1
|
Park K, Leroux MR. Composition, organization and mechanisms of the transition zone, a gate for the cilium. EMBO Rep 2022; 23:e55420. [PMID: 36408840 PMCID: PMC9724682 DOI: 10.15252/embr.202255420] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
The cilium evolved to provide the ancestral eukaryote with the ability to move and sense its environment. Acquiring these functions required the compartmentalization of a dynein-based motility apparatus and signaling proteins within a discrete subcellular organelle contiguous with the cytosol. Here, we explore the potential molecular mechanisms for how the proximal-most region of the cilium, termed transition zone (TZ), acts as a diffusion barrier for both membrane and soluble proteins and helps to ensure ciliary autonomy and homeostasis. These include a unique complement and spatial organization of proteins that span from the microtubule-based axoneme to the ciliary membrane; a protein picket fence; a specialized lipid microdomain; differential membrane curvature and thickness; and lastly, a size-selective molecular sieve. In addition, the TZ must be permissive for, and functionally integrates with, ciliary trafficking systems (including intraflagellar transport) that cross the barrier and make the ciliary compartment dynamic. The quest to understand the TZ continues and promises to not only illuminate essential aspects of human cell signaling, physiology, and development, but also to unravel how TZ dysfunction contributes to ciliopathies that affect multiple organ systems, including eyes, kidney, and brain.
Collapse
Affiliation(s)
- Kwangjin Park
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBCCanada
- Centre for Cell Biology, Development, and DiseaseSimon Fraser UniversityBurnabyBCCanada
- Present address:
Terry Fox LaboratoryBC CancerVancouverBCCanada
- Present address:
Department of Medical GeneticsUniversity of British ColumbiaVancouverBCCanada
| | - Michel R Leroux
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBCCanada
- Centre for Cell Biology, Development, and DiseaseSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|
2
|
Dutta P, Ray K. Ciliary membrane, localised lipid modification and cilia function. J Cell Physiol 2022; 237:2613-2631. [PMID: 35661356 DOI: 10.1002/jcp.30787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/08/2022]
Abstract
Cilium, a tiny microtubule-based cellular appendage critical for cell signalling and physiology, displays a large variety of receptors. The composition and turnover of ciliary lipids and receptors determine cell behaviour. Due to the exclusion of ribosomal machinery and limited membrane area, a cilium needs adaptive logistics to actively reconstitute the lipid and receptor compositions during development and differentiation. How is this dynamicity generated? Here, we examine whether, along with the Intraflagellar-Transport, targeted changes in sector-wise lipid composition could control the receptor localisation and functions in the cilia. We discuss how an interplay between ciliary lipid composition, localised lipid modification, and receptor function could contribute to cilia growth and signalling. We argue that lipid modification at the cell-cilium interface could generate an added thrust for a selective exchange of membrane lipids and the transmembrane and membrane-associated proteins.
Collapse
Affiliation(s)
- Priya Dutta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
3
|
Schembs L, Willems A, Hasenpusch-Theil K, Cooper JD, Whiting K, Burr K, Bøstrand SMK, Selvaraj BT, Chandran S, Theil T. The ciliary gene INPP5E confers dorsal telencephalic identity to human cortical organoids by negatively regulating Sonic hedgehog signaling. Cell Rep 2022; 39:110811. [PMID: 35584663 PMCID: PMC9620745 DOI: 10.1016/j.celrep.2022.110811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 02/07/2022] [Accepted: 04/20/2022] [Indexed: 12/02/2022] Open
Abstract
Defects in primary cilia, cellular antennas that control multiple intracellular signaling pathways, underlie several neurodevelopmental disorders, but it remains unknown how cilia control essential steps in human brain formation. Here, we show that cilia are present on the apical surface of radial glial cells in human fetal forebrain. Interfering with cilia signaling in human organoids by mutating the INPP5E gene leads to the formation of ventral telencephalic cell types instead of cortical progenitors and neurons. INPP5E mutant organoids also show increased Sonic hedgehog (SHH) signaling, and cyclopamine treatment partially rescues this ventralization. In addition, ciliary expression of SMO, GLI2, GPR161, and several intraflagellar transport (IFT) proteins is increased. Overall, these findings establish the importance of primary cilia for dorsal and ventral patterning in human corticogenesis, indicate a tissue-specific role of INPP5E as a negative regulator of SHH signaling, and have implications for the emerging roles of cilia in the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Leah Schembs
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Ariane Willems
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| | - Kerstin Hasenpusch-Theil
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| | - James D Cooper
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Katie Whiting
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Karen Burr
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Sunniva M K Bøstrand
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Bhuvaneish T Selvaraj
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, UK; Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK; Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Thomas Theil
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK.
| |
Collapse
|
4
|
Doumane M, Caillaud MC, Jaillais Y. Experimental manipulation of phosphoinositide lipids: from cells to organisms. Trends Cell Biol 2022; 32:445-461. [DOI: 10.1016/j.tcb.2022.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022]
|
5
|
Conduit SE, Vanhaesebroeck B. Phosphoinositide lipids in primary cilia biology. Biochem J 2020; 477:3541-3565. [PMID: 32970140 PMCID: PMC7518857 DOI: 10.1042/bcj20200277] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/30/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Primary cilia are solitary signalling organelles projecting from the surface of most cell types. Although the ciliary membrane is continuous with the plasma membrane it exhibits a unique phospholipid composition, a feature essential for normal cilia formation and function. Recent studies have illustrated that distinct phosphoinositide lipid species localise to specific cilia subdomains, and have begun to build a 'phosphoinositide map' of the cilium. The abundance and localisation of phosphoinositides are tightly regulated by the opposing actions of lipid kinases and lipid phosphatases that have also been recently discovered at cilia. The critical role of phosphoinositides in cilia biology is highlighted by the devastating consequences of genetic defects in cilia-associated phosphoinositide regulatory enzymes leading to ciliopathy phenotypes in humans and experimental mouse and zebrafish models. Here we provide a general introduction to primary cilia and the roles phosphoinositides play in cilia biology. In addition to increasing our understanding of fundamental cilia biology, this rapidly expanding field may inform novel approaches to treat ciliopathy syndromes caused by deregulated phosphoinositide metabolism.
Collapse
Affiliation(s)
- Sarah E. Conduit
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, U.K
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, U.K
| |
Collapse
|
6
|
Hasenpusch-Theil K, Laclef C, Colligan M, Fitzgerald E, Howe K, Carroll E, Abrams SR, Reiter JF, Schneider-Maunoury S, Theil T. A transient role of the ciliary gene Inpp5e in controlling direct versus indirect neurogenesis in cortical development. eLife 2020; 9:e58162. [PMID: 32840212 PMCID: PMC7481005 DOI: 10.7554/elife.58162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/24/2020] [Indexed: 01/13/2023] Open
Abstract
During the development of the cerebral cortex, neurons are generated directly from radial glial cells or indirectly via basal progenitors. The balance between these division modes determines the number and types of neurons formed in the cortex thereby affecting cortical functioning. Here, we investigate the role of primary cilia in controlling the decision between forming neurons directly or indirectly. We show that a mutation in the ciliary gene Inpp5e leads to a transient increase in direct neurogenesis and subsequently to an overproduction of layer V neurons in newborn mice. Loss of Inpp5e also affects ciliary structure coinciding with reduced Gli3 repressor levels. Genetically restoring Gli3 repressor rescues the decreased indirect neurogenesis in Inpp5e mutants. Overall, our analyses reveal how primary cilia determine neuronal subtype composition of the cortex by controlling direct versus indirect neurogenesis. These findings have implications for understanding cortical malformations in ciliopathies with INPP5E mutations.
Collapse
Affiliation(s)
- Kerstin Hasenpusch-Theil
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom
| | - Christine Laclef
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Matt Colligan
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Eamon Fitzgerald
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Katherine Howe
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Emily Carroll
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Shaun R Abrams
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Thomas Theil
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
7
|
Chen HY, Kelley RA, Li T, Swaroop A. Primary cilia biogenesis and associated retinal ciliopathies. Semin Cell Dev Biol 2020; 110:70-88. [PMID: 32747192 PMCID: PMC7855621 DOI: 10.1016/j.semcdb.2020.07.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/19/2022]
Abstract
The primary cilium is a ubiquitous microtubule-based organelle that senses external environment and modulates diverse signaling pathways in different cell types and tissues. The cilium originates from the mother centriole through a complex set of cellular events requiring hundreds of distinct components. Aberrant ciliogenesis or ciliary transport leads to a broad spectrum of clinical entities with overlapping yet highly variable phenotypes, collectively called ciliopathies, which include sensory defects and syndromic disorders with multi-organ pathologies. For efficient light detection, photoreceptors in the retina elaborate a modified cilium known as the outer segment, which is packed with membranous discs enriched for components of the phototransduction machinery. Retinopathy phenotype involves dysfunction and/or degeneration of the light sensing photoreceptors and is highly penetrant in ciliopathies. This review will discuss primary cilia biogenesis and ciliopathies, with a focus on the retina, and the role of CP110-CEP290-CC2D2A network. We will also explore how recent technologies can advance our understanding of cilia biology and discuss new paradigms for developing potential therapies of retinal ciliopathies.
Collapse
Affiliation(s)
- Holly Y Chen
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA.
| | - Ryan A Kelley
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA
| | - Tiansen Li
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Basu U, Balakrishnan SS, Janardan V, Raghu P. A PI4KIIIα protein complex is required for cell viability during Drosophila wing development. Dev Biol 2020; 462:208-222. [PMID: 32194035 DOI: 10.1016/j.ydbio.2020.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 01/02/2023]
Abstract
Phosphatidylinositol 4 phosphate (PI4P) and phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] are enriched on the inner leaflet of the plasma membrane and proposed to be key determinants of its function. PI4P is also the biochemical precursor for the synthesis of PI(4,5)P2 but can itself also bind to and regulate protein function. However, the independent function of PI4P at the plasma membrane in supporting cell function in metazoans during development in vivo remains unclear. We find that conserved components of a multi-protein complex composed of phosphatidylinositol 4-kinase IIIα (PI4KIIIα), TTC7 and Efr3 is required for normal vein patterning and wing development. Depletion of each of these three components of the PI4KIIIα complex in developing wing cells results in altered wing morphology. These effects are associated with an increase in apoptosis and can be rescued by expression of an inhibitor of Drosophila caspase. We find that in contrast to previous reports, PI4KIIIα depletion does not alter key outputs of hedgehog signalling in developing wing discs. Depletion of PI4KIIIα results in reduced PI4P levels at the plasma membrane of developing wing disc cells while levels of PI(4,5)P2, the downstream metabolite of PI4P, are not altered. Thus, PI4P itself generated by the activity of the PI4KIIIα complex plays an essential role in supporting cell viability in the developing Drosophila wing disc.
Collapse
Affiliation(s)
- Urbashi Basu
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bellary Road, Bangalore, 560065, India
| | - Sruthi S Balakrishnan
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bellary Road, Bangalore, 560065, India
| | - Vishnu Janardan
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bellary Road, Bangalore, 560065, India
| | - Padinjat Raghu
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bellary Road, Bangalore, 560065, India.
| |
Collapse
|
9
|
Collin GB, Gogna N, Chang B, Damkham N, Pinkney J, Hyde LF, Stone L, Naggert JK, Nishina PM, Krebs MP. Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss. Cells 2020; 9:cells9040931. [PMID: 32290105 PMCID: PMC7227028 DOI: 10.3390/cells9040931] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated. The progression of PR cell loss with postnatal age was documented in mutant alleles of genes grouped by biological function. As anticipated, a wide range in the onset and rate of cell loss was observed among the reported models. The analysis underscored relationships between RD genes and ciliary function, transcription-coupled DNA damage repair, and cellular chloride homeostasis. Comparing the mouse gene list to human RD genes identified in the RetNet database revealed that mouse models are available for 40% of the known human diseases, suggesting opportunities for future research. This work may provide insight into the molecular players and pathways through which PR degenerative disease occurs and may be useful for planning translational studies.
Collapse
Affiliation(s)
- Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Navdeep Gogna
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Nattaya Damkham
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jai Pinkney
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lillian F. Hyde
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Jürgen K. Naggert
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Correspondence: (P.M.N.); (M.P.K.); Tel.: +1-207-2886-383 (P.M.N.); +1-207-2886-000 (M.P.K.)
| | - Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Correspondence: (P.M.N.); (M.P.K.); Tel.: +1-207-2886-383 (P.M.N.); +1-207-2886-000 (M.P.K.)
| |
Collapse
|
10
|
Lapart JA, Gottardo M, Cortier E, Duteyrat JL, Augière C, Mangé A, Jerber J, Solassol J, Gopalakrishnan J, Thomas J, Durand B. Dzip1 and Fam92 form a ciliary transition zone complex with cell type specific roles in Drosophila. eLife 2019; 8:49307. [PMID: 31821146 PMCID: PMC6904220 DOI: 10.7554/elife.49307] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Cilia and flagella are conserved eukaryotic organelles essential for cellular signaling and motility. Cilia dysfunctions cause life-threatening ciliopathies, many of which are due to defects in the transition zone (TZ), a complex structure of the ciliary base. Therefore, understanding TZ assembly, which relies on ordered interactions of multiprotein modules, is of critical importance. Here, we show that Drosophila Dzip1 and Fam92 form a functional module which constrains the conserved core TZ protein, Cep290, to the ciliary base. We identify cell type specific roles of this functional module in two different tissues. While it is required for TZ assembly in all Drosophila ciliated cells, it also regulates basal-body growth and docking to the plasma membrane during spermatogenesis. We therefore demonstrate a novel regulatory role for Dzip1 and Fam92 in mediating membrane/basal-body interactions and show that these interactions exhibit cell type specific functions in basal-body maturation and TZ organization. Many animal cells have hair-like structures called cilia on their surface, which help them to sense and interact with their surroundings. The cilia are supported by protein filaments and must assemble correctly because faulty cilia can lead to several life-threatening diseases. Problems in an area at the base of the cilia, known as the ‘transition zone’, account for the most severe forms of these diseases in humans. The transition zone is responsible for selecting which proteins are allowed in and out of the cilia. The transition zone itself is made up of many proteins that work together to determine the cilia composition. But not all of these proteins are known, and it is unclear how those that are known affect cilia structure. One protein found in transition zones of several animals, including fruit flies and mice, is called Cby. Lapart et al. set out to understand which other proteins interact with Cby in fruit flies to better understand what this protein does in the transition zone. A series of experiments showed that Cby interacts with two proteins called Dzip1 and Fam92 to regulate the assembly of transition zones. Together these three proteins constrain a core component of the transition zone, a fourth protein called Cep290, to the base of the cilia. Fruit flies only have cilia on cells in their sensory organs and testes and, in both types of tissue, cilia could only form properly when Dzip1 and Fam92 were present. Lapart et al. also showed that, in the fruit fly testes, Dzip1 and Fam92 helped to anchor the newly forming cilia to the cell surface. This anchoring role was particularly important for the fruit flies’ sperm to grow their characteristic whip-like tails, which are a specialized type of cilia that allow sperm cells to move. Overall, the findings show how some transition zone proteins work together and that they can have different effects in different tissues. Understanding the mechanisms behind healthy cilia assembly will likely be key to tackling cilia-related diseases.
Collapse
Affiliation(s)
- Jean-André Lapart
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Marco Gottardo
- Institute of Human Genetics, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Elisabeth Cortier
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Jean-Luc Duteyrat
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Céline Augière
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Alain Mangé
- IRCM, INSERM, Université de Montpellier, ICM, Montpellier, France
| | - Julie Jerber
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Jérôme Solassol
- IRCM, INSERM, Université de Montpellier, ICM, Montpellier, France
| | - Jay Gopalakrishnan
- Institute of Human Genetics, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Joëlle Thomas
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Bénédicte Durand
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
11
|
Interplay between integrins and PI4P5K Sktl is crucial for cell polarization and reepithelialisation during Drosophila wound healing. Sci Rep 2019; 9:16331. [PMID: 31704968 PMCID: PMC6842001 DOI: 10.1038/s41598-019-52743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/22/2019] [Indexed: 11/08/2022] Open
Abstract
Phosphatidylinositol(4,5)-bisphosphate [PI(4,5)P2] regulates cell adhesion and actin dynamics during cell migration. PI(4,5)P2 binds various components of the cell adhesion machinery, but how these processes affect migration of the epithelial cell sheet is not well understood. Here, we report that PI(4,5)P2 and Sktl, the kinase that converts PI4P to PI(4,5)P2, are both localized to the rear side of cells during wound healing of the Drosophila larval epidermis. The Sktl localization requires JNK pathway activation and integrins, but not PVR. The sktl knockdown epidermis displays strong defects in would closure, reminiscent of the JNK-depleted epidermis, and shows severe disruption of cell polarity, as determined by myosin II localization. Sktl and βPS integrin colocalize at the rear side of cells forming the trailing edge during wound healing and the two are inter-dependent in that the absence of one severely disrupts the rear localization of the other. These results strongly suggest that the JNK pathway regulates the rear localization of Sktl and integrins and the interplay between Sktl and integrins sets up cell polarity, which is crucial for reepithelialisation during wound healing.
Collapse
|
12
|
DiTirro D, Philbrook A, Rubino K, Sengupta P. The Caenorhabditis elegans Tubby homolog dynamically modulates olfactory cilia membrane morphogenesis and phospholipid composition. eLife 2019; 8:48789. [PMID: 31259686 PMCID: PMC6624019 DOI: 10.7554/elife.48789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
Plasticity in sensory signaling is partly mediated via regulated trafficking of signaling molecules to and from primary cilia. Tubby-related proteins regulate ciliary protein transport; however, their roles in remodeling cilia properties are not fully understood. We find that the C. elegans TUB-1 Tubby homolog regulates membrane morphogenesis and signaling protein transport in specialized sensory cilia. In particular, TUB-1 is essential for sensory signaling-dependent reshaping of olfactory cilia morphology. We show that compromised sensory signaling alters cilia membrane phosphoinositide composition via TUB-1-dependent trafficking of a PIP5 kinase. TUB-1 regulates localization of this lipid kinase at the cilia base in part via localization of the AP-2 adaptor complex subunit DPY-23. Our results describe new functions for Tubby proteins in the dynamic regulation of cilia membrane lipid composition, morphology, and signaling protein content, and suggest that this conserved family of proteins plays a critical role in mediating cilia structural and functional plasticity.
Collapse
Affiliation(s)
- Danielle DiTirro
- Department of Biology, Brandeis University, Waltham, United States
| | - Alison Philbrook
- Department of Biology, Brandeis University, Waltham, United States
| | - Kendrick Rubino
- Department of Biology, Brandeis University, Waltham, United States
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, United States
| |
Collapse
|