1
|
Tamulytė R, Baronaitė I, Šulskis D, Smirnovas V, Jankunec M. Pro-inflammatory S100A8 Protein Exhibits a Detergent-like Effect on Anionic Lipid Bilayers, as Imaged by High-Speed AFM. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2635-2647. [PMID: 39723944 PMCID: PMC11783366 DOI: 10.1021/acsami.4c18749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Neuronal cell death induced by cell membrane damage is one of the major hallmarks of neurodegenerative diseases. Neuroinflammation precedes the loss of neurons; however, whether and how inflammation-related proteins contribute to the loss of membrane integrity remains unknown. We employed a range of biophysical tools, including high-speed atomic force microscopy, fluorescence spectroscopy, and electrochemical impedance spectroscopy, to ascertain whether the pro-inflammatory protein S100A8 induces alterations in biomimetic lipid membranes upon interaction. Our findings underscore the crucial roles played by divalent cations and membrane charge. We found that apo-S100A8 selectively interacts with anionic lipid membranes composed of phosphatidylserine (PS), causing membrane disruption through a detergent-like mechanism, primarily affecting regions where phospholipids are less tightly packed. Interestingly, the introduction of Ca2+ ions inhibited S100A8-induced membrane disruption, suggesting that the disruptive effects of S100A8 are most pronounced under conditions mimicking intracellular compartments, where calcium levels are low, and PS concentrations in the inner leaflet of the membrane are high. Overall, our results present a mechanistic basis for understanding the molecular interactions between S100A8 and the plasma membrane, emphasizing S100A8 as a potential contributor to the onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rimgailė Tamulytė
- Institute
of Biochemistry, Life Sciences Center, Vilnius
University, Saulėtekio av. 7, Vilnius, LT-10257, Lithuania
| | - Ieva Baronaitė
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, LT-10257, Lithuania
| | - Darius Šulskis
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, LT-10257, Lithuania
| | - Vytautas Smirnovas
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, LT-10257, Lithuania
| | - Marija Jankunec
- Institute
of Biochemistry, Life Sciences Center, Vilnius
University, Saulėtekio av. 7, Vilnius, LT-10257, Lithuania
| |
Collapse
|
2
|
Cohen-Adiv S, Amer-Sarsour F, Berdichevsky Y, Boxer E, Goldstein O, Gana-Weisz M, Tripathi U, Rike WA, Prag G, Gurevich T, Giladi N, Stern S, Orr-Urtreger A, Friedmann-Morvinski D, Ashkenazi A. TMEM16F regulates pathologic α-synuclein secretion and spread in cellular and mouse models of Parkinson's disease. Aging Cell 2024:e14387. [PMID: 39487963 DOI: 10.1111/acel.14387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/14/2024] [Accepted: 10/01/2024] [Indexed: 11/04/2024] Open
Abstract
One of the main hallmarks of Parkinson's disease (PD) pathology is the spread of the aggregate-prone protein α-synuclein (α-syn), which can be detected in the plasma and cerebrospinal fluid of patients as well as in the extracellular environment of neuronal cells. The secreted α-syn can exhibit "prion-like" behavior and transmission to naïve cells can promote conformational changes and pathology. The precise role of plasma membrane proteins in the pathologic process of α-syn is yet to be fully resolved. The TMEM16 family of lipid scramblases and ion channels has been recently associated with cancer and infectious diseases but is less known for its role in aging-related diseases. To elucidate the role of TMEM16F in α-syn spread, we transduced neurons derived from TMEM16F knockout mice with a reporter system that enables the distinction between donor and recipient neurons of pathologic α-synA53T. We found that the spread of α-synA53T was reduced in neurons derived from TMEM16F-knockout mice. These findings were recapitulated in vivo in a mouse model of PD, where attenuated α-synA53T spread was observed when TMEM16F was ablated. Moreover, we identified a single nucleotide polymorphism in TMEM16F of Ashkenazi Jewish PD patients resulting in a missense Ala703Ser mutation with enhanced lipid scramblase activity. This mutation is associated with altered regulation of α-synA53T extracellular secretion in cellular models of PD. Our study highlights TMEM16F as a novel regulator of α-syn spread and as a potential therapeutic target in synucleinopathies.
