1
|
Qu N, Luan T, Liu N, Kong C, Xu L, Yu H, Kang Y, Han Y. Hepatocyte nuclear factor 4 a (HNF4α): A perspective in cancer. Biomed Pharmacother 2023; 169:115923. [PMID: 38000355 DOI: 10.1016/j.biopha.2023.115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
HNF4α, a transcription factor, plays a vital role in regulating functional genes and biological processes. Its alternative splicing leads to various transcript variants encoding different isoforms. The spotlight has shifted towards the extensive discussion on tumors interplayed withHNF4α abnormalities. Aberrant HNF4α expression has emerged as sentinel markers of epigenetic shifts, casting reverberations upon downstream target genes and intricate signaling pathways, most notably with cancer. This review provides a comprehensive overview of HNF4α's involvement in tumor progression and metastasis, elucidating its role and underlying mechanisms.
Collapse
Affiliation(s)
- Ningxin Qu
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Ting Luan
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Naiquan Liu
- The Nephrological Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Chenhui Kong
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Le Xu
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong Yu
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Kang
- The Pathology Dept, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Han
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Wong J, Trinh VQ, Jyotsana N, Baig JF, Revetta F, Shi C, Means AL, DelGiorno KE, Tan M. Differential spatial distribution of HNF4α isoforms during dysplastic progression of intraductal papillary mucinous neoplasms of the pancreas. Sci Rep 2023; 13:20088. [PMID: 37974020 PMCID: PMC10654504 DOI: 10.1038/s41598-023-47238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
Hepatocyte Nuclear Factor 4-alpha (HNF4α) comprises a nuclear receptor superfamily of ligand-dependent transcription factors that yields twelve isoforms in humans, classified into promoters P1 or P2-associated groups with specific functions. Alterations in HNF4α isoforms have been associated with tumorigenesis. However, the distribution of its isoforms during progression from dysplasia to malignancy has not been studied, nor has it yet been studied in intraductal papillary mucinous neoplasms, where both malignant and pre-malignant forms are routinely clinically identified. We examined the expression patterns of pan-promoter, P1-specific, and P2-specific isoform groups in normal pancreatic components and IPMNs. Pan-promoter, P1 and P2 nuclear expression were weakly positive in normal pancreatic components. Nuclear expression for all isoform groups was increased in low-grade IPMN, high-grade IPMN, and well-differentiated invasive adenocarcinoma. Poorly differentiated invasive components in IPMNs showed loss of all forms of HNF4α. Pan-promoter, and P1-specific HNF4α expression showed shifts in subnuclear and sub-anatomical distribution in IPMN, whereas P2 expression was consistently nuclear. Tumor cells with high-grade dysplasia at the basal interface with the stroma showed reduced expression of P1, while P2 was equally expressed in both components. Additional functional studies are warranted to further explore the mechanisms underlying the spatial and differential distribution of HNF4α isoforms in IPMNs.
Collapse
Affiliation(s)
- Jahg Wong
- Department of Pathology, University of Montreal, Montreal, QC, Canada
| | - Vincent Q Trinh
- Department of Pathology, University of Montreal, Montreal, QC, Canada
- Institute for Research in Immunology and Cancer of the University of Montreal, Montreal, QC, Canada
- Centre Hospitalier de l'Université de Montréal Research Center, Montreal, QC, Canada
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nidhi Jyotsana
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Jumanah F Baig
- Department of Pathology, University of Montreal, Montreal, QC, Canada
- Institute for Research in Immunology and Cancer of the University of Montreal, Montreal, QC, Canada
| | - Frank Revetta
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chanjuan Shi
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Anna L Means
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Division of Surgical Oncology and Endocrine Surgery, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37232, USA
- Vanderbilt Ingram Cancer Center, Nashville, TN, USA
| | - Kathleen E DelGiorno
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Ingram Cancer Center, Nashville, TN, USA
- Vanderbilt Digestive Disease Research Center, Nashville, TN, USA
| | - Marcus Tan
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
- Division of Surgical Oncology and Endocrine Surgery, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37232, USA.
- Vanderbilt Ingram Cancer Center, Nashville, TN, USA.
