1
|
Qian G, Wang Y, Yao H, Zhang Z, Wang W, Xu L, Li W, Huang L, Li X, Gao Y, Wang N, Wang S, Pan J, Lv H. Involvement of USP7 in aggravating Kawasaki disease by promoting TGFβ2 signaling mediated endothelial-mesenchymal transition and coronary artery remodeling. Int Immunopharmacol 2025; 146:113823. [PMID: 39674001 DOI: 10.1016/j.intimp.2024.113823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
Kawasaki disease (KD), characterized by systematic vasculitis, is a leading cause of pediatric heart disease. Although recent studies have highlighted the critical role of deubiquitinases in vascular pathophysiology, their specific contribution to KD remains largely unknown. Herein, we investigated the function of the deubiquitinase USP7 in both KD patients and a CAWS-induced KD murine model. USP7 expression level is increased both in HCAECs induced by KD sera and cardiac CD31+ endothelial cells of KD mice. Whereas knockout of USP7 increases the cellular proportion of endothelial cells and potentially attenuates the elevated EndoMT, fibrosis, and inflammation in cardiac tissue of KD mice, consistently with the in vitro experiment observed in HCAECs induced by TGF-β2. Mechanistically, USP7 interacts with SMAD2/3, enhancing their protein stability by removing the K48 ubiquitin chain from both proteins and preventing their proteasome degradation, thus increasing the p-SMAD2 levels and nuclear entry. Importantly, intraperitoneal injection of USP7 inhibitor, P22077 elicited a robust anti-EndoMT and anti-vascular inflammation effect in KD model mice. Therefore, our study uncovered a previously unrecognized function of increased USP7 in KD by augmenting TGFβ2/SMAD2/SMAD3 signaling, thus facilitating the transcription of genes implicated in the EndoMT, cardiac fibrosis, and vascular remodeling. Our finding suggests that USP7 could serve as a potential therapeutic target for the prevention and treatment of coronary artery lesions in KD and related vascular diseases.
Collapse
Affiliation(s)
- Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025 Jiangsu, China.
| | - Yan Wang
- Department of Cardiology, The Affiliated Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221000, China.
| | - Hongwei Yao
- Providence VA Medical Center, Providence, RI, USA; Departments of Medicine, Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, USA.
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025 Jiangsu, China.
| | - Wang Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025 Jiangsu, China
| | - Lei Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025 Jiangsu, China.
| | - Wenjie Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025 Jiangsu, China.
| | - Li Huang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025 Jiangsu, China.
| | - Xuan Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025 Jiangsu, China.
| | - Yang Gao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025 Jiangsu, China
| | - Nana Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025 Jiangsu, China.
| | - Shuhui Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025 Jiangsu, China.
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025 Jiangsu, China.
| | - Haitao Lv
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025 Jiangsu, China.
| |
Collapse
|
2
|
Yeung SHS, Lee RHS, Cheng GWY, Ma IWT, Kofler J, Kent C, Ma F, Herrup K, Fornage M, Arai K, Tse KH. White matter hyperintensity genetic risk factor TRIM47 regulates autophagy in brain endothelial cells. FASEB J 2024; 38:e70059. [PMID: 39331575 DOI: 10.1096/fj.202400689rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024]
Abstract
White matter hyperintensity (WMH) is strongly correlated with age-related dementia and hypertension, but its pathogenesis remains obscure. Genome-wide association studies identified TRIM47 at the 17q25 locus as a top genetic risk factor for WMH formation. TRIM family is a class of E3 ubiquitin ligase with pivotal functions in autophagy, which is critical for brain endothelial cell (ECs) remodeling during hypertension. We hypothesize that TRIM47 regulates autophagy and its loss-of-function disturbs cerebrovasculature. Based on transcriptomics and immunohistochemistry, TRIM47 is found highly expressed by brain ECs in human and mouse, and its transcription is upregulated by artificially induced autophagy while downregulated in hypertension-like conditions. Using in silico simulation, immunocytochemistry and super-resolution microscopy, we predicted a highly conserved binding site between TRIM47 and the LIR (LC3-interacting region) motif of LC3B. Importantly, pharmacological autophagy induction increased Trim47 expression on mouse ECs (b.End3) culture, while silencing Trim47 significantly increased autophagy with ULK1 phosphorylation induction, transcription, and vacuole formation. Together, we demonstrate that TRIM47 is an endogenous inhibitor of autophagy in brain ECs, and such TRIM47-mediated regulation connects genetic and physiological risk factors for WMH formation but warrants further investigation.
Collapse
Affiliation(s)
- Sunny Hoi-Sang Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Ralph Hon-Sun Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Gerald Wai-Yeung Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Iris Wai-Ting Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Julia Kofler
- Division of Neuropathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Candice Kent
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fulin Ma
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Karl Herrup
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Myriam Fornage
- Human Genetics Center, Division of Epidemiology, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| |
Collapse
|
3
|
Wang S, Zhu C, Zhang S, Ma S, Li B, Zhao S, Zhang W, Sun Z. The Combination of Gastrodin and Gallic Acid Synergistically Attenuates AngII-Induced Apoptosis and Inflammation via Regulation of Sphingolipid Metabolism. J Inflamm Res 2024; 17:6971-6988. [PMID: 39372584 PMCID: PMC11456272 DOI: 10.2147/jir.s477554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024] Open
Abstract
Background Hypertension (HTN) is closely related to endothelial damage. While tianma (TM) and gouqizi (GQZ) have the potential to be effective in the treatment of HTN in traditional Chinese medicine, their main active ingredients and whether its exert synergistic effects and the underlying mechanisms of synergistic effects are still unclear. Objective This study screened the active ingredients of TM and GQZ, investigated the synergistic effects of the active ingredients and explored possible mechanisms. Methods The potential targets and mechanisms of TM and GQZ were screened using network pharmacology, and gastrodin (GAS) and gallic acid (GA) were identified as compounds with significant antihypertensive activity. The synergistic effects of the combination of GAS and GA was assessed by measuring biomarkers of AngII-induced human umbilical vein endothelial cell (HUVECs) dysfunction model. Furthermore, the anti-apoptotic and anti-inflammatory effects were evaluated by measuring inflammatory cytokine secretion, and apoptosis-related markers. Finally, key targets of the sphingolipid signaling pathway were experimentally validated by Western blotting. Results In network pharmacology, the herb-pair exerted a synergetic effect by regulating sphingolipid pathways. The GAS and GA exerted synergistic protective effects in AngII-induced HUVECs injury by improving Nitric Oxide Content (NO) levels, alleviating lactate Endothelin-1 (ET-1), and Thromboxane B2 (TX-B2) release, reducing the secretion of inflammatory factors like interleukin-6 (IL-6), interleukin-1β (IL-1β), Tumor Necrosis Factor Alpha (TNF-α)), decreasing the pro-apoptotic protein BAX, and increasing the anti-apoptotic protein BCL-2. Furthermore, the results showed that the GAS and GA combination could elevate the level of S1PR1 and inhibit the expression of ROCK2 and the phosphorylation of NF-κB, which are key targets involved in sphingolipid pathways. Conclusion Our study revealed that the combination of GAS and GA could suppress inflammation and apoptosis, which are highly correlated with sphingolipid signaling pathways, making it a potential candidate for the treatment of HTN.
Collapse
Affiliation(s)
- Shangtao Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Chenghao Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shurui Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Siyu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Baoshan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shengbo Zhao
- Ningqiang Tianma Research Institution Limited Liability Company, Hanzhong, Shaanxi, People’s Republic of China
| | - Wei Zhang
- Ningqiang County Traditional Chinese Medicinal Industry Development Center, Hanzhong, Shaanxi, People’s Republic of China
| | - Zhirong Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Podieh F, Overboom MC, Knol JC, Piersma SR, Goeij-de Haas R, Pham TV, Jimenez CR, Hordijk PL. AAMP and MTSS1 Are Novel Negative Regulators of Endothelial Barrier Function Identified in a Proteomics Screen. Cells 2024; 13:1609. [PMID: 39404373 PMCID: PMC11476176 DOI: 10.3390/cells13191609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Cell-cell adhesion in endothelial monolayers is tightly controlled and crucial for vascular integrity. Recently, we reported on the importance of fast protein turnover for maintenance of endothelial barrier function. Specifically, continuous ubiquitination and degradation of the Rho GTPase RhoB is crucial to preserve quiescent endothelial integrity. Here, we sought to identify other barrier regulators, which are characterized by a short half-life, using a proteomics approach. Following short-term inhibition of ubiquitination with E1 ligase inhibitor MLN7243 or Cullin E3 ligase inhibitor MLN4924 in primary human endothelial cells, we identified sixty significantly differentially expressed proteins. Intriguingly, our data showed that AAMP and MTSS1 are novel negative regulators of endothelial barrier function and that their turnover is tightly controlled by ubiquitination. Mechanistically, AAMP regulates the stability and activity of RhoA and RhoB, and colocalizes with F-actin and cortactin at membrane ruffles, possibly regulating F-actin dynamics. Taken together, these findings demonstrate the critical role of protein turnover of specific proteins in the regulation of endothelial barrier function, contributing to our options to target dysregulation of vascular permeability.
Collapse
Affiliation(s)
- Fabienne Podieh
- Department of Physiology, Microcirculation, Amsterdam Cardiovascular Science, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands; (F.P.)
| | - Max C. Overboom
- Department of Physiology, Microcirculation, Amsterdam Cardiovascular Science, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands; (F.P.)
| | - Jaco C. Knol
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands (C.R.J.)
| | - Sander R. Piersma
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands (C.R.J.)
| | - Richard Goeij-de Haas
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands (C.R.J.)
| | - Thang V. Pham
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands (C.R.J.)
| | - Connie R. Jimenez
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands (C.R.J.)
| | - Peter L. Hordijk
- Department of Physiology, Microcirculation, Amsterdam Cardiovascular Science, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands; (F.P.)
| |
Collapse
|
5
|
Wilkens M, Holtermann L, Stahl AK, Stegmeyer RI, Nottebaum AF, Vestweber D. Ubiquitination of VE-cadherin regulates inflammation-induced vascular permeability in vivo. EMBO Rep 2024; 25:4013-4032. [PMID: 39112792 PMCID: PMC11387630 DOI: 10.1038/s44319-024-00221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/12/2024] Open
Abstract
VE-cadherin is a major component of the cell adhesion machinery which provides integrity and plasticity of the barrier function of endothelial junctions. Here, we analyze whether ubiquitination of VE-cadherin is involved in the regulation of the endothelial barrier in inflammation in vivo. We show that histamine and thrombin stimulate ubiquitination of VE-cadherin in HUVEC, which is completely blocked if the two lysine residues K626 and K633 are replaced by arginine. Similarly, these mutations block histamine-induced endocytosis of VE-cadherin. We describe two knock-in mouse lines with endogenous VE-cadherin being replaced by either a VE-cadherin K626/633R or a VE-cadherin KallR mutant, where all seven lysine residues are mutated. Mutant mice are viable, healthy and fertile with normal expression levels of junctional VE-cadherin. Histamine- or LPS-induced vascular permeability in the skin or lung of both of these mutant mice are clearly and similarly reduced in comparison to WT mice. Additionally, we detect a role of K626/633 for lysosomal targeting. Collectively, our findings identify ubiquitination of VE-cadherin as important for the induction of vascular permeability in the inflamed skin and lung.
Collapse
Affiliation(s)
- Markus Wilkens
- Max Planck Institute for Molecular Biomedicine, D-48149, Muenster, Germany
| | - Leonie Holtermann
- Max Planck Institute for Molecular Biomedicine, D-48149, Muenster, Germany
| | - Ann-Kathrin Stahl
- Max Planck Institute for Molecular Biomedicine, D-48149, Muenster, Germany
| | | | - Astrid F Nottebaum
- Max Planck Institute for Molecular Biomedicine, D-48149, Muenster, Germany
| | - Dietmar Vestweber
- Max Planck Institute for Molecular Biomedicine, D-48149, Muenster, Germany.
| |
Collapse
|
6
|
Yeung SHS, Lee RHS, Cheng GWY, Ma IWT, Kofler J, Kent C, Ma F, Herrup K, Fornage M, Arai K, Tse KH. White matter hyperintensity genetic risk factor TRIM47 regulates autophagy in brain endothelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.18.566359. [PMID: 38187529 PMCID: PMC10769267 DOI: 10.1101/2023.12.18.566359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
White matter hyperintensity (WMH) is strongly correlated with age-related dementia and hypertension, but its pathogenesis remains obscure. GWAS identified TRIM47 at 17q25 locus as a top genetic risk factor for WMH formation. TRIM family is a class of E3 ubiquitin ligase with pivotal functions in autophagy, which is critical for brain endothelial cell (ECs) remodeling during hypertension. We hypothesize that TRIM47 regulates autophagy and its loss-of-function disturbs cerebrovasculature. Based on transcriptomics and immunohistochemistry, TRIM47 is found selectively expressed by brain ECs in human and mouse, and its transcription is upregulated by artificially-induced autophagy while downregulated in hypertension-like conditions. Using in silico simulation, immunocytochemistry and super-resolution microscopy, we identified the highly conserved binding site between TRIM47 and the LIR (LC3-interacting region) motif of LC3B. Importantly, pharmacological autophagy induction increased Trim47 expression on mouse ECs (b.End3) culture, while silencing Trim47 significantly increased autophagy with ULK1 phosphorylation induction, transcription and vacuole formation. Together, we confirm that TRIM47 is an endogenous inhibitor of autophagy in brain ECs, and such TRIM47-mediated regulation connects genetic and physiological risk factors for WMH formation but warrants further investigation. SUMMARY STATEMENT TRIM47, top genetic risk factor for white matter hyperintensity formation, is a negative regulator of autophagy in brain endothelial cells and implicates a novel cellular mechanism for age-related cerebrovascular changes.
Collapse
|
7
|
Sewduth RN, Carai P, Ivanisevic T, Zhang M, Jang H, Lechat B, Van Haver D, Impens F, Nussinov R, Jones E, Sablina A. Spatial Mechano-Signaling Regulation of GTPases through Non-Degradative Ubiquitination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303367. [PMID: 37946677 PMCID: PMC10754123 DOI: 10.1002/advs.202303367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/14/2023] [Indexed: 11/12/2023]
Abstract
Blood flow produces shear stress exerted on the endothelial layer of the vessels. Spatial characterization of the endothelial proteome is required to uncover the mechanisms of endothelial activation by shear stress, as blood flow varies in the vasculature. An integrative ubiquitinome and proteome analysis of shear-stressed endothelial cells demonstrated that the non-degradative ubiquitination of several GTPases is regulated by mechano-signaling. Spatial analysis reveals increased ubiquitination of the small GTPase RAP1 in the descending aorta, a region exposed to laminar shear stress. The ubiquitin ligase WWP2 is identified as a novel regulator of RAP1 ubiquitination during shear stress response. Non-degradative ubiquitination fine-tunes the function of GTPases by modifying their interacting network. Specifically, WWP2-mediated RAP1 ubiquitination at lysine 31 switches the balance from the RAP1/ Talin 1 (TLN1) toward RAP1/ Afadin (AFDN) or RAP1/ RAS Interacting Protein 1 (RASIP1) complex formation, which is essential to suppress shear stress-induced reactive oxygen species (ROS) production and maintain endothelial barrier integrity. Increased ROS production in endothelial cells in the descending aorta of endothelial-specific Wwp2-knockout mice leads to increased levels of oxidized lipids and inflammation. These results highlight the importance of the spatially regulated non-degradative ubiquitination of GTPases in endothelial mechano-activation.
Collapse
Affiliation(s)
- Raj N. Sewduth
- VIB‐KU Leuven Center for Cancer BiologyVIBLeuven3000Belgium
- Department of OncologyKU LeuvenHerestraat 49Leuven3000Belgium
| | - Paolo Carai
- Department of Cardiovascular SciencesCentre for Molecular and Vascular BiologyKU LeuvenHerestraat 49Leuven3000Belgium
| | - Tonci Ivanisevic
- VIB‐KU Leuven Center for Cancer BiologyVIBLeuven3000Belgium
- Department of OncologyKU LeuvenHerestraat 49Leuven3000Belgium
| | - Mingzhen Zhang
- Computational Structural Biology SectionFrederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolismNational Cancer InstituteFrederickMD21702USA
| | - Hyunbum Jang
- Computational Structural Biology SectionFrederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolismNational Cancer InstituteFrederickMD21702USA
| | - Benoit Lechat
- VIB‐KU Leuven Center for Cancer BiologyVIBLeuven3000Belgium
- Department of OncologyKU LeuvenHerestraat 49Leuven3000Belgium
| | - Delphi Van Haver
- VIB‐UGent Center for Medical BiotechnologyTechnologiepark‐Zwijnaarde 75Ghent9052Belgium
- Department of Biomolecular MedicineGhent UniversityTechnologiepark‐Zwijnaarde 75Ghent9052Belgium
- VIB Proteomics CoreTechnologiepark‐Zwijnaarde 75Ghent9052Belgium
| | - Francis Impens
- VIB‐UGent Center for Medical BiotechnologyTechnologiepark‐Zwijnaarde 75Ghent9052Belgium
- Department of Biomolecular MedicineGhent UniversityTechnologiepark‐Zwijnaarde 75Ghent9052Belgium
- VIB Proteomics CoreTechnologiepark‐Zwijnaarde 75Ghent9052Belgium
| | - Ruth Nussinov
- Computational Structural Biology SectionFrederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolismNational Cancer InstituteFrederickMD21702USA
- Department of Human Molecular Genetics and BiochemistrySackler School of MedicineTel Aviv UniversityTel Aviv69978Israel
| | - Elizabeth Jones
- Department of Cardiovascular SciencesCentre for Molecular and Vascular BiologyKU LeuvenHerestraat 49Leuven3000Belgium
- Department of CardiologyCARIM School for Cardiovascular DiseasesMaastricht UniversityUniversiteitssingel 50Maastricht6229 ERThe Netherlands
| | - Anna Sablina
- VIB‐KU Leuven Center for Cancer BiologyVIBLeuven3000Belgium
- Department of OncologyKU LeuvenHerestraat 49Leuven3000Belgium
| |
Collapse
|
8
|
Hou W, Yao J, Liu J, Lin X, Wei J, Yin X, Huang H, Chen X, Yang G, He X. USP14 inhibition promotes recovery by protecting BBB integrity and attenuating neuroinflammation in MCAO mice. CNS Neurosci Ther 2023; 29:3612-3623. [PMID: 37269080 PMCID: PMC10580339 DOI: 10.1111/cns.14292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/20/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023] Open
Abstract
AIM Blood-brain barrier (BBB) dysfunction is one of the hallmarks of ischemic stroke. USP14 has been reported to play a detrimental role in ischemic brain injury. However, the role of USP14 in BBB dysfunction after ischemic stroke is unclear. METHODS In this study, we tested the role of USP14 in disrupting BBB integrity after ischemic stroke. The USP14-specific inhibitor IU1 was injected into middle cerebral artery occlusion (MCAO) mice once a day. The Evans blue (EB) assay and IgG staining were used to assess BBB leakage 3 days after MCAO. FITC-detran test was slected to examine the BBB leakage in vitro. Behavior tests were conducted to evaluate recovery from ischemic stroke. RESULTS Middle cerebral artery occlusion increased endothelial cell USP14 expression in the brain. Furthermore, the EB assay and IgG staining showed that USP14 inhibition through IU1 injection protected against BBB leakage after MCAO. Analysis of protein expression revealed a reduction in the inflammatory response and chemokine release after IU1 treatment. In addition, IU1 treatment was found to rescue neuronal loss resulting from ischemic stroke. Behavior tests showed a positive effect of IU1 in attenuating brain injury and improving motor function recovery. In vitro study showed that IU1 treatment could alleviate endothelial cell leakage induced by OGD in cultured bend.3 cells through modulating ZO-1 expression. CONCLUSIONS Our results demonstrate a role for USP14 in disrupting the integrity of the BBB and promoting neuroinflammation after MCAO.
Collapse
Affiliation(s)
- Wenzhong Hou
- Department of Cerebrovascular Disease, The Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQianyuanChina
| | - Jianping Yao
- Department of Anatomy, School of Basic Medical ScienceGuangzhou Medical UniversityGuangzhouChina
| | - Junjie Liu
- Department of Anatomy, School of Basic Medical ScienceGuangzhou Medical UniversityGuangzhouChina
| | - Xiaohong Lin
- Department of Anatomy, School of Basic Medical ScienceGuangzhou Medical UniversityGuangzhouChina
| | - JueXian Wei
- Department of EmergencyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Xiaofan Yin
- Department of EmergencyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Hongbiao Huang
- Department of Pathophysiology, School of Basic Medical SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Xiaohui Chen
- Department of EmergencyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Guo‐Yuan Yang
- Neuroscience and Neuroengineering CenterShanghai Jiao Tong University School of Biomedical EngineeringShanghaiChina
| | - Xiaosong He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
- School of Basic Medical SciencesGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
9
|
Wang Y, Yixiong Z, Wang L, Huang X, Xin HB, Fu M, Qian Y. E3 Ubiquitin Ligases in Endothelial Dysfunction and Vascular Diseases: Roles and Potential Therapies. J Cardiovasc Pharmacol 2023; 82:93-103. [PMID: 37314134 PMCID: PMC10527814 DOI: 10.1097/fjc.0000000000001441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023]
Abstract
ABSTRACT Ubiquitin E3 ligases are a structurally conserved family of enzymes that exert a variety of regulatory functions in immunity, cell death, and tumorigenesis through the ubiquitination of target proteins. Emerging evidence has shown that E3 ubiquitin ligases play crucial roles in the pathogenesis of endothelial dysfunction and related vascular diseases. Here, we reviewed the new findings of E3 ubiquitin ligases in regulating endothelial dysfunction, including endothelial junctions and vascular integrity, endothelial activation, and endothelial apoptosis. The critical role and potential mechanism of E3 ubiquitin ligases in vascular diseases, such as atherosclerosis, diabetes, hypertension, pulmonary hypertension, and acute lung injury, were summarized. Finally, the clinical significance and potential therapeutic strategies associated with the regulation of E3 ubiquitin ligases were also proposed.
Collapse
Affiliation(s)
- Yihan Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Zhan Yixiong
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Chongqing Research Institute, Nanchang University, Chongqing, 402660, China
| | - Linsiqi Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xuan Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Mingui Fu
- Department of Biomedical Sciences and Shock/Trauma Research Center, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - Yisong Qian
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Chongqing Research Institute, Nanchang University, Chongqing, 402660, China
| |
Collapse
|
10
|
Zhou T, Liao W, Wang X, Wang Y, Yang P, Zuo L, Zhang X. Low temperature reduces occludin expression in bronchial epithelial cells: Implications in cold-induced asthma. Mol Immunol 2023; 157:176-185. [PMID: 37044043 DOI: 10.1016/j.molimm.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/25/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Cold exposure is a common factor to trigger asthma attacks. However, the underlying mechanism has not been thoroughly elucidated. We aimed to investigate the hypothesis that low temperature reduces occludin expression and compromises epithelial barrier function in airways, which in turn, results in asthma exacerbation. METHODS We examined occludin expression in human bronchial epithelial cell line (Beas-2B) cells exposed to either 29 °C or 37 °C. The following drugs were administered prior to cold treatment: MG132 (a proteasome inhibitor), cycloheximide (a protein synthesis inhibitor), HC-067047 plus GSK2193874 (transient receptor potential vanilloid 4 [TRPV4] antagonists), or C4-ceramide (a glucocorticoid-inducible kinase [SGK1] activator). siNedd4-2 was transfected into Beas-2B cells to investigate the role that Nedd4-2 plays in mediating occludin instability induced by cold. In animal experiments, we treated ovalbumin (OVA)-induced asthmatic mice with a thermoneutral temperature of 30 °C or cold exposure (10 °C, 6 h/day) for 2 weeks. GSK2193874 or C4-ceramide was administered during the cold treatment. Occludin expression of the lung, pulmonary permeability, serum IgE levels, and lung inflammation were assessed. RESULTS Low temperature treatment (29 °C) significantly reduced the expression of occludin in Beas-2B cells from 1 to 9 h, which was rescued upon treatment with MG132, HC-067047 plus GSK2193874, C4-ceramide, or Nedd4-2 knockdown. Low temperatures affected occludin stability through SGK1/Nedd4-2-dependent proteolysis. In vivo mice data revealed that cold exposure compromised the airway epithelial barrier function, decreased occludin expression, and exacerbated lung inflammation, which was attenuated by the GSK2193874 or C4-ceramide injection. CONCLUSION We identified a potential mechanism underlying cold-induced asthma exacerbation involving Nedd4-2-mediated occludin proteolysis and airway epithelial barrier disruption.
Collapse
Affiliation(s)
- Tingyang Zhou
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology, Head & Neck Surgery, Laboratory of ENT-HNS Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjing Liao
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology, Head & Neck Surgery, Laboratory of ENT-HNS Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaofen Wang
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology, Head & Neck Surgery, Laboratory of ENT-HNS Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yiyan Wang
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology, Head & Neck Surgery, Laboratory of ENT-HNS Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pingchang Yang
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology, Head & Neck Surgery, Laboratory of ENT-HNS Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Department of Allergy and Clinical Immunology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Li Zuo
- School of Medicine, The University of Texas and UT Health Rio Grande Valley, TX 78539, USA
| | - Xiaowen Zhang
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology, Head & Neck Surgery, Laboratory of ENT-HNS Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Department of Cancer, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Innovation and Transformation Platform of Upper Airway Disease in Guangdong Province, China; Department of Allergy and Clinical Immunology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Bkaily G, Jacques D. Morphological and Functional Remodeling of Vascular Endothelium in Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24031998. [PMID: 36768314 PMCID: PMC9916505 DOI: 10.3390/ijms24031998] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/21/2023] Open
Abstract
The vascular endothelium plays a vital role during embryogenesis and aging and is a cell monolayer that lines the blood vessels. The immune system recognizes the endothelium as its own. Therefore, an abnormality of the endothelium exposes the tissues to the immune system and provokes inflammation and vascular diseases such as atherosclerosis. Its secretory role allows it to release vasoconstrictors and vasorelaxants as well as cardio-modulatory factors that maintain the proper functioning of the circulatory system. The sealing of the monolayer provided by adhesion molecules plays an important role in cardiovascular physiology and pathology.
Collapse
|
12
|
González B, Cullen PJ. Regulation of Cdc42 protein turnover modulates the filamentous growth MAPK pathway. J Cell Biol 2022; 221:213675. [PMID: 36350310 PMCID: PMC9811999 DOI: 10.1083/jcb.202112100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/25/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022] Open
Abstract
Rho GTPases are central regulators of cell polarity and signaling. How Rho GTPases are directed to function in certain settings remains unclear. Here, we show the protein levels of the yeast Rho GTPase Cdc42p are regulated, which impacts a subset of its biological functions. Specifically, the active conformation of Cdc42p was ubiquitinated by the NEDD4 ubiquitin ligase Rsp5p and HSP40/HSP70 chaperones and turned over in the proteasome. A GTP-locked (Q61L) turnover-defective (TD) version, Cdc42pQ61L+TD, hyperactivated the MAPK pathway that regulates filamentous growth (fMAPK). Cdc42pQ61L+TD did not influence the activity of the mating pathway, which shares components with the fMAPK pathway. The fMAPK pathway adaptor, Bem4p, stabilized Cdc42p levels, which resulted in elevated fMAPK pathway signaling. Our results identify Cdc42p turnover regulation as being critical for the regulation of a MAPK pathway. The control of Rho GTPase levels by stabilization and turnover may be a general feature of signaling pathway regulation, which can result in the execution of a specific developmental program.
Collapse
Affiliation(s)
- Beatriz González
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY
| | - Paul J. Cullen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY,Correspondence to Paul J. Cullen:
| |
Collapse
|
13
|
Tong J, Ji X, Zhang H, Xiong B, Cui D, Jiang L. The Analysis of the Ubiquitylomic Responses to Streptococcus agalactiae Infection in Bovine Mammary Gland Epithelial Cells. J Inflamm Res 2022; 15:4331-4343. [PMID: 35923910 PMCID: PMC9342659 DOI: 10.2147/jir.s368779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/19/2022] [Indexed: 01/21/2023] Open
Abstract
Purpose Streptococcus agalactiae is one of the primary pathogens responsible for subclinical mastitis, a significant economic burden for dairy farms. An essential component of the immune response to infection is ubiquitination, which plays important roles in the complex interactions between the pathogen and host. Materials and Methods In the present study, quantitative ubiquitylomics was performed to profile changes in the global ubiquitinome of bovine mammary gland epithelial cells (BMECs) infected with S. agalactiae. Results The most notable changes in the BMEC ubiquitinome were related to the adherens junction, ribosome, and tight junction pathways. Ubiquitination of CTNNB1, EGFR, ITGB1, CTNNA1, CTNNA2, CDH1, YES1, and SLC9A3R1 appears to be fundamental for regulating multiple cellular processes in BMECs in response to S. agalactiae infection. In addition, broad ubiquitination of various effectors and outer membrane proteins was observed. Ubiquitinated proteins in S. agalactiae-infected BMECs were associated with regulating cell junctions in the host, with potential implications for susceptibility to infection. Conclusion The preliminary findings suggest that extensive ubiquitination of CTNNB1, CDH1 and SLC9A3R1 and proteins closely related to cell junctions might play an important role in mastitis progression in dairy cows. The results provide evidence that ubiquitin modification of certain proteins in S. agalactiae-infected BMECs could be a promising therapeutic strategy for reducing mammary gland injury and mastitis.
Collapse
Affiliation(s)
- Jinjin Tong
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, People’s Republic of China
| | - Xintong Ji
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, People’s Republic of China
| | - Hua Zhang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, People’s Republic of China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Defeng Cui
- Beijing Key Laboratory of TCVM, Beijing University of Agriculture, Beijing, People’s Republic of China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, People’s Republic of China
| |
Collapse
|
14
|
Putman AK, Sordillo LM, Contreras GA. The Link Between 15-F2t-Isoprostane Activity and Acute Bovine Endothelial Inflammation Remains Elusive. Front Vet Sci 2022; 9:873544. [PMID: 35573419 PMCID: PMC9100427 DOI: 10.3389/fvets.2022.873544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/06/2022] [Indexed: 01/31/2023] Open
Abstract
Modern dairy cattle suffer from increased incidence and severity of mastitis during major physiological transitions of the lactation cycle. Oxidative stress, a condition resulting from inadequate antioxidant defense against reactive oxygen and nitrogen species, is a major underlying component of mastitis pathophysiology. Isoprostanes (IsoP) are molecules derived from cellular lipid membranes upon non-enzymatic interaction with reactive species during inflammation, and are regarded as highly sensitive and specific biomarkers of oxidative stress. Changes in IsoP concentrations have been noted during major physiological transitions and diseases such as coliform mastitis in dairy cattle. However, the biological role of IsoP during oxidative stress in dairy cows has not been well-elucidated. Therefore, this study aimed to characterize the impacts of IsoP on oxidative stress outcomes in a bovine model of acute endothelial inflammation. Bovine aortic endothelial cells (BAEC; n = 4) were stimulated with 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) or lipopolysaccharide (LPS) with or without 15-F2t-IsoP to determine how IsoP influence oxidative stress outcomes. Our endothelial inflammation model showed relatively decreased reactive metabolites and increased barrier integrity in cells treated with both the agonist and IsoP compared to agonist treatment alone. However, IsoP do not appear to affect oxidative stress outcomes during acute inflammation. Understanding the effect of IsoP on BAEC is an early step in elucidating how IsoP impact dairy cows during times of oxidative stress in the context of acute clinical mastitis. Future studies should define the optimal dosing and treatment timing of IsoP to maximize their cytoprotective potential during acute inflammation.
Collapse
|
15
|
Reglero-Real N, Pérez-Gutiérrez L, Yoshimura A, Rolas L, Garrido-Mesa J, Barkaway A, Pickworth C, Saleeb RS, Gonzalez-Nuñez M, Austin-Williams SN, Cooper D, Vázquez-Martínez L, Fu T, De Rossi G, Golding M, Voisin MB, Boulanger CM, Kubota Y, Muller WA, Tooze SA, Nightingale TD, Collinson L, Perretti M, Aksoy E, Nourshargh S. Autophagy modulates endothelial junctions to restrain neutrophil diapedesis during inflammation. Immunity 2021; 54:1989-2004.e9. [PMID: 34363750 PMCID: PMC8459396 DOI: 10.1016/j.immuni.2021.07.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 05/13/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023]
Abstract
The migration of neutrophils from the blood circulation to sites of infection or injury is a key immune response and requires the breaching of endothelial cells (ECs) that line the inner aspect of blood vessels. Unregulated neutrophil transendothelial cell migration (TEM) is pathogenic, but the molecular basis of its physiological termination remains unknown. Here, we demonstrated that ECs of venules in inflamed tissues exhibited a robust autophagic response that was aligned temporally with the peak of neutrophil trafficking and was strictly localized to EC contacts. Genetic ablation of EC autophagy led to excessive neutrophil TEM and uncontrolled leukocyte migration in murine inflammatory models, while pharmacological induction of autophagy suppressed neutrophil infiltration into tissues. Mechanistically, autophagy regulated the remodeling of EC junctions and expression of key EC adhesion molecules, facilitating their intracellular trafficking and degradation. Collectively, we have identified autophagy as a modulator of EC leukocyte trafficking machinery aimed at terminating physiological inflammation.
Collapse
Affiliation(s)
- Natalia Reglero-Real
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Lorena Pérez-Gutiérrez
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Azumi Yoshimura
- Electron Microscopy Science Technology Platform, Francis Crick Institute, London NW1 1AT, UK
| | - Loïc Rolas
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - José Garrido-Mesa
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Anna Barkaway
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Catherine Pickworth
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Rebeca S Saleeb
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Maria Gonzalez-Nuñez
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Shani N Austin-Williams
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Dianne Cooper
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London EC1M 6BQ, UK
| | - Laura Vázquez-Martínez
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Tao Fu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Giulia De Rossi
- Department of Cell Biology, Institute of Ophthalmology, University College London, London EC1V9EL, UK
| | - Matthew Golding
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Mathieu-Benoit Voisin
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | | | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo 113-0022, Japan
| | - William A Muller
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Thomas D Nightingale
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, Francis Crick Institute, London NW1 1AT, UK
| | - Mauro Perretti
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London EC1M 6BQ, UK
| | - Ezra Aksoy
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Sussan Nourshargh
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
16
|
Zhu M, Lu J, Shen J, Fei L, Chen D. A 22-amino-acid peptide regulates tight junctions through occludin and cell apoptosis. PeerJ 2020; 8:e10147. [PMID: 33194394 PMCID: PMC7646304 DOI: 10.7717/peerj.10147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
Occludin is a structural protein of tight junctions (TJ) in the blood–testis barrier (BTB). A 22-amino-acid peptide (22AA) in the second extracellular loop can reversibly regulate TJ, but its regulatory mechanism is unknown. In this study, a 22AA-induced TJ destruction animal model was constructed to investigate the effect of 22AA on Sertoli cells (SCs) and spermatid counts and cell apoptosis at different time points using a multiplex immunofluorescence technique. The effect of 22AA on the location and distribution of occludin was analyzed via dual confocal fluorescence microscope. Western blotting was used to analyze dynamic changes in occludin expression. Real-time RT-PCR was used to analyze miR-122-5p expression changes. Sperm density counts and mating methods were used to analyze the effect of 22AA on fertility in mice. The results showed that 22AA promoted SC and spermatid apoptosis, downregulated occludin, upregulated miR-122-5p, and decreased sperm density and litter size before 27 days (27D). After 27D, the expression of occludin increased again, miR-122-5p expression decreased again, both sperm density and litter size returned to normal, apoptosis stopped, and spermatogenesis began to recover. Therefore, it can be concluded that 22AA can destroy TJ by downregulating occludin and inducing cell apoptosis. After 27D, TJ and spermatogenesis functions return to normal.
Collapse
Affiliation(s)
- Maoying Zhu
- College of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Juan Lu
- College of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Jianyun Shen
- College of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Lumin Fei
- College of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Deyu Chen
- College of Medicine, Fuyang Normal University, Fuyang, Anhui, China
| |
Collapse
|