Collapse
Affiliation(s)
- Stav Cohen-Adiv
- The Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Fatima Amer-Sarsour
- The Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yevgeny Berdichevsky
- The Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Emily Boxer
- The School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Orly Goldstein
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mali Gana-Weisz
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Utkarsh Tripathi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Wote Amelo Rike
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Gali Prag
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tanya Gurevich
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nir Giladi
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Brain Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Avi Orr-Urtreger
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dinorah Friedmann-Morvinski
- The School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Avraham Ashkenazi
- The Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Syu JJ, Chang CH, Chang PY, Liu CH, Yu CJ, Jou TS. Lipid raft interacting galectin 8 regulates primary ciliogenesis. FASEB J 2023; 37:e23300. [PMID: 37997673 DOI: 10.1096/fj.202301943r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Primary cilium is a specialized sensory organelle that transmits environmental information into cells. Its length is tightly controlled by various mechanisms such as the frequency or the cargo size of the intraflagellar transport trains which deliver the building materials such as tubulin subunits essential for the growing cilia. Here, we show the sialoglycan interacting galectin 8 regulates the process of primary ciliogenesis. As the epithelia become polarized, there are more galectin 8 being apically secreted and these extracellular galectin 8 molecules apparently bind to a lipid raft enriched domain at the base of the primary cilia through interacting with lipid raft components, such as GD3 ganglioside and scaffold protein caveolin 1. Furthermore, the binding of galectin 8 at this critical region triggers rapid growth of primary cilia by perturbing the barrier function of the transition zone (TZ). Our study also demonstrates the functionality of this barrier depends on intact organization of lipid rafts at the cilia as genetically knockout of Cav1 and pharmacologically inhibition of lipid raft both phenocopy the effect of apical addition of recombinant galectin 8; that is, rapid elongation of primary cilia and redistribution of cilia proteins from TZ to the growing axoneme. Indeed, as cilia elongated, endogenous galectin 8, caveolin 1, and TZ component, TMEM231, also transited from the TZ to the growing axoneme. We also noted that the interaction between caveolin 1 and TMEM231 could be perturbed by exogenous galectin 8. Taken together, we proposed that galectin 8 promoted primary cilia elongation through impeding the barrier function of the TZ by interfering with the interaction between caveolin 1 and TMEM231.
Collapse
Affiliation(s)
- Jhan-Jhang Syu
- Graduate Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chieh-Hsiang Chang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Yu Chang
- Graduate Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Hsiung Liu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Surgery, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tzuu-Shuh Jou
- Graduate Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Lei J, Sun P, Sheng J, Wang H, Xie Y, Song J. The intricate role of annexin A2 in kidney: a comprehensive review. Ren Fail 2023; 45:2273427. [PMID: 37955107 PMCID: PMC10653649 DOI: 10.1080/0886022x.2023.2273427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Annexin A2 (Anxa2) is a calcium (Ca2+)-regulated phospholipid binding protein composed of a variable N-terminus and a conserved core domain. This protein has been widely found in many tissues and fluids, including tubule cells, glomerular epithelial cells, renal vessels, and urine. In acute kidney injury, the expression level of this protein is markedly elevated in response to acute stress. Moreover, Anxa2 is a novel biomarker and potential therapeutic target with prognostic value in chronic kidney disease. In addition, Anxa2 is associated not only with clear-cell renal cell carcinoma differentiation but also the formation of calcium-related nephrolithiasis. In this review, we discuss the characteristics and functions of Anxa2 and focus on recent reports on the role of Anxa2 in the kidney, which may be useful for future research.