- Vanderbilt Digestive Disease Research Center, Nashville, TN, USA.
| |
Collapse
|
3
|
Vemuri K, Radi SH, Sladek FM, Verzi MP. Multiple roles and regulatory mechanisms of the transcription factor HNF4 in the intestine. Front Endocrinol (Lausanne) 2023; 14:1232569. [PMID: 37635981 PMCID: PMC10450339 DOI: 10.3389/fendo.2023.1232569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Hepatocyte nuclear factor 4-alpha (HNF4α) drives a complex array of transcriptional programs across multiple organs. Beyond its previously documented function in the liver, HNF4α has crucial roles in the kidney, intestine, and pancreas. In the intestine, a multitude of functions have been attributed to HNF4 and its accessory transcription factors, including but not limited to, intestinal maturation, differentiation, regeneration, and stem cell renewal. Functional redundancy between HNF4α and its intestine-restricted paralog HNF4γ, and co-regulation with other transcription factors drive these functions. Dysregulated expression of HNF4 results in a wide range of disease manifestations, including the development of a chronic inflammatory state in the intestine. In this review, we focus on the multiple molecular mechanisms of HNF4 in the intestine and explore translational opportunities. We aim to introduce new perspectives in understanding intestinal genetics and the complexity of gastrointestinal disorders through the lens of HNF4 transcription factors.
Collapse
Affiliation(s)
- Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Sarah H. Radi
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Frances M. Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Michael P. Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
4
|
Lauzier A, Bossanyi MF, Larcher R, Nassari S, Ugrankar R, Henne WM, Jean S. Snazarus and its human ortholog SNX25 modulate autophagic flux. J Cell Sci 2022; 135:273525. [PMID: 34821359 DOI: 10.1242/jcs.258733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 11/12/2021] [Indexed: 12/26/2022] Open
Abstract
Macroautophagy, the degradation and recycling of cytosolic components in the lysosome, is an important cellular mechanism. It is a membrane-mediated process that is linked to vesicular trafficking events. The sorting nexin (SNX) protein family controls the sorting of a large array of cargoes, and various SNXs impact autophagy. To improve our understanding of their functions in vivo, we screened all Drosophila SNXs using inducible RNA interference in the fat body. Significantly, depletion of Snazarus (Snz) led to decreased autophagic flux. Interestingly, we observed altered distribution of Vamp7-positive vesicles with Snz depletion, and the roles of Snz were conserved in human cells. SNX25, the closest human ortholog to Snz, regulates both VAMP8 endocytosis and lipid metabolism. Through knockout-rescue experiments, we demonstrate that these activities are dependent on specific SNX25 domains and that the autophagic defects seen upon SNX25 loss can be rescued by ethanolamine addition. We also demonstrate the presence of differentially spliced forms of SNX14 and SNX25 in cancer cells. This work identifies a conserved role for Snz/SNX25 as a regulator of autophagic flux and reveals differential isoform expression between paralogs.
Collapse
Affiliation(s)
- Annie Lauzier
- Faculté de Médecine et des Sciences de la Santé, Département d'immunologie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, CanadaJ1E 4K8
| | - Marie-France Bossanyi
- Faculté de Médecine et des Sciences de la Santé, Département d'immunologie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, CanadaJ1E 4K8
| | - Raphaëlle Larcher
- Faculté de Médecine et des Sciences de la Santé, Département d'immunologie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, CanadaJ1E 4K8
| | - Sonya Nassari
- Faculté de Médecine et des Sciences de la Santé, Département d'immunologie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, CanadaJ1E 4K8
| | - Rupali Ugrankar
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Hary Lines Boulevard, Dallas, TX 75390, USA
| | - W Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Hary Lines Boulevard, Dallas, TX 75390, USA
| | - Steve Jean
- Faculté de Médecine et des Sciences de la Santé, Département d'immunologie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, CanadaJ1E 4K8
| |
Collapse
|
5
|
Fallah S, Beaulieu JF. Src family kinases inhibit differentiation of intestinal epithelial cells through the Hippo effector YAP1. Biol Open 2021; 10:272600. [PMID: 34693980 PMCID: PMC8609238 DOI: 10.1242/bio.058904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/14/2021] [Indexed: 12/20/2022] Open
Abstract
Intestinal cell lineage differentiation is a tightly regulated mechanism that involves several intracellular signaling pathways affecting the expression of a variety of transcription factors, which ultimately regulate cell specific gene expression. Absorptive and goblet cells are the two main epithelial cell types of the intestine. Previous studies from our group using an shRNA knockdown approach have shown that YAP1, one of the main Hippo pathway effectors, inhibits the differentiation of these two cell types. In the present study, we show that YAP1 activity is regulated by Src family kinases (SFKs) in these cells. Inhibition of SFKs led to a sharp reduction in YAP1 expression at the protein level, an increase in CDX2 and the P1 forms of HNF4α and of absorptive and goblet cell differentiation specific markers. Interestingly, in Caco-2/15 cells which express both YAP1 and its paralog TAZ, TAZ was not reduced by the inhibition of SFKs and its specific knockdown rather impaired absorptive cell differentiation indicating that YAP1 and TAZ are not always interchangeable for regulating cell functions. This article has an associated First Person interview with the first author of the paper. Summary: Inhibition of Src family kinases leads to a sharp reduction in YAP1 expression and an increase in CDX2 and HNF4α, two regulators of intestinal cell differentiation, while its paralog TAZ appears not to be directly involved.
Collapse
Affiliation(s)
- Sepideh Fallah
- Laboratory of Intestinal Physiopathology, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de recherche du Centre hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de recherche du Centre hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
6
|
Teeli AS, Łuczyńska K, Haque E, Gayas MA, Winiarczyk D, Taniguchi H. Disruption of Tumor Suppressors HNF4α/HNF1α Causes Tumorigenesis in Liver. Cancers (Basel) 2021; 13:cancers13215357. [PMID: 34771521 PMCID: PMC8582545 DOI: 10.3390/cancers13215357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
The hepatocyte nuclear factor-4α (HNF4α) and hepatocyte nuclear factor-1α (HNF1α) are transcription factors that influence the development and maintenance of homeostasis in a variety of tissues, including the liver. As such, disruptions in their transcriptional networks can herald a number of pathologies, such as tumorigenesis. Largely considered tumor suppressants in liver cancer, these transcription factors regulate key events of inflammation, epithelial-mesenchymal transition, metabolic reprogramming, and the differentiation status of the cell. High-throughput analysis of cancer cell genomes has identified a number of hotspot mutations in HNF1α and HNF4α in liver cancer. Such results also showcase HNF1α and HNF4α as important therapeutic targets helping us step into the era of personalized medicine. In this review, we update current findings on the roles of HNF1α and HNF4α in liver cancer development and progression. It covers the molecular mechanisms of HNF1α and HNF4α dysregulation and also highlights the potential of HNF4α as a therapeutic target in liver cancer.
Collapse
Affiliation(s)
- Aamir Salam Teeli
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Kamila Łuczyńska
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Effi Haque
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Mohmmad Abrar Gayas
- Department of Surgery and Radiology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Jammu 19000, India;
| | - Dawid Winiarczyk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
- Correspondence:
| |
Collapse
|
7
|
Alternative splicing of mRNA in colorectal cancer: new strategies for tumor diagnosis and treatment. Cell Death Dis 2021; 12:752. [PMID: 34330892 PMCID: PMC8324868 DOI: 10.1038/s41419-021-04031-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Alternative splicing (AS) is an important event that contributes to posttranscriptional gene regulation. This process leads to several mature transcript variants with diverse physiological functions. Indeed, disruption of various aspects of this multistep process, such as cis- or trans- factor alteration, promotes the progression of colorectal cancer. Therefore, targeting some specific processes of AS may be an effective therapeutic strategy for treating cancer. Here, we provide an overview of the AS events related to colorectal cancer based on research done in the past 5 years. We focus on the mechanisms and functions of variant products of AS that are relevant to malignant hallmarks, with an emphasis on variants with clinical significance. In addition, novel strategies for exploiting the therapeutic value of AS events are discussed.
Collapse
|
8
|
Unveiling the Roles of Low-Density Lipoprotein Receptor-Related Protein 6 in Intestinal Homeostasis, Regeneration and Oncogenesis. Cells 2021; 10:cells10071792. [PMID: 34359960 PMCID: PMC8307932 DOI: 10.3390/cells10071792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022] Open
Abstract
Intestinal epithelial self-renewal is tightly regulated by signaling pathways controlling stem cell proliferation, determination and differentiation. In particular, Wnt/β-catenin signaling controls intestinal crypt cell division, survival and maintenance of the stem cell niche. Most colorectal cancers are initiated by mutations activating the Wnt/β-catenin pathway. Wnt signals are transduced through Frizzled receptors and LRP5/LRP6 coreceptors to downregulate GSK3β activity, resulting in increased nuclear β-catenin. Herein, we explored if LRP6 expression is required for maintenance of intestinal homeostasis, regeneration and oncogenesis. Mice with an intestinal epithelial cell-specific deletion of Lrp6 (Lrp6IEC-KO) were generated and their phenotype analyzed. No difference in intestinal architecture nor in proliferative and stem cell numbers was found in Lrp6IEC-KO mice in comparison to controls. Nevertheless, using ex vivo intestinal organoid cultures, we found that LRP6 expression was critical for crypt cell proliferation and stem cell maintenance. When exposed to dextran sodium sulfate, Lrp6IEC-KO mice developed more severe colitis than control mice. However, loss of LRP6 did not affect tumorigenesis in ApcMin/+ mice nor growth of human colorectal cancer cells. By contrast, Lrp6 silencing diminished anchorage-independent growth of BRafV600E-transformed intestinal epithelial cells (IEC). Thus, LRP6 controls intestinal stem cell functionality and is necessary for BRAF-induced IEC oncogenesis.
Collapse
|
9
|
Shin JH, Jeong J, Choi J, Lim J, Dinesh RK, Braverman J, Hong JY, Maher SE, Amezcua Vesely MC, Kim W, Koo JH, Tang W, Wu D, Blackburn HN, Xicola RM, Llor X, Yilmaz O, Choi JM, Bothwell ALM. Dickkopf-2 regulates the stem cell marker LGR5 in colorectal cancer via HNF4α1. iScience 2021; 24:102411. [PMID: 33997693 PMCID: PMC8099562 DOI: 10.1016/j.isci.2021.102411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/13/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Enhanced stemness in colorectal cancer has been reported and it contributes to aggressive progression, but the underlying mechanisms remain unclear. Here we report a Wnt ligand, Dickkopf-2 (DKK2) is essential for developing colorectal cancer stemness. Genetic depletion of DKK2 in intestinal epithelial or stem cells reduced tumorigenesis and expression of the stem cell marker genes including LGR5 in a model of colitis-associated cancer. Sequential mutations in APC, KRAS, TP53, and SMAD4 genes in colonic organoids revealed a significant increase of DKK2 expression by APC knockout and further increased by additional KRAS and TP53 mutations. Moreover, DKK2 activates proto-oncogene tyrosine-protein kinse Src followed by increased LGR5 expressing cells in colorectal cancer through degradation of HNF4α1 protein. These findings suggest that DKK2 is required for colonic epithelial cells to enhance LGR5 expression during the progression of colorectal cancer. APC, KRAS, and TP53 mutations induce DKK2 expression in murine colon cancer DKK2 increases Src phosphorylation in colon cancer cells Activated Src leads to degradation of HNF4α1 protein This DKK2 downstream signaling enhances LGR5 expression in colon cancer
Collapse
Affiliation(s)
- Jae Hun Shin
- Department of Immunobiology, Yale University School of Medicine, TAC 641D, PO Box 208011, 300 Cedar Street, New Haven, CT 06520-8011, USA
| | - Jaekwang Jeong
- Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jungmin Choi
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Jaechul Lim
- Department of Immunobiology, Yale University School of Medicine, TAC 641D, PO Box 208011, 300 Cedar Street, New Haven, CT 06520-8011, USA
| | - Ravi K Dinesh
- Department of Immunobiology, Yale University School of Medicine, TAC 641D, PO Box 208011, 300 Cedar Street, New Haven, CT 06520-8011, USA
| | - Jonathan Braverman
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jun Young Hong
- Department of Immunobiology, Yale University School of Medicine, TAC 641D, PO Box 208011, 300 Cedar Street, New Haven, CT 06520-8011, USA
| | - Stephen E Maher
- Department of Immunobiology, Yale University School of Medicine, TAC 641D, PO Box 208011, 300 Cedar Street, New Haven, CT 06520-8011, USA
| | - Maria C Amezcua Vesely
- Department of Immunobiology, Yale University School of Medicine, TAC 641D, PO Box 208011, 300 Cedar Street, New Haven, CT 06520-8011, USA
| | - WonJu Kim
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Ja-Hyun Koo
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Wenwen Tang
- Vascular Biology and Therapeutic Program and Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Dianqing Wu
- Vascular Biology and Therapeutic Program and Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Holly N Blackburn
- Department of Immunobiology, Yale University School of Medicine, TAC 641D, PO Box 208011, 300 Cedar Street, New Haven, CT 06520-8011, USA.,Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rosa M Xicola
- Department of Medicine and Cancer Center, Yale University, New Haven, CT 06520, USA
| | - Xavier Llor
- Department of Medicine and Cancer Center, Yale University, New Haven, CT 06520, USA
| | - Omer Yilmaz
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Je-Min Choi
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Alfred L M Bothwell
- Department of Immunobiology, Yale University School of Medicine, TAC 641D, PO Box 208011, 300 Cedar Street, New Haven, CT 06520-8011, USA
| |
Collapse
|
10
|
Wang Z, Zhang Y, Zhang J, Deng Q, Liang H. Controversial roles of hepatocyte nuclear receptor 4 α on tumorigenesis. Oncol Lett 2021; 21:356. [PMID: 33747213 PMCID: PMC7968000 DOI: 10.3892/ol.2021.12617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte nuclear receptor 4 α (HNF4α) is known to be a master transcription regulator of gene expression in multiple biological processes, particularly in liver development and liver function. To date, the function of HNF4α in human cancers has been widely investigated; however, the critical roles of HNF4α in tumorigenesis remain unclear. Numerous controversies exist, even in studies from different research groups but on the same type of cancer. In the present review, the critical roles of HNF4α in tumorigenesis will be summarized and discussed. Furthermore, HNF4α expression profile and alterations will be examined by pan-cancer analysis through bioinformatics, in order to provide a better understanding of the functional roles of this gene in human cancers.
Collapse
Affiliation(s)
- Zhu Wang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Ying Zhang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Jianwen Zhang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Qiong Deng
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Hui Liang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| |
Collapse
|
11
|
Lu Y, Yu Y, Liu F, Han Y, Xue H, Sun X, Jiang Y, Tian Z. LINC00511-dependent inhibition of IL-24 contributes to the oncogenic role of HNF4α in colorectal cancer. Am J Physiol Gastrointest Liver Physiol 2021; 320:G338-G350. [PMID: 33052062 DOI: 10.1152/ajpgi.00243.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatocyte nuclear factor 4 α (HNF4α) is an important transcription factor that acts as a pro-proliferative mediator during tumorigenesis, yet its function in colorectal cancer (CRC) remain unclear. Hence, this study aims to explore roles that HNF4α plays in the CRC development. RNA quantification analysis was conducted to characterize the expression pattern of long intergenic noncoding RNA 00511 (LINC00511)/HNF4α/IL-24 in CRC tissues and cell lines. Using gain- and loss-of-function approaches, effects of HNF4α/LINC00511/IL-24 axis on biological processes such as proliferative, migrating, invading, apoptotic, and tumorigenic functions of CRC cells were evaluated. We further identified the interactions among HNF4α/LINC00511/EZH2/IL-24 using RNA binding protein immunoprecipitation, RNA pull-down along with chromatin immunoprecipitation (ChIP). LINC00511 was an upregulated lncRNA in CRC tissues and cells, which played an oncogenic role by strengthening the malignant phenotypes of CRC cells. LINC00511 downregulated IL-24 expression by interacting with EZH2. HNF4α could enhance LINC00511 transcription in an epigenetic manner, which finally accelerated cancer progression and tumorigenesis through LINC00511-mediated inhibition of IL-24. Those data together demonstrated the contribution of HNF4α to the progression of CRC through mediating the LINC00511/EZH2/IL-24 axis. Hence, our study provides a promising therapeutic target for CRC.NEW & NOTEWORTHY Our findings on the roles of hepatocyte nuclear factor 4 α/long intergenic noncoding RNA 00511/IL-24 axis provide new insights into the CRC and offer potential targets for translational applications.
Collapse
Affiliation(s)
- Yanyan Lu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yanan Yu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Fuguo Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yue Han
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Huiguang Xue
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xueguo Sun
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yueping Jiang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
12
|
LncRNA HOTAIR recruits SNAIL to inhibit the transcription of HNF4α and promote the viability, migration, invasion and EMT of colorectal cancer. Transl Oncol 2021; 14:101036. [PMID: 33588137 PMCID: PMC7901038 DOI: 10.1016/j.tranon.2021.101036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/07/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
HOTAIR recruited SNAIL and reduced the expression of HNF4α to promote EMT of colorectal cancer. Provided potential novel long non-coding RNA-directed early diagnosis and therapy for colorectal cancer. Provided further insight into the regulatory mechanism of HOTAIR in colorectal cancer.
Colorectal cancer causes severe burdensome on the health by its high fatality and poor prognosis. Hox transcript antisense intergenic RNA (HOTAIR) was believed closely related with the genesis and development of colorectal cancer, but the regulatory mechanism is still to be investigated. The expression of HOTAIR was analyzed in colorectal cancer using both qRT-PCR and ISH assay. The cell viability, migration, invasion and apoptosis rate were evaluated using MTT, BrdU,Transwell and flow cytometryexperiments. The interaction between HOTAIR and SNAIL was detected using RIP and RNA pull-down. The binding of SNAIL to HNF4α promoter was assessed by ChIP. The cell lines that knock down HOTAIR, SNAIL or overexpress HNF4α were constructed using retroviral vector system. The tumorigenic and metastatic capacity of colorectal cancer cells after knocking down HOTAIR were evaluated based on xenograft assay and liver metastases model. HOTAIR was highly expressed in both tissue and cell lines of colorectal cancer, indicated a regulatory function in colorectal cancer. Knock-down of HOTAIR suppressed cell viability, migration, invasion and epithelial-mesenchymal transition (EMT) of colorectal cancer cells in vitro, and inhibited the growth and metastasis of colorectal tumor in nude mice. We further found that HOTAIR suppressed HNF4α via recruiting SNAIL, and the overexpression of HNF4α inhibited cell viability, migration, invasion and EMT of colorectal cancer cells. We demonstrated that HOTAIR regulates the level of HNF4α via recruiting SNAIL, knocking down HOTAIR repressed the cell viability and metestasis of colorectal cancer cell line in vitro, and suppressed the tomorgenesis and migration/invasion of colorectal cancer in vivo.
Collapse
|
13
|
Lv DD, Zhou LY, Tang H. Hepatocyte nuclear factor 4α and cancer-related cell signaling pathways: a promising insight into cancer treatment. Exp Mol Med 2021; 53:8-18. [PMID: 33462379 PMCID: PMC8080681 DOI: 10.1038/s12276-020-00551-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/23/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α), a member of the nuclear receptor superfamily, is described as a protein that binds to the promoters of specific genes. It controls the expression of functional genes and is also involved in the regulation of numerous cellular processes. A large number of studies have demonstrated that HNF4α is involved in many human malignancies. Abnormal expression of HNF4α is emerging as a critical factor in cancer cell proliferation, apoptosis, invasion, dedifferentiation, and metastasis. In this review, we present emerging insights into the roles of HNF4α in the occurrence, progression, and treatment of cancer; reveal various mechanisms of HNF4α in cancer (e.g., the Wnt/β-catenin, nuclear factor-κB, signal transducer and activator of transcription 3, and transforming growth factor β signaling pathways); and highlight potential clinical uses of HNF4α as a biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Duo-Duo Lv
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ling-Yun Zhou
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Transcriptomically Revealed Oligo-Fucoidan Enhances the Immune System and Protects Hepatocytes via the ASGPR/STAT3/HNF4A Axis. Biomolecules 2020; 10:biom10060898. [PMID: 32545625 PMCID: PMC7355575 DOI: 10.3390/biom10060898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Oligo-fucoidan, a sulfated polysaccharide extracted from brown seaweed, exhibits anti-inflammatory and anti-tumor effects. However, the knowledge concerning the detailed mechanism of oligo-fucoidan on liver cells is obscure. In this study, we investigate the effect of oligo-fucoidan in normal hepatocytes by transcriptomic analysis. Using an oligo-fucoidan oral gavage in wild-type adult zebrafish, we find that oligo-fucoidan pretreatment enhances the immune system and anti-viral genes in hepatocytes. Oligo-fucoidan pretreatment also decreases the expression of lipogenic enzymes and liver fibrosis genes. Using pathway analysis, we identify hepatocyte nuclear factor 4 alpha (HNF4A) to be the potential driver gene. We further investigate whether hepatocyte nuclear factor 4 alpha (HNF4A) could be induced by oligo-fucoidan and the underlying mechanism. Therefore, a normal hepatocyte clone 9 cell as an in vitro model was used. We demonstrate that oligo-fucoidan increases cell viability, Cyp3a4 activity, and Hnf4a expression in clone 9 cells. We further demonstrate that oligo-fucoidan might bind to asialoglycoprotein receptors (ASGPR) in normal hepatocytes through both in vitro and in vivo competition assays. This binding, consequently activating the signal transducer and activator of transcription 3 (STAT3), increases the expression of the P1 isoform of HNF4A. According to our data, we suggest that oligo-fucoidan not only enhances the gene expression associated with anti-viral ability and immunity, but also increases P1-HNF4A levels through ASGPR/STAT3 axis, resulting in protecting hepatocytes.
Collapse
|
15
|
Lambert É, Babeu JP, Simoneau J, Raisch J, Lavergne L, Lévesque D, Jolibois É, Avino M, Scott MS, Boudreau F, Boisvert FM. Human Hepatocyte Nuclear Factor 4-α Encodes Isoforms with Distinct Transcriptional Functions. Mol Cell Proteomics 2020; 19:808-827. [PMID: 32123031 PMCID: PMC7196586 DOI: 10.1074/mcp.ra119.001909] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/28/2020] [Indexed: 01/02/2023] Open
Abstract
HNF4α is a nuclear receptor produced as 12 isoforms from two promoters by alternative splicing. To characterize the transcriptional capacities of all 12 HNF4α isoforms, stable lines expressing each isoform were generated. The entire transcriptome associated with each isoform was analyzed as well as their respective interacting proteome. Major differences were noted in the transcriptional function of these isoforms. The α1 and α2 isoforms were the strongest regulators of gene expression whereas the α3 isoform exhibited significantly reduced activity. The α4, α5, and α6 isoforms, which use an alternative first exon, were characterized for the first time, and showed a greatly reduced transcriptional potential with an inability to recognize the consensus response element of HNF4α. Several transcription factors and coregulators were identified as potential specific partners for certain HNF4α isoforms. An analysis integrating the vast amount of omics data enabled the identification of transcriptional regulatory mechanisms specific to certain HNF4α isoforms, hence demonstrating the importance of considering all isoforms given their seemingly diverse functions.
Collapse
Affiliation(s)
- Élie Lambert
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Jean-Philippe Babeu
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Joël Simoneau
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Jennifer Raisch
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Laurie Lavergne
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Dominique Lévesque
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Émilie Jolibois
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Mariano Avino
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Michelle S Scott
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - François Boudreau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada.
| | - Francois-Michel Boisvert
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada.
| |
Collapse
|
16
|
Tunçer S, Sade-Memişoğlu A, Keşküş AG, Sheraj I, Güner G, Akyol A, Banerjee S. Enhanced expression of HNF4α during intestinal epithelial differentiation is involved in the activation of ER stress. FEBS J 2019; 287:2504-2523. [PMID: 31762160 DOI: 10.1111/febs.15152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/17/2019] [Accepted: 11/21/2019] [Indexed: 01/19/2023]
Abstract
Intestinal epithelial cells are derived from stem cells at the crypts that undergo differentiation into transit-amplifying cells, which in turn form terminally differentiated enterocytes as these cells reach the villus. Extensive alterations in both transcriptional and translational programs occur during differentiation, which can induce the activation of cellular stress responses such as ER stress-related unfolded protein response (UPR) and autophagy, particularly in the cells that are already committed to becoming absorptive cells. Using an epithelial cell model of enterocyte differentiation, we report a mechanistic study connecting enterocyte differentiation to UPR and autophagy. We report that differentiated colon epithelial cells showed increased cytosolic Ca2+ levels and activation of all three pathways of UPR: inositol-requiring enzyme 1 (IRE1), protein kinase RNA-like ER kinase, and activating transcription factor 6 (ATF6) compared to the undifferentiated cells. Enhanced UPR in the differentiated cells was accompanied by the induction of autophagy as evidenced by increased ratio of light chain 3 II/I, upregulation of Beclin-1, and downregulation of p62. We show for the first time that mechanistically, the upregulation of hepatocyte nuclear factor 4α (HNF4α) during differentiation led to increased promoter binding and transcriptional upregulation of two major proteins of UPR: X-box binding protein-1 and ATF6, implicating HNF4α as a key regulator of UPR response during differentiation. Integrating wet-lab with in silico analyses, the present study links differentiation to cellular stress responses, and highlights the importance of transcription factor signaling and cross-talk between the cellular events in the regulation of intestinal cell differentiation.
Collapse
Affiliation(s)
- Sinem Tunçer
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Aslı Sade-Memişoğlu
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Ayşe Gökçe Keşküş
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Ilir Sheraj
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Güneş Güner
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Aytekin Akyol
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sreeparna Banerjee
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey.,Department of Biological Sciences and Cancer Systems Biology Laboratory (CanSyl), Orta Dogu Teknik Universitesi, Ankara, Turkey
| |
Collapse
|
17
|
Babeu JP, Wilson SD, Lambert É, Lévesque D, Boisvert FM, Boudreau F. Quantitative Proteomics Identifies DNA Repair as a Novel Biological Function for Hepatocyte Nuclear Factor 4α in Colorectal Cancer Cells. Cancers (Basel) 2019; 11:E626. [PMID: 31060309 PMCID: PMC6562498 DOI: 10.3390/cancers11050626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α) is a transcription factor that acts as a master regulator of genes for several endoderm-derived tissues, including the intestine, in which it plays a central role during development and tumorigenesis. To better define the mechanisms by which HNF4α can influence these processes, we identified proteins interacting with HNF4α using stable isotope labelling with amino acids in cell culture (SILAC)-based quantitative proteomics with either immunoprecipitation of green fluorescent protein (GFP) or with proximity-dependent purification by the biotin ligase BirA (BioID), both fused to HNF4α. Surprisingly, these analyses identified a significant enrichment of proteins characterized with a role in DNA repair, a so far unidentified biological feature of this transcription factor. Several of these proteins including PARP1, RAD50, and DNA-PKcs were confirmed to interact with HNF4α in colorectal cancer cell lines. Following DNA damage, HNF4α was able to increase cell viability in colorectal cancer cells. Overall, these observations identify a potential role for this transcription factor during the DNA damage response.
Collapse
Affiliation(s)
- Jean-Philippe Babeu
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| | - Samuel D Wilson
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| | - Élie Lambert
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| | - Dominique Lévesque
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| | - François-Michel Boisvert
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| | - François Boudreau
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
18
|
First person – Jean-Philippe Babeu. J Cell Sci 2018. [DOI: 10.1242/jcs.222026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Jean-Philippe Babeu is the first author on ‘P1 promoter-driven HNF4α isoforms are specifically repressed by β-catenin signaling in colorectal cancer cells', published in Journal of Cell Science. Jean-Philippe is a research assistant in the lab of Francois Boudreau at Université de Sherbrooke, Sherbrooke, Canada, investigating gene regulation in the context of the gastrointestinal tract.
Collapse
|