromosome structure - revealed that both complexes are individually required for cell division in precursor lymphocytes, but not in their differentiated peripheral lymphocyte derivatives. This generalisable approach provides unprecedented temporal control over the dose of endogenous proteins in mouse models, with implications for studying essential biological pathways and modelling drug activity in mammalian tissues.
Collapse
Affiliation(s)
- Lewis Macdonald
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Gillian C Taylor
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Jennifer Margaret Brisbane
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Ersi Christodoulou
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Lucy Scott
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick ChildrenTorontoCanada
| | - Bin Gu
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State UniversityEast LansingUnited States
- Department of Biomedical Engineering; Michigan State UniversityEast LansingUnited States
- Institute for Quantitative Health Science and Engineering, Michigan State UniversityEast LansingUnited States
| | - Andrew J Wood
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
12
|
Andrés-Sánchez N, Fisher D, Krasinska L. Physiological functions and roles in cancer of the proliferation marker Ki-67. J Cell Sci 2022; 135:275629. [PMID: 35674256 DOI: 10.1242/jcs.258932] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
What do we know about Ki-67, apart from its usefulness as a cell proliferation biomarker in histopathology? Discovered in 1983, the protein and its regulation of expression and localisation throughout the cell cycle have been well characterised. However, its function and molecular mechanisms have received little attention and few answers. Although Ki-67 has long been thought to be required for cell proliferation, recent genetic studies have conclusively demonstrated that this is not the case, as loss of Ki-67 has little or no impact on cell proliferation. In contrast, Ki-67 is important for localising nucleolar material to the mitotic chromosome periphery and for structuring perinucleolar heterochromatin, and emerging data indicate that it also has critical roles in cancer development. However, its mechanisms of action have not yet been fully identified. Here, we review recent findings and propose the hypothesis that Ki-67 is involved in structuring cellular sub-compartments that assemble by liquid-liquid phase separation. At the heterochromatin boundary, this may control access of chromatin regulators, with knock-on effects on gene expression programmes. These changes allow adaptation of the cell to its environment, which, for cancer cells, is a hostile one. We discuss unresolved questions and possible avenues for future exploration.
Collapse
Affiliation(s)
- Nuria Andrés-Sánchez
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, INSERM, 34293 Montpellier, France.,Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Daniel Fisher
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, INSERM, 34293 Montpellier, France.,Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Liliana Krasinska
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, INSERM, 34293 Montpellier, France.,Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le Cancer, 75013 Paris, France
| |
Collapse
|
13
|
Chromosome clustering in mitosis by the nuclear protein Ki-67. Biochem Soc Trans 2021; 49:2767-2776. [PMID: 34783345 PMCID: PMC8786303 DOI: 10.1042/bst20210717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
Ki-67 is highly expressed in proliferating cells, a characteristic that made the protein a very important proliferation marker widely used in the clinic. However, the molecular functions and properties of Ki-67 remained quite obscure for a long time. Only recently important discoveries have shed some light on its function and shown that Ki-67 has a major role in the formation of mitotic chromosome periphery compartment, it is associated with protein phosphatase one (PP1) and regulates chromatin function in interphase and mitosis. In this review, we discuss the role of Ki-67 during cell division. Specifically, we focus on the importance of Ki-67 in chromosome individualisation at mitotic entry (prometaphase) and its contribution to chromosome clustering and nuclear remodelling during mitotic exit.