Collapse
Affiliation(s)
- Juan Lei
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Pingping Sun
- Department of Internal Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Jingyi Sheng
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hongri Wang
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Yifan Xie
- Department of Rheumatism and Immunology, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jiayu Song
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
5
|
Ueda H. Non-Vesicular Release of Alarmin Prothymosin α Complex Associated with Annexin-2 Flop-Out. Cells 2023; 12:1569. [PMID: 37371039 DOI: 10.3390/cells12121569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Nuclear protein prothymosin α (ProTα) is a unique member of damage-associated molecular patterns (DAMPs)/alarmins. ProTα prevents neuronal necrosis by causing a cell death mode switch in serum-starving or ischemic/reperfusion models in vitro and in vivo. Underlying receptor mechanisms include Toll-like receptor 4 (TLR4) and Gi-coupled receptor. Recent studies have revealed that the mode of the fatal stress-induced extracellular release of nuclear ProTα from cortical neurons in primary cultures, astrocytes and C6 glioma cells has two steps: ATP loss-induced nuclear release and the Ca2+-mediated formation of a multiple protein complex and its extracellular release. Under the serum-starving condition, ProTα is diffused from the nucleus throughout the cell due to the ATP loss-induced impairment of importin α-mediated nuclear transport. Subsequent mechanisms are all Ca2+-dependent. They include the formation of a protein complex with ProTα, S100A13, p40 Syt-1 and Annexin A2 (ANXA2); the fusion of the protein complex to the plasma membrane via p40 Syt-1-Stx-1 interaction; and TMEM16F scramblase-mediated ANXA2 flop-out. Subsequently, the protein complex is extracellularly released, leaving ANXA2 on the outer cell surface. The ANXA2 is then flipped in by a force of ATP8A2 activity, and the non-vesicular release of protein complex is repeated. Thus, the ANXA2 flop-out could play key roles in a new type of non-vesicular and non-classical release for DAMPs/alarmins, which is distinct from the modes conducted via gasdermin D or mixed-lineage kinase domain-like pseudokinase pores.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Department and Institute of Pharmacology, National Defense Medical Center, Nei-hu, Taipei 114201, Taiwan
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| |
Collapse
|
6
|
Drescher DG, Drescher MJ, Selvakumar D, Annam NP. Analysis of Dysferlin Direct Interactions with Putative Repair Proteins Links Apoptotic Signaling to Ca 2+ Elevation via PDCD6 and FKBP8. Int J Mol Sci 2023; 24:4707. [PMID: 36902136 PMCID: PMC10002499 DOI: 10.3390/ijms24054707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Quantitative surface plasmon resonance (SPR) was utilized to determine binding strength and calcium dependence of direct interactions between dysferlin and proteins likely to mediate skeletal muscle repair, interrupted in limb girdle muscular dystrophy type 2B/R2. Dysferlin canonical C2A (cC2A) and C2F/G domains directly interacted with annexin A1, calpain-3, caveolin-3, affixin, AHNAK1, syntaxin-4, and mitsugumin-53, with cC2A the primary target and C2F lesser involved, overall demonstrating positive calcium dependence. Dysferlin C2 pairings alone showed negative calcium dependence in almost all cases. Like otoferlin, dysferlin directly interacted via its carboxy terminus with FKBP8, an anti-apoptotic outer mitochondrial membrane protein, and via its C2DE domain with apoptosis-linked gene (ALG-2/PDCD6), linking anti-apoptosis with apoptosis. Confocal Z-stack immunofluorescence confirmed co-compartmentalization of PDCD6 and FKBP8 at the sarcolemmal membrane. Our evidence supports the hypothesis that prior to injury, dysferlin C2 domains self-interact and give rise to a folded, compact structure as indicated for otoferlin. With elevation of intracellular Ca2+ in injury, dysferlin would unfold and expose the cC2A domain for interaction with annexin A1, calpain-3, mitsugumin 53, affixin, and caveolin-3, and dysferlin would realign from its interactions with PDCD6 at basal calcium levels to interact strongly with FKBP8, an intramolecular rearrangement facilitating membrane repair.
Collapse
Affiliation(s)
- Dennis G. Drescher
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Marian J. Drescher
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Dakshnamurthy Selvakumar
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Neeraja P. Annam
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
7
|
Enrich C, Lu A, Tebar F, Rentero C, Grewal T. Ca 2+ and Annexins - Emerging Players for Sensing and Transferring Cholesterol and Phosphoinositides via Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:393-438. [PMID: 36988890 DOI: 10.1007/978-3-031-21547-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Maintaining lipid composition diversity in membranes from different organelles is critical for numerous cellular processes. However, many lipids are synthesized in the endoplasmic reticulum (ER) and require delivery to other organelles. In this scenario, formation of membrane contact sites (MCS) between neighbouring organelles has emerged as a novel non-vesicular lipid transport mechanism. Dissecting the molecular composition of MCS identified phosphoinositides (PIs), cholesterol, scaffolding/tethering proteins as well as Ca2+ and Ca2+-binding proteins contributing to MCS functioning. Compelling evidence now exists for the shuttling of PIs and cholesterol across MCS, affecting their concentrations in distinct membrane domains and diverse roles in membrane trafficking. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) not only controls endo-/exocytic membrane dynamics but is also critical in autophagy. Cholesterol is highly concentrated at the PM and enriched in recycling endosomes and Golgi membranes. MCS-mediated cholesterol transfer is intensely researched, identifying MCS dysfunction or altered MCS partnerships to correlate with de-regulated cellular cholesterol homeostasis and pathologies. Annexins, a conserved family of Ca2+-dependent phospholipid binding proteins, contribute to tethering and untethering events at MCS. In this chapter, we will discuss how Ca2+ homeostasis and annexins in the endocytic compartment affect the sensing and transfer of cholesterol and PIs across MCS.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Maricchiolo E, Panfili E, Pompa A, De Marchis F, Bellucci M, Pallotta MT. Unconventional Pathways of Protein Secretion: Mammals vs. Plants. Front Cell Dev Biol 2022; 10:895853. [PMID: 35573696 PMCID: PMC9096121 DOI: 10.3389/fcell.2022.895853] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 01/08/2023] Open
Abstract
In eukaryotes, many proteins contain an N-terminal signal peptide that allows their translocation into the endoplasmic reticulum followed by secretion outside the cell according to the classical secretory system. However, an increasing number of secreted proteins lacking the signal peptide sequence are emerging. These proteins, secreted in several alternative ways collectively known as unconventional protein secretion (UPS) pathways, exert extracellular functions including cell signaling, immune modulation, as well as moonlighting activities different from their well-described intracellular functions. Pathways for UPS include direct transfer across the plasma membrane, secretion from endosomal/multivesicular body-related components, release within plasma membrane-derived microvesicles, or use of elements of autophagy. In this review we describe the mammals and plants UPS pathways identified so far highlighting commonalities and differences.
Collapse
Affiliation(s)
- Elisa Maricchiolo
- Section of Biological and Biotechnological Sciences, Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Eleonora Panfili
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Andrea Pompa
- Section of Biological and Biotechnological Sciences, Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Francesca De Marchis
- Institute of Biosciences and Bioresources, National Research Council of Italy, Perugia, Italy
| | - Michele Bellucci
- Institute of Biosciences and Bioresources, National Research Council of Italy, Perugia, Italy
- *Correspondence: Michele Bellucci, ; Maria Teresa Pallotta,
| | - Maria Teresa Pallotta
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- *Correspondence: Michele Bellucci, ; Maria Teresa Pallotta,
| |
Collapse
|
9
|
Tontanahal A, Arvidsson I, Karpman D. Annexin Induces Cellular Uptake of Extracellular Vesicles and Delays Disease in Escherichia coli O157:H7 Infection. Microorganisms 2021; 9:microorganisms9061143. [PMID: 34073384 PMCID: PMC8228561 DOI: 10.3390/microorganisms9061143] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022] Open
Abstract
Enterohemorrhagic Escherichia coli secrete Shiga toxin and lead to hemolytic uremic syndrome. Patients have high levels of circulating prothrombotic extracellular vesicles (EVs) that expose phosphatidylserine and tissue factor and transfer Shiga toxin from the circulation into the kidney. Annexin A5 (AnxA5) binds to phosphatidylserine, affecting membrane dynamics. This study investigated the effect of anxA5 on EV uptake by human and murine phagocytes and used a mouse model of EHEC infection to study the effect of anxA5 on disease and systemic EV levels. EVs derived from human whole blood or HeLa cells were more readily taken up by THP-1 cells or RAW264.7 cells when the EVs were coated with anxA5. EVs from HeLa cells incubated with RAW264.7 cells induced phosphatidylserine exposure on the cells, suggesting a mechanism by which anxA5-coated EVs can bind to phagocytes before uptake. Mice treated with anxA5 for six days after inoculation with E. coli O157:H7 showed a dose-dependent delay in the development of clinical disease. Treated mice had lower levels of EVs in the circulation. In the presence of anxA5, EVs are taken up by phagocytes and their systemic levels are lower, and, as EVs transfer Shiga toxin to the kidney, this could postpone disease development.
Collapse
Affiliation(s)
| | | | - Diana Karpman
- Correspondence: ; Tel.: +46-46-2220747; Fax: +46-46-2220748
| |
Collapse
|
10
|
Abstract
Extracellular vesicles (EVs) are increasingly being recognised as players in intercellular communication within the human body. EVs are nano-sized vesicles that are secreted by virtually all cells, primarily arising from either the plasma membrane or the endocytic system. They contain a wide range of proteins and nucleic acids in their lumen, as well as cell surface proteins on their exterior. The proteins and nucleic acids within are the 'cargo' that EVs deliver into the cytosol of recipient cells to elicit a response or phenotypic change. For delivery to occur, the cargo needs to cross two lipid bilayers; one that makes up the vesicle itself, and the other of the recipient cell. Exactly how this process works is a topic that is poorly understood, despite being pivotal for their function. Furthermore, extracellular vesicles have therapeutic potential as drug delivery vehicles. Therefore, understanding their delivery mechanism and harnessing its action for drug delivery is of great importance. This chapter will focus on the proposed mechanisms for cargo delivery and discuss existing evidence for cargo delivery from EVs into the cytosol of recipient cells.
Collapse
|
11
|
Matsunaga H, Halder SK, Ueda H. Annexin A2 Flop-Out Mediates the Non-Vesicular Release of DAMPs/Alarmins from C6 Glioma Cells Induced by Serum-Free Conditions. Cells 2021; 10:cells10030567. [PMID: 33807671 PMCID: PMC7998613 DOI: 10.3390/cells10030567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Prothymosin alpha (ProTα) and S100A13 are released from C6 glioma cells under serum-free conditions via membrane tethering mediated by Ca2+-dependent interactions between S100A13 and p40 synaptotagmin-1 (Syt-1), which is further associated with plasma membrane syntaxin-1 (Stx-1). The present study revealed that S100A13 interacted with annexin A2 (ANXA2) and this interaction was enhanced by Ca2+ and p40 Syt-1. Amlexanox (Amx) inhibited the association between S100A13 and ANXA2 in C6 glioma cells cultured under serum-free conditions in the in situ proximity ligation assay. In the absence of Amx, however, the serum-free stress results in a flop-out of ANXA2 through the membrane, without the extracellular release. The intracellular delivery of anti-ANXA2 antibody blocked the serum-free stress-induced cellular loss of ProTα, S100A13, and Syt-1. The stress-induced externalization of ANXA2 was inhibited by pretreatment with siRNA for P4-ATPase, ATP8A2, under serum-free conditions, which ablates membrane lipid asymmetry. The stress-induced ProTα release via Stx-1A, ANXA2 and ATP8A2 was also evidenced by the knock-down strategy in the experiments using oxygen glucose deprivation-treated cultured neurons. These findings suggest that starvation stress-induced release of ProTα, S100A13, and p40 Syt-1 from C6 glioma cells is mediated by the ANXA2-flop-out via energy crisis-dependent recovery of membrane lipid asymmetry.
Collapse
Affiliation(s)
- Hayato Matsunaga
- Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (H.M.); (S.K.H.)
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Sebok Kumar Halder
- Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (H.M.); (S.K.H.)
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Hiroshi Ueda
- Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (H.M.); (S.K.H.)
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Correspondence: ; Tel.: +81-75-753-4536
| |
Collapse
|
12
|
Foltz SJ, Cui YY, Choo HJ, Hartzell HC. ANO5 ensures trafficking of annexins in wounded myofibers. J Cell Biol 2021; 220:e202007059. [PMID: 33496727 PMCID: PMC7844426 DOI: 10.1083/jcb.202007059] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/20/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations in ANO5 (TMEM16E) cause limb-girdle muscular dystrophy R12. Defective plasma membrane repair is a likely mechanism. Using myofibers from Ano5 knockout mice, we show that trafficking of several annexin proteins, which together form a cap at the site of injury, is altered upon loss of ANO5. Annexin A2 accumulates at the wound to nearly twice the level observed in WT fibers, while annexin A6 accumulation is substantially inhibited in the absence of ANO5. Appearance of annexins A1 and A5 at the cap is likewise diminished in the Ano5 knockout. These changes are correlated with an alteration in annexin repair cap fine structure and shedding of annexin-positive vesicles. We conclude that loss of annexin coordination during repair is disrupted in Ano5 knockout mice and underlies the defective repair phenotype. Although ANO5 is a phospholipid scramblase, abnormal repair is rescued by overexpression of a scramblase-defective ANO5 mutant, suggesting a novel, scramblase-independent role of ANO5 in repair.
Collapse
Affiliation(s)
| | | | - Hyojung J. Choo
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - H. Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
13
|
Cohen MJ, Chirico WJ, Lipke PN. Through the back door: Unconventional protein secretion. Cell Surf 2020; 6:100045. [PMID: 33225116 PMCID: PMC7666356 DOI: 10.1016/j.tcsw.2020.100045] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Proteins are secreted from eukaryotic cells by several mechanisms besides the well-characterized classical secretory system. Proteins destined to enter the classical secretory system contain a signal peptide for translocation into the endoplasmic reticulum. However, many proteins lacking a signal peptide are secreted nonetheless. Contrary to conventional belief, these proteins are not just released as a result of membrane damage leading to cell leakage, but are actively packaged for secretion in alternative pathways. They are called unconventionally secreted proteins, and the best-characterized are from fungi and mammals. These proteins have extracellular functions including cell signaling, immune modulation, as well as moonlighting activities different from their well-described intracellular functions. Among the pathways for unconventional secretion are direct transfer across the plasma membrane, release within plasma membrane-derived microvesicles, use of elements of autophagy, or secretion from endosomal/multivesicular body-related components. We review the fungal and metazoan unconventional secretory pathways and their regulation, and propose experimental criteria to identify their mode of secretion.
Collapse
Affiliation(s)
- Michael J. Cohen
- The Graduate Center of the City University of New York, United States
- Biology Department, Brooklyn College of the City University of New York, United States
| | - William J. Chirico
- Department of Cell Biology, Molecular and Cellular Biology Program, SUNY Downstate Medical Center, United States
| | - Peter N. Lipke
- The Graduate Center of the City University of New York, United States
- Biology Department, Brooklyn College of the City University of New York, United States
| |
Collapse
|
14
|
Gabel M, Royer C, Thahouly T, Calco V, Gasman S, Bader MF, Vitale N, Chasserot-Golaz S. Annexin A2 Egress during Calcium-Regulated Exocytosis in Neuroendocrine Cells. Cells 2020; 9:cells9092059. [PMID: 32917016 PMCID: PMC7564067 DOI: 10.3390/cells9092059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 02/08/2023] Open
Abstract
Annexin A2 (AnxA2) is a calcium- and lipid-binding protein involved in neuroendocrine secretion where it participates in the formation and/or stabilization of lipid micro-domains required for structural and spatial organization of the exocytotic machinery. We have recently described that phosphorylation of AnxA2 on Tyr23 is critical for exocytosis. Considering that Tyr23 phosphorylation is known to promote AnxA2 externalization to the outer face of the plasma membrane in different cell types, we examined whether this phenomenon occurred in neurosecretory chromaffin cells. Using immunolabeling and biochemical approaches, we observed that nicotine stimulation triggered the egress of AnxA2 to the external leaflets of the plasma membrane in the vicinity of exocytotic sites. AnxA2 was found co-localized with tissue plasminogen activator, previously described on the surface of chromaffin cells following secretory granule release. We propose that AnxA2 might be a cell surface tissue plasminogen activator receptor for chromaffin cells, thus playing a role in autocrine or paracrine regulation of exocytosis.
Collapse
Affiliation(s)
- Marion Gabel
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France; (M.G.); (T.T.); (V.C.); (S.G.); (M.-F.B.); (N.V.)
| | - Cathy Royer
- Plateforme Imagerie In Vitro, Neuropôle, Université de Strasbourg, F-67000 Strasbourg, France;
| | - Tamou Thahouly
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France; (M.G.); (T.T.); (V.C.); (S.G.); (M.-F.B.); (N.V.)
| | - Valérie Calco
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France; (M.G.); (T.T.); (V.C.); (S.G.); (M.-F.B.); (N.V.)
| | - Stéphane Gasman
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France; (M.G.); (T.T.); (V.C.); (S.G.); (M.-F.B.); (N.V.)
| | - Marie-France Bader
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France; (M.G.); (T.T.); (V.C.); (S.G.); (M.-F.B.); (N.V.)
| | - Nicolas Vitale
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France; (M.G.); (T.T.); (V.C.); (S.G.); (M.-F.B.); (N.V.)
| | - Sylvette Chasserot-Golaz
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France; (M.G.); (T.T.); (V.C.); (S.G.); (M.-F.B.); (N.V.)
- Plateforme Imagerie In Vitro, Neuropôle, Université de Strasbourg, F-67000 Strasbourg, France;
- Correspondence: ; Tel.: +333-88-45-67-39
| |
Collapse
|
15
|
Amblard I, Dupont E, Alves I, Miralvès J, Queguiner I, Joliot A. Bidirectional transfer of homeoprotein EN2 across the plasma membrane requires PIP 2. J Cell Sci 2020; 133:jcs244327. [PMID: 32434869 DOI: 10.1242/jcs.244327] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/05/2020] [Indexed: 01/21/2023] Open
Abstract
Homeoproteins are a class of transcription factors sharing the unexpected property of intercellular trafficking that confers to homeoproteins a paracrine mode of action. Homeoprotein paracrine action participates in the control of patterning processes, including axonal guidance, brain plasticity and boundary formation. Internalization and secretion, the two steps of intercellular transfer, rely on unconventional mechanisms, but the cellular mechanisms at stake still need to be fully characterized. Thanks to the design of new quantitative and sensitive assays dedicated to the study of homeoprotein transfer within HeLa cells in culture, we demonstrate a core role of phosphatidylinositol (4,5)-bisphosphate (PIP2) together with cholesterol in the translocation of the homeobox protein engrailed-2 (EN2) across the plasma membrane. By using drug and enzyme treatments, we show that both secretion and internalization are regulated according to PIP2 levels. The requirement for PIP2 and cholesterol in EN2 trafficking correlates with their selective affinity for this protein in artificial bilayers, which is drastically decreased in a paracrine-deficient mutant of EN2. We propose that the bidirectional plasma membrane translocation events that occur during homeoprotein secretion and internalization are parts of a common process.
Collapse
Affiliation(s)
- Irène Amblard
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Sorbonne University, Paris, France
| | - Edmond Dupont
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Isabel Alves
- CBMN, UMR 5248 CNRS, University of Bordeaux, 33600 Pessac, France
| | - Julie Miralvès
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Isabelle Queguiner
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Alain Joliot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
16
|
Santos-Valencia JC, Cancio-Lonches C, Trujillo-Uscanga A, Alvarado-Hernández B, Lagunes-Guillén A, Gutiérrez-Escolano AL. Annexin A2 associates to feline calicivirus RNA in the replication complexes from infected cells and participates in an efficient viral replication. Virus Res 2018; 261:1-8. [PMID: 30543874 DOI: 10.1016/j.virusres.2018.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 01/27/2023]
Abstract
Cellular proteins have been identified to participate in calicivirus replication in association with viral proteins and/or viral RNAs. By mass spectrometry from pull-down assays, we identified several cellular proteins bound to the feline calicivirus (FCV) genomic RNA; among them the lipid raft-associated scaffold protein Annexin (Anx) A2. AnxA2 colocalizes with FCV NS6/7 protein and with the dsRNA in infected cells; moreover, it was found associated with the viral RNA in the membrane fraction corresponding to the replication complexes (RCs), suggesting its role during FCV replication. AnxA2-knockdown from CrFK cells prior to infection with FCV caused a delay in the cytopathic effect, a strong reduction of viral non-structural proteins and dsRNA production, and a decrease of FCV yield in both cell-associated and supernatant fractions. Taken together, these results indicate that AnxA2 associates to the genomic RNA of FCV and is required for an efficient FCV replication.
Collapse
Affiliation(s)
- Juan Carlos Santos-Valencia
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Clotilde Cancio-Lonches
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Adrian Trujillo-Uscanga
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Beatriz Alvarado-Hernández
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Anel Lagunes-Guillén
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Ana Lorena Gutiérrez-Escolano
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico.
| |
Collapse
|