1
|
Chang CY, Pearce G, Betaneli V, Kapustsenka T, Hosseini K, Fischer-Friedrich E, Corbeil D, Karbanová J, Taubenberger A, Dahncke B, Rauner M, Furesi G, Perner S, Rost F, Jessberger R. The F-actin bundler SWAP-70 promotes tumor metastasis. Life Sci Alliance 2024; 7:e202302307. [PMID: 38760173 PMCID: PMC11101836 DOI: 10.26508/lsa.202302307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
Dynamic rearrangements of the F-actin cytoskeleton are a hallmark of tumor metastasis. Thus, proteins that govern F-actin rearrangements are of major interest for understanding metastasis and potential therapies. We hypothesized that the unique F-actin binding and bundling protein SWAP-70 contributes importantly to metastasis. Orthotopic, ectopic, and short-term tail vein injection mouse breast and lung cancer models revealed a strong positive dependence of lung and bone metastasis on SWAP-70. Breast cancer cell growth, migration, adhesion, and invasion assays revealed SWAP-70's key role in these metastasis-related cell features and the requirement for SWAP-70 to bind F-actin. Biophysical experiments showed that tumor cell stiffness and deformability are negatively modulated by SWAP-70. Together, we present a hitherto undescribed, unique F-actin modulator as an important contributor to tumor metastasis.
Collapse
Affiliation(s)
- Chao-Yuan Chang
- Institute for Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Glen Pearce
- Institute for Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Viktoria Betaneli
- Institute for Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tatsiana Kapustsenka
- Institute for Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kamran Hosseini
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | | | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Dresden, Germany
- Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Dresden, Germany
- Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anna Taubenberger
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Dresden, Germany
- Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Björn Dahncke
- Institute for Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Giulia Furesi
- Department of Medicine III and Center for Healthy Aging, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sven Perner
- Institute of Pathology, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute of Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Fabian Rost
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Rolf Jessberger
- Institute for Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Qian Q, Li Y, Fu J, Leng D, Dong Z, Shi J, Shi H, Cao D, Cheng X, Hu Y, Luo Q, Hu M, Ran Y, Tang H, Liu H, Liu J. Switch-associated protein 70 protects against nonalcoholic fatty liver disease through suppression of TAK1. Hepatology 2022; 75:1507-1522. [PMID: 34689362 PMCID: PMC9321549 DOI: 10.1002/hep.32213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND AIMS NAFLD is a progressive disease without known effective drug treatments. Switch-associated protein 70 (SWAP70) is a guanine nucleotide exchange factor that participates in the regulation of many cellular processes. However, the role of SWAP70 in NAFLD remains unclear. This study aimed to identify the function and mechanism of SWAP70 in NAFLD. APPROACH AND RESULTS The results showed that the expression of SWAP70 was significantly increased in mice and hepatocytes after metabolic stimulation. Overexpression of SWAP70 in hepatocytes suppressed lipid deposition and inflammation, and SWAP70 knockdown created the inverse effect. Using hepatocyte-specific Swap70 knockout and overexpression mice fed a high-fat, high-cholesterol diet, we demonstrated that SWAP70 suppressed the progression of nonalcoholic steatohepatitis by inhibiting lipid accumulation, inflammatory response, and fibrosis. Mechanically, RNA sequencing analysis and immunoprecipitation assays revealed that SWAP70 inhibited the interaction between transforming growth factor β-activated kinase 1 (TAK1) binding protein 1 and TAK1 and sequentially suppressed the phosphorylation of TAK1 and subsequent c-Jun N-terminal kinase/P38 signaling. Inhibition of TAK1 activation blocked hepatocyte lipid deposition and inflammation caused by SWAP70 knockdown. CONCLUSIONS SWAP70 is a protective molecule that can suppress the progression of NAFLD by inhibiting hepatic steatosis and inflammation. SWAP70 may be important for mitigating the progression of NAFLD.
Collapse
Affiliation(s)
- Qiaofeng Qian
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Yang Li
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jiajun Fu
- Medical Science Research CentreZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Dewen Leng
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zhe Dong
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jiajun Shi
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Hongjie Shi
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Dengwei Cao
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Xu Cheng
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yufeng Hu
- Medical Science Research CentreZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Qiujie Luo
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Manli Hu
- Medical Science Research CentreZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Yong Ran
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Hao Tang
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Hui Liu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Institute of Model Animal of Wuhan UniversityWuhanChina
| | - Jinping Liu
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
3
|
Dohnke S, Moehser S, Surnov A, Kurth T, Jessberger R, Kretschmer K, Garbe AI. Role of Dynamic Actin Cytoskeleton Remodeling in Foxp3+ Regulatory T Cell Development and Function: Implications for Osteoclastogenesis. Front Immunol 2022; 13:836646. [PMID: 35359955 PMCID: PMC8963504 DOI: 10.3389/fimmu.2022.836646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/17/2022] [Indexed: 01/20/2023] Open
Abstract
In T cells, processes such as migration and immunological synapse formation are accompanied by the dynamic reorganization of the actin cytoskeleton, which has been suggested to be mediated by regulators of RhoGTPases and by F-actin bundlers. SWAP-70 controls F-actin dynamics in various immune cells, but its role in T cell development and function has remained incompletely understood. CD4+ regulatory T (Treg) cells expressing the transcription factor Foxp3 employ diverse mechanisms to suppress innate and adaptive immunity, which is critical for maintaining immune homeostasis and self-tolerance. Here, we propose Swap-70 as a novel member of the Foxp3-dependent canonical Treg cell signature. We show that Swap-70-/- mice have increased numbers of Foxp3+ Treg cells with an effector/memory-like phenotype that exhibit impaired suppressor function in vitro, but maintain overall immune homeostasis in vivo. Upon formation of an immunological synapse with antigen presenting cells in vitro, cytosolic SWAP-70 protein is selectively recruited to the interface in Treg cells. In this context, Swap-70-/- Treg cells fail to downregulate CD80/CD86 on osteoclast precursor cells by trans-endocytosis and to efficiently suppress osteoclastogenesis and osteoclast function. These data provide first evidence for a crucial role of SWAP-70 in Treg cell biology and further highlight the important non-immune function of Foxp3+ Treg cells in bone homeostasis mediated through direct SWAP-70-dependent mechanisms.
Collapse
Affiliation(s)
- Sebastian Dohnke
- Osteoimmunology, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Stephanie Moehser
- Osteoimmunology, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Alexey Surnov
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering, Technology Platform, Electron Microscopy and Histology Facility, Technische Universität Dresden, Dresden, Germany
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Annette I. Garbe
- Osteoimmunology, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
- *Correspondence: Annette I. Garbe,
| |
Collapse
|
4
|
First person – Viktoria Betaneli. J Cell Sci 2020. [DOI: 10.1242/jcs.243154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Viktoria Betaneli is first author on ‘ Mechanism of control of F-actin cortex architecture by SWAP-70’, published in JCS. Viktoria is a Postdoc in the lab of Prof. Rolf Jessberger at Medical Institute Carl Gustav Carus, Institute of Physiological Chemistry, Technische Universitat Dresden, Germany, investigating protein oligomerization and the actin cytoskeleton with fluorescence resonance energy transfer (FRET), fluorescence lifetime imaging microscopy (FLIM) and fluorescence correlation spectroscopy (FCS).
Collapse
|