Collapse
|
14
|
Pelosi G, Travis WD. The Ki-67 antigen in the new 2021 World Health Organization classification of lung neuroendocrine neoplasms. Pathologica 2021; 113:377-387. [PMID: 34837096 PMCID: PMC8720414 DOI: 10.32074/1591-951x-542] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 10/24/2021] [Indexed: 01/14/2023] Open
Abstract
Prof. Rosai's work has permeated the surgical pathology in many fields, including the 2017 World Health Organization classification on tumors of endocrine organs and pulmonary neuroendocrine cell pathology, with stimulating contributions which have also anticipated the subsequent evolution of knowledge. Among the many studies authored by Prof. Rosai, we would like to recall one of which whose topic has been encased in the new 2021 World Health Organization classification on lung tumors. This is an eminently practical paper dealing with the use of the proliferation antigen Ki-67 in lung neuroendocrine neoplasms. While these neoplasms are primarily ranked upon histologic features and Ki-67 labeling index does not play any role in classification, diagnostic dilemmas may however arise in severely crushed biopsy or cytology samples where this marker proves helpful to avoid misdiagnoses of carcinoids as small cell carcinoma. Another application of Ki-67 labeling index endorsed by the 2021 World Health Organization classification regards, alongside mitotic count, the emerging recognition of lung atypical carcinoids with increased mitotic or proliferation rates, whose biological boundaries straddle a subset of large cell neuroendocrine carcinoma. This article focuses on these two practical applications of the proliferation marker Ki-67 in keeping with the 2021 World Health Organization classification, which provides standards for taxonomy, diagnosis and clinical decision making in lung neuroendocrine neoplasm patients.
Collapse
Affiliation(s)
- Giuseppe Pelosi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - William D. Travis
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, USA
| |
Collapse
|
15
|
Garwain O, Sun X, Iyer DR, Li R, Zhu LJ, Kaufman PD. The chromatin-binding domain of Ki-67 together with p53 protects human chromosomes from mitotic damage. Proc Natl Acad Sci U S A 2021; 118:e2021998118. [PMID: 34353903 PMCID: PMC8364191 DOI: 10.1073/pnas.2021998118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vertebrate mammals express a protein called Ki-67 which is most widely known as a clinically useful marker of highly proliferative cells. Previous studies of human cells indicated that acute depletion of Ki-67 can elicit a delay at the G1/S boundary of the cell cycle, dependent on induction of the checkpoint protein p21. Consistent with those observations, we show here that acute Ki-67 depletion causes hallmarks of DNA damage, and the damage occurs even in the absence of checkpoint signaling. This damage is not observed in cells traversing S phase but is instead robustly detected in mitotic cells. The C-terminal chromatin-binding domain of Ki-67 is necessary and sufficient to protect cells from this damage. We also observe synergistic effects when Ki-67 and p53 are simultaneously depleted, resulting in increased levels of chromosome bridges at anaphase, followed by the appearance of micronuclei. Therefore, these studies identify the C terminus of Ki-67 as an important module for genome stability.
Collapse
Affiliation(s)
- Osama Garwain
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Xiaoming Sun
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Divya Ramalingam Iyer
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Paul D Kaufman
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
16
|
Remnant L, Kochanova NY, Reid C, Cisneros-Soberanis F, Earnshaw WC. The intrinsically disorderly story of Ki-67. Open Biol 2021; 11:210120. [PMID: 34375547 PMCID: PMC8354752 DOI: 10.1098/rsob.210120] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023] Open
Abstract
Ki-67 is one of the most famous marker proteins used by histologists to identify proliferating cells. Indeed, over 30 000 articles referring to Ki-67 are listed on PubMed. Here, we review some of the current literature regarding the protein. Despite its clinical importance, our knowledge of the molecular biology and biochemistry of Ki-67 is far from complete, and its exact molecular function(s) remain enigmatic. Furthermore, reports describing Ki-67 function are often contradictory, and it has only recently become clear that this proliferation marker is itself dispensable for cell proliferation. We discuss the unusual organization of the protein and its mRNA and how they relate to various models for its function. In particular, we focus on ways in which the intrinsically disordered structure of Ki-67 might aid in the assembly of the still-mysterious mitotic chromosome periphery compartment by controlling liquid-liquid phase separation of nucleolar proteins and RNAs.
Collapse
Affiliation(s)
- Lucy Remnant
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Natalia Y. Kochanova
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Caitlin Reid
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Fernanda Cisneros-Soberanis
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - William C. Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
17
|
Hoencamp C, Dudchenko O, Elbatsh AMO, Brahmachari S, Raaijmakers JA, van Schaik T, Sedeño Cacciatore Á, Contessoto VG, van Heesbeen RGHP, van den Broek B, Mhaskar AN, Teunissen H, St Hilaire BG, Weisz D, Omer AD, Pham M, Colaric Z, Yang Z, Rao SSP, Mitra N, Lui C, Yao W, Khan R, Moroz LL, Kohn A, St Leger J, Mena A, Holcroft K, Gambetta MC, Lim F, Farley E, Stein N, Haddad A, Chauss D, Mutlu AS, Wang MC, Young ND, Hildebrandt E, Cheng HH, Knight CJ, Burnham TLU, Hovel KA, Beel AJ, Mattei PJ, Kornberg RD, Warren WC, Cary G, Gómez-Skarmeta JL, Hinman V, Lindblad-Toh K, Di Palma F, Maeshima K, Multani AS, Pathak S, Nel-Themaat L, Behringer RR, Kaur P, Medema RH, van Steensel B, de Wit E, Onuchic JN, Di Pierro M, Lieberman Aiden E, Rowland BD. 3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science 2021; 372:984-989. [PMID: 34045355 PMCID: PMC8172041 DOI: 10.1126/science.abe2218] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/16/2021] [Indexed: 01/01/2023]
Abstract
We investigated genome folding across the eukaryotic tree of life. We find two types of three-dimensional (3D) genome architectures at the chromosome scale. Each type appears and disappears repeatedly during eukaryotic evolution. The type of genome architecture that an organism exhibits correlates with the absence of condensin II subunits. Moreover, condensin II depletion converts the architecture of the human genome to a state resembling that seen in organisms such as fungi or mosquitoes. In this state, centromeres cluster together at nucleoli, and heterochromatin domains merge. We propose a physical model in which lengthwise compaction of chromosomes by condensin II during mitosis determines chromosome-scale genome architecture, with effects that are retained during the subsequent interphase. This mechanism likely has been conserved since the last common ancestor of all eukaryotes.
Collapse
Affiliation(s)
- Claire Hoencamp
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Olga Dudchenko
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Ahmed M O Elbatsh
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | | | - Jonne A Raaijmakers
- Division of Cell Biology, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Tom van Schaik
- Division of Gene Regulation, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | | | - Vinícius G Contessoto
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto - SP, 15054-000, Brazil
| | - Roy G H P van Heesbeen
- Division of Cell Biology, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Bram van den Broek
- BioImaging Facility, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Aditya N Mhaskar
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Hans Teunissen
- Division of Gene Regulation, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Brian Glenn St Hilaire
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Weisz
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arina D Omer
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
| | - Melanie Pham
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zane Colaric
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhenzhen Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong 201210, China
| | - Suhas S P Rao
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Namita Mitra
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher Lui
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weijie Yao
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruqayya Khan
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Leonid L Moroz
- Whitney Laboratory and Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Andrea Kohn
- Whitney Laboratory and Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Judy St Leger
- Department of Biosciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | | | | | | | - Fabian Lim
- Department of Medicine and Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emma Farley
- Department of Medicine and Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), 06466 Seeland, Germany
- Center of Integrated Breeding Research (CiBreed), Department of Crop Sciences, Georg-August-University Göttingen, 37075 Göttingen, Germany
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Alexander Haddad
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel Chauss
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ayse Sena Mutlu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng C Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Evin Hildebrandt
- Avian Diseases and Oncology Laboratory, US Department of Agriculture, Agricultural Research Service, East Lansing, MI 48823, USA
| | - Hans H Cheng
- Avian Diseases and Oncology Laboratory, US Department of Agriculture, Agricultural Research Service, East Lansing, MI 48823, USA
| | | | - Theresa L U Burnham
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA 95616, USA
- Coastal and Marine Institute and Department of Biology, San Diego State University, San Diego, CA 92106, USA
| | - Kevin A Hovel
- Coastal and Marine Institute and Department of Biology, San Diego State University, San Diego, CA 92106, USA
| | - Andrew J Beel
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pierre-Jean Mattei
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Roger D Kornberg
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wesley C Warren
- Department of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Gregory Cary
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo CSIC, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Veronica Hinman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Federica Di Palma
- Department of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Asha S Multani
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sen Pathak
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Liesl Nel-Themaat
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard R Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - René H Medema
- Division of Cell Biology, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Bas van Steensel
- Division of Gene Regulation, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Departments of Physics and Astronomy, Chemistry, and Biosciences, Rice University, Houston, TX 77005, USA
| | - Michele Di Pierro
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong 201210, China
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benjamin D Rowland
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands.
| |
Collapse
|
18
|
Boteva L, Nozawa RS, Naughton C, Samejima K, Earnshaw WC, Gilbert N. Common Fragile Sites Are Characterized by Faulty Condensin Loading after Replication Stress. Cell Rep 2021; 32:108177. [PMID: 32966795 PMCID: PMC7511797 DOI: 10.1016/j.celrep.2020.108177] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/22/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Cells coordinate interphase-to-mitosis transition, but recurrent cytogenetic lesions appear at common fragile sites (CFSs), termed CFS expression, in a tissue-specific manner after replication stress, marking regions of instability in cancer. Despite such a distinct defect, no model fully provides a molecular explanation for CFSs. We show that CFSs are characterized by impaired chromatin folding, manifesting as disrupted mitotic structures visible with molecular fluorescence in situ hybridization (FISH) probes in the presence and absence of replication stress. Chromosome condensation assays reveal that compaction-resistant chromatin lesions persist at CFSs throughout the cell cycle and mitosis. Cytogenetic and molecular lesions are marked by faulty condensin loading at CFSs, a defect in condensin-I-mediated compaction, and are coincident with mitotic DNA synthesis (MIDAS). This model suggests that, in conditions of exogenous replication stress, aberrant condensin loading leads to molecular defects and CFS expression, concomitantly providing an environment for MIDAS, which, if not resolved, results in chromosome instability.
Collapse
Affiliation(s)
- Lora Boteva
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Rd South, Edinburgh EH4 2XU, UK
| | - Ryu-Suke Nozawa
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Rd South, Edinburgh EH4 2XU, UK
| | - Catherine Naughton
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Rd South, Edinburgh EH4 2XU, UK
| | - Kumiko Samejima
- Wellcome Centre for Cell Biology, The University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, The University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Nick Gilbert
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Rd South, Edinburgh EH4 2XU, UK.
| |
Collapse
|
19
|
Paulson JR, Hudson DF, Cisneros-Soberanis F, Earnshaw WC. Mitotic chromosomes. Semin Cell Dev Biol 2021; 117:7-29. [PMID: 33836947 PMCID: PMC8406421 DOI: 10.1016/j.semcdb.2021.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/25/2023]
Abstract
Our understanding of the structure and function of mitotic chromosomes has come a long way since these iconic objects were first recognized more than 140 years ago, though many details remain to be elucidated. In this chapter, we start with the early history of chromosome studies and then describe the path that led to our current understanding of the formation and structure of mitotic chromosomes. We also discuss some of the remaining questions. It is now well established that each mitotic chromatid consists of a central organizing region containing a so-called "chromosome scaffold" from which loops of DNA project radially. Only a few key non-histone proteins and protein complexes are required to form the chromosome: topoisomerase IIα, cohesin, condensin I and condensin II, and the chromokinesin KIF4A. These proteins are concentrated along the axis of the chromatid. Condensins I and II are primarily responsible for shaping the chromosome and the scaffold, and they produce the loops of DNA by an ATP-dependent process known as loop extrusion. Modelling of Hi-C data suggests that condensin II adopts a spiral staircase arrangement with an extruded loop extending out from each step in a roughly helical pattern. Condensin I then forms loops nested within these larger condensin II loops, thereby giving rise to the final compaction of the mitotic chromosome in a process that requires Topo IIα.
Collapse
Affiliation(s)
- James R Paulson
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA.
| | - Damien F Hudson
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Fernanda Cisneros-Soberanis
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
20
|
Cutts EE, Taylor GC, Pardo M, Yu L, Wills JC, Choudhary JS, Vannini A, Wood AJ. A commercial antibody to the human condensin II subunit NCAPH2 cross-reacts with a SWI/SNF complex component. Wellcome Open Res 2021; 6:3. [PMID: 33604454 PMCID: PMC7863998 DOI: 10.12688/wellcomeopenres.16482.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2020] [Indexed: 01/24/2023] Open
Abstract
Condensin complexes compact and disentangle chromosomes in preparation for cell division. Commercially available antibodies raised against condensin subunits have been widely used to characterise their cellular interactome. Here we have assessed the specificity of a polyclonal antibody (Bethyl A302-276A) that is commonly used as a probe for NCAPH2, the kleisin subunit of condensin II, in mammalian cells. We find that, in addition to its intended target, this antibody cross-reacts with one or more components of the SWI/SNF family of chromatin remodelling complexes in an NCAPH2-independent manner. This cross-reactivity, with an abundant chromatin-associated factor, is likely to affect the interpretation of protein and chromatin immunoprecipitation experiments that make use of this antibody probe.
Collapse
Affiliation(s)
- Erin E. Cutts
- Cancer Biology Division, Institute of Cancer Research, London, SW7 3RP, UK
| | - Gillian C. Taylor
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Mercedes Pardo
- Cancer Biology Division, Institute of Cancer Research, London, SW7 3RP, UK
| | - Lu Yu
- Cancer Biology Division, Institute of Cancer Research, London, SW7 3RP, UK
| | - Jimi C. Wills
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Jyoti S. Choudhary
- Cancer Biology Division, Institute of Cancer Research, London, SW7 3RP, UK
| | - Alessandro Vannini
- Cancer Biology Division, Institute of Cancer Research, London, SW7 3RP, UK
| | - Andrew J. Wood
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| |
Collapse
|
21
|
Biggs RJ, Liu N, Peng Y, Marko JF, Qiao H. Micromanipulation of prophase I chromosomes from mouse spermatocytes reveals high stiffness and gel-like chromatin organization. Commun Biol 2020; 3:542. [PMID: 32999386 PMCID: PMC7528058 DOI: 10.1038/s42003-020-01265-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/31/2020] [Indexed: 11/09/2022] Open
Abstract
Meiosis produces four haploid cells after two successive divisions in sexually reproducing organisms. A critical event during meiosis is construction of the synaptonemal complex (SC), a large, protein-based bridge that physically links homologous chromosomes. The SC facilitates meiotic recombination, chromosome compaction, and the eventual separation of homologous chromosomes at metaphase I. We present experiments directly measuring physical properties of captured mammalian meiotic prophase I chromosomes. Mouse meiotic chromosomes are about ten-fold stiffer than somatic mitotic chromosomes, even for genetic mutants lacking SYCP1, the central element of the SC. Meiotic chromosomes dissolve when treated with nucleases, but only weaken when treated with proteases, suggesting that the SC is not rigidly connected, and that meiotic prophase I chromosomes are a gel meshwork of chromatin, similar to mitotic chromosomes. These results are consistent with a liquid- or liquid-crystal SC, but with SC-chromatin stiff enough to mechanically drive crossover interference. Ronald Biggs et al. report biophysical measurements of intact chromosomes isolated from mouse spermatocytes. They compare chromosomes in meiosis prophase I to mitotic chromosomes and find that meiotic chromosomes are much stiffer, and this stiffness does not depend on the central element of the synaptonemal complex (SYCP1).
Collapse
Affiliation(s)
- Ronald J Biggs
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Ning Liu
- Department of Comparative Biosciences, University of Illinois at Urbana Champaign, Urbana, IL, 61802, USA
| | - Yiheng Peng
- Department of Comparative Biosciences, University of Illinois at Urbana Champaign, Urbana, IL, 61802, USA
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA. .,Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208, USA.
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana Champaign, Urbana, IL, 61802, USA.
| |
Collapse
|
22
|
Fujimura A, Hayashi Y, Kato K, Kogure Y, Kameyama M, Shimamoto H, Daitoku H, Fukamizu A, Hirota T, Kimura K. Identification of a novel nucleolar protein complex required for mitotic chromosome segregation through centromeric accumulation of Aurora B. Nucleic Acids Res 2020; 48:6583-6596. [PMID: 32479628 PMCID: PMC7337965 DOI: 10.1093/nar/gkaa449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
The nucleolus is a membrane-less nuclear structure that disassembles when cells undergo mitosis. During mitosis, nucleolar factors are thus released from the nucleolus and dynamically change their subcellular localization; however, their functions remain largely uncharacterised. Here, we found that a nucleolar factor called nucleolar protein 11 (NOL11) forms a protein complex with two tryptophan-aspartic acid (WD) repeat proteins named WD-repeat protein 43 (WDR43) and Cirhin in mitotic cells. This complex, referred to here as the NWC (NOL11-WDR43-Cirhin) complex, exists in nucleoli during interphase and translocates to the periphery of mitotic chromosomes, i.e., perichromosomal regions. During mitotic progression, both the congression of chromosomes to the metaphase plate and sister chromatid cohesion are impaired in the absence of the NWC complex, as it is required for the centromeric enrichment of Aurora B and the associating phosphorylation of histone H3 at threonine 3. These results reveal the characteristics of a novel protein complex consisting of nucleolar proteins, which is required for regulating kinetochores and centromeres to ensure faithful chromosome segregation.
Collapse
Affiliation(s)
- Akiko Fujimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Yuki Hayashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Kazashi Kato
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Yuichiro Kogure
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Mutsuro Kameyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Haruka Shimamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Hiroaki Daitoku
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Toru Hirota
- Cancer Institute of the Japanese Foundation for Cancer Research, Division of Experimental Pathology, 3-8-1 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Keiji Kimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| |
Collapse
|
23
|
Generation of an antibody recognizing a set of acetylated proteins, including subunits of BAF complexes. Biochem Biophys Rep 2020; 22:100720. [PMID: 32490211 PMCID: PMC7261705 DOI: 10.1016/j.bbrep.2019.100720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to generate an antibody specific to Ki-67 acetylated at lysine 3180, whose existence was reported in an acetylome study (Scholz, C., B.T. Weinert, S.A. Wagner, P. Beli, Y. Miyake, J. Qi, L.J. Jensen, W. Streicher, A.R. McCarthy, N.J. Westwood, S. Lain, J. Cox, P. Matthias, M. Mann, J.E. Bradner, and C. Choudhary. 2015). Rabbits were immunized with a synthetic acetylated peptide corresponding to acetylated lysine 3180 of Ki-67 and the residues flanking it. The obtained antibody, referred to as Ab3180 in this study, was affinity purified with the antigen peptide and characterized. Immunoblot analysis of cell extracts using Ab3180 revealed that this antibody unexpectedly recognized a set of acetylated proteins unrelated to Ki-67. Ab3180-recognizable proteins were immunoprecipitated from cell extracts in a stringent condition and identified by mass-spec analysis as subunits of BAF (mammalian SWI/SNF) chromatin remodeling complexes. The unique specificity of Ab3180 will allow this antibody to be a useful tool for analyzing the acetylation of BAF complexes and its significance to the formation/function of BAF complexes. A new antibody (Ab3180) recognizing a set of acetylated proteins was developed. The population of proteins recognized by Ab3180 increases by treating cells with NAM. Contradicting the original aim, Ab3180 doesn't recognize Ki-67 efficiently. Ab3180 recognizes BAF chromatin remodeling complexes.
Collapse
|
24
|
Topoisomerase IIα is essential for maintenance of mitotic chromosome structure. Proc Natl Acad Sci U S A 2020; 117:12131-12142. [PMID: 32414923 DOI: 10.1073/pnas.2001760117] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Topoisomerase IIα (TOP2A) is a core component of mitotic chromosomes and important for establishing mitotic chromosome condensation. The primary roles of TOP2A in mitosis have been difficult to decipher due to its multiple functions across the cell cycle. To more precisely understand the role of TOP2A in mitosis, we used the auxin-inducible degron (AID) system to rapidly degrade the protein at different stages of the human cell cycle. Removal of TOP2A prior to mitosis does not affect prophase timing or the initiation of chromosome condensation. Instead, it prevents chromatin condensation in prometaphase, extends the length of prometaphase, and ultimately causes cells to exit mitosis without chromosome segregation occurring. Surprisingly, we find that removal of TOP2A from cells arrested in prometaphase or metaphase cause dramatic loss of compacted mitotic chromosome structure and conclude that TOP2A is crucial for maintenance of mitotic chromosomes. Treatments with drugs used to poison/inhibit TOP2A function, such as etoposide and ICRF-193, do not phenocopy the effects on chromosome structure of TOP2A degradation by AID. Our data point to a role for TOP2A as a structural chromosome maintenance enzyme locking in condensation states once sufficient compaction is achieved.
Collapse
|
25
|
Yasuda Y, Tokunaga K, Koga T, Sakamoto C, Goldberg IG, Saitoh N, Nakao M. Computational analysis of morphological and molecular features in gastric cancer tissues. Cancer Med 2020; 9:2223-2234. [PMID: 32012497 PMCID: PMC7064096 DOI: 10.1002/cam4.2885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/13/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Biological morphologies of cells and tissues represent their physiological and pathological conditions. The importance of quantitative assessment of morphological information has been highly recognized in clinical diagnosis and therapeutic strategies. In this study, we used a supervised machine learning algorithm wndchrm to classify hematoxylin and eosin (H&E)‐stained images of human gastric cancer tissues. This analysis distinguished between noncancer and cancer tissues with different histological grades. We then classified the H&E‐stained images by expression levels of cancer‐associated nuclear ATF7IP/MCAF1 and membranous PD‐L1 proteins using immunohistochemistry of serial sections. Interestingly, classes with low and high expressions of each protein exhibited significant morphological dissimilarity in H&E images. These results indicated that morphological features in cancer tissues are correlated with expression of specific cancer‐associated proteins, suggesting the usefulness of biomolecular‐based morphological classification.
Collapse
Affiliation(s)
- Yoko Yasuda
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,Department of Health Science, Faculty of Medical Science, Kyushu University, Fukuoka, Japan
| | - Kazuaki Tokunaga
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Tomoaki Koga
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Chiyomi Sakamoto
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Ilya G Goldberg
- Image Informatics and Computational Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
26
|
Glisinski KM, Schlobohm AJ, Paramore SV, Birukova A, Moseley MA, Foster MW, Barkauskas CE. Interleukin-13 disrupts type 2 pneumocyte stem cell activity. JCI Insight 2020; 5:131232. [PMID: 31941839 DOI: 10.1172/jci.insight.131232] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/04/2019] [Indexed: 12/28/2022] Open
Abstract
The T helper 2 (Th2) inflammatory cytokine interleukin-13 (IL-13) has been associated with both obstructive and fibrotic lung diseases; however, its specific effect on the epithelial stem cells in the gas exchange compartment of the lung (alveolar space) has not been explored. Here, we used in vivo lung models of homeostasis and repair, ex vivo organoid platforms, and potentially novel quantitative proteomic techniques to show that IL-13 disrupts the self-renewal and differentiation of both murine and human type 2 alveolar epithelial cells (AEC2s). Significantly, we find that IL-13 promotes ectopic expression of markers typically associated with bronchiolar airway cells and commonly seen in the alveolar region of lung tissue from patients with idiopathic pulmonary fibrosis. Furthermore, we identify a number of proteins that are differentially secreted by AEC2s in response to IL-13 and may provide biomarkers to identify subsets of patients with pulmonary disease driven by "Th2-high" biology.
Collapse
Affiliation(s)
- Kristen M Glisinski
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Adam J Schlobohm
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Sarah V Paramore
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Anastasiya Birukova
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - M Arthur Moseley
- Duke Proteomics and Metabolomics Shared Resource, Duke University Medical Center, Durham, North Carolina, USA
| | - Matthew W Foster
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and.,Duke Proteomics and Metabolomics Shared Resource, Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
27
|
Batty P, Gerlich DW. Mitotic Chromosome Mechanics: How Cells Segregate Their Genome. Trends Cell Biol 2019; 29:717-726. [PMID: 31230958 DOI: 10.1016/j.tcb.2019.05.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 01/09/2023]
Abstract
During mitosis, replicated chromosomes segregate such that each daughter cell receives one copy of the genome. Faithful mechanical transport during mitosis requires that chromosomes undergo extensive structural changes as the cell cycle progresses, resulting in the formation of compact, cylindrical bodies. Such structural changes encompass a range of different activities, including longitudinal condensation of the chromosome axis, global chromatin compaction, resolution of sister chromatids, and individualisation of chromosomes into separate bodies. After mitosis, chromosomes undergo further reorganisation to rebuild interphase cell nuclei. Here we review the requirements for mitotic chromosomes to successfully transmit genetic information to daughter cells and the biophysical principles that underpin such requirements.
Collapse
Affiliation(s)
- Paul Batty
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
28
|
Dynamic chromatin organization in the cell. Essays Biochem 2019; 63:133-145. [PMID: 30967477 DOI: 10.1042/ebc20180054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/29/2022]
Abstract
The organization and regulation of genomic DNA as nuclear chromatin is necessary for proper DNA function inside living eukaryotic cells. While this has been extensively explored, no true consensus is currently reached regarding the exact mechanism of chromatin organization. The traditional view has assumed that the DNA is packaged into a hierarchy of structures inside the nucleus based on the regular 30-nm chromatin fiber. This is currently being challenged by the fluid-like model of the chromatin which views the chromatin as a dynamic structure based on the irregular 10-nm fiber. In this review, we focus on the recent progress in chromatin structure elucidation highlighting the paradigm shift in chromatin folding mechanism from the classical textbook perspective of the regularly folded chromatin to the more dynamic fluid-like perspective.
Collapse
|
29
|
Abstract
Maeshima et al. preview work from the Walther et al. imaging Condensin behavior and describing its stoichiometry in mitosis to model chromosome condensation. Condensins are key players in mitotic chromosome condensation. Using an elegant combination of state-of-the-art imaging techniques, Walther et al. (2018. J. Cell Biol.https://doi.org/10.1083/jcb.201801048) counted the number of Condensins, examined their behaviors on human mitotic chromosomes, and integrated the quantitative data to propose a new mechanistic model for chromosome condensation.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- National Institute of Genetics and SOKENDAI (Graduate University for Advanced Studies), Mishima, Japan
| | - Kayo Hibino
- National Institute of Genetics and SOKENDAI (Graduate University for Advanced Studies), Mishima, Japan
| | - Damien F Hudson
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia
| |
Collapse